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Abstract: Statistical distributions play a prominent role in applied sciences, par-
ticularly in biomedical sciences. The medical data sets are generally skewed to the
right, and skewed distributions can be used quite effectively to model such kind of
data sets. In the present study, therefore, we propose a new family of distributions
suitable for modeling right-skewed medical data sets. The proposed family may
be called a new generalized-X family. A special sub-model of the proposed family
called a new generalized-Weibull distribution is discussed in detail. The maxi-
mum likelihood estimators of the model parameters are obtained. A brief Monte
Carlo simulation study is conducted to evaluate the performance of these estima-
tors. Finally, the proposed model is applied to the remission times of the stomach
cancer patient’s data. The comparison of the goodness of fit results of the pro-
posed model is made with the other competing models such as Weibull, Kumar-
aswamy Weibull, and exponentiated Weibull distributions. Certain analytical
measures such as Akaike information criterion, Bayesian information criterion,
Anderson Darling statistic, and Kolmogorov–Smirnov test statistic are considered
to show which distribution provides the best fit to data. Based on these measures,
it is showed that the proposed distribution is a reasonable candidate for modeling
data in medical sciences and other related fields.

Keywords: Weibull distribution; stomach cancer; hazard function; statistical
modeling; akaike information criterion

1 Introduction

In medical situations, for example, neck cancer, bladder cancer, stomach cancer, and breast cancer, etc.,
the hazard rate is shown to have unimodal or modified unimodal shape. The hazard rate for neck, bladder, and
breast cancer recurrence after surgical removal has been observed to have unimodal shape. In the very initial
phase, the hazard rate for cancer recurrence begins with a low level and then increases gradually after a finite
period of time after the surgical removal until reaching a peak before decreasing. Another example of the
unimodal shape is the hazard of infection with some new viruses, where it increases in the early stages
from a low level till it reaches a peak and then decreases; see Liao et al. [1].
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The parametric methods such as the exponential, Rayleigh, Weibull, lognormal and gamma distributions
have been extensively used in fitting bio-medical data; see Zhu et al. [2]. The researchers in medical sciences
have shown a great interest in studying the survival of patients, particularly, patients with cancer [3]. An
appropriate parametric model is always of interest in survival analysis, as it provides a concise
description of the characteristics of failure times as well as hazard function that may not be available with
non-parametric methods [4]. The parametric Weibull is a more flexible distribution than the Cox semi-
parametric model, since; the associated hazard rate is not constant over time.

No doubt, that the parametric models stated above are used frequently in survival analysis. However,
unfortunately, still, these models are subject to some sort of deficiencies; see Ahmad et al. [5]. For more
information, we refer to [6–11]. The next section offers a brief description of the deficiencies associated
with the former parametric models.

2 Problems Associated with the Former Models

As we mentioned earlier, that the exponential, Rayleigh, and Weibull are the most frequently used
distributions among the parametric models. These distributions, however, are not flexible enough to
counter complex forms of the data. For example, the exponential distribution is capable of modeling data
with a constant hazard rate function (hrf), only. The hrf of the exponential distribution is given by

hðx; cÞ ¼ c; x > 0; c > 0; (1)

which is constant.

On the other hand, the Rayleigh distribution offers data modeling with only increasing hrf. Let
X � RayðcÞ; then hrf of the Rayleigh distribution is given by

hðx; cÞ ¼ 2cx; x > 0; c > 0; (2)

From Eq. (2), we can see that the Rayleigh distribution is capable of modeling real-life data with
increasing hrf, only.

Among the parametric models, the Weibull distribution is one of the most commonly used family
for modeling such data offering the characteristics of both the exponential and Rayleigh distributions is
given by

hðx; a; cÞ ¼ acxa�1; x > 0; a > 0; c >: (3)

From Eq. (3), we can easily observe that the Weibull distribution is capable of modeling lifetime data
with monotonically increasing, constant, and decreasing hazard functions, depending on the shape
parameter a. Unfortunately, the Weibull distribution is not capable of modeling data with non-monotonic
(unimodal, modified unimodal and bathtub shaped) hrf. For c = 1 and different values of a, plots for the
hazard function of the Weibull distribution are presented in Fig. 1.

Among the available literature, the frequently used Kaplan–Meier product-limit estimator is one of the
flexible methods to model survival data. But, as observed in Miller [12], this method is often inefficient.
Other semi-parameter approaches such as proportional hazards modeling need many assumptions that
may not feasible; see Cox et al. [13]. Meanwhile, a number of parametric approaches have been
introduced to incorporate a wide variety of patterns in survival data. Some proposed parametric models
have incorporated a shape parameter into the classic Weibull distribution to account for additional
possible hazard shapes. Among them, one such method is proposed by Kalbfleisch et al. [14], this model
may be impractical in the presence of censored data, as it often requires the evaluation of an incomplete
gamma integral or beta ratio. In the premises of the above, the medical researchers are always in search
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of introducing new distributions capable of modeling lifetime data with unimodal hazard function. In this
regard, a serious attempt has been made and still growing rapidly; see Ahmad et al. [15].

Under these premises, we are motivated to propose new families of distributions. Therefore, in this
article, an attempt has been made to propose a new family of distributions to provide the best fit to data
in medical sciences and other related fields.

The paper is outlined as follows: the proposed method is presented in Section 3. In Section 4, we define a
special sub-model of the proposed family. The maximum likelihood estimation of the model parameters is
addressed in Section 5. The source and nature of the data are discussed in Section 6. Model selection
criteria are presented in Section 7. In Section 8, we provide a real-life application from medical sciences
to illustrate the importance of the new family. Section 9 is devoted to the Bayesian analysis of the data.
Finally, some concluding remarks are presented in Section 10.

3 Development of the Proposed Method

Let vðtÞ be the probability density function (pdf) of a random variable, say T, where T 2 m; n½ � for
�1 � mffnff1; and let W ½FðxÞ� be a function of cumulative distribution function (cdf) of a random
variable, say X, satisfying the conditions given below:

� W ½FðxÞ� 2 ½m; n�,
� W ½FðxÞ� is differentiable and monotonically increasing, and

� W ½FðxÞ� ! m as x ! �1 and W ½FðxÞ� ! n as x ! 1.

The cdf of the T-X family of distributions; see Alzaatreh et al. [16] is defined by

GðxÞ ¼
Z W ½FðxÞ�

m
vðtÞdt; x 2 R (4)

Figure 1: Plots of hazard rate function of the Weibull distribution
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where, W ½FðxÞ� satisfies the conditions stated above. The pdf corresponding to Eq. (4) is

gðxÞ ¼ @

@x
W ½FðxÞ�

� �
vfW ½FðxÞ�g; x 2 R

Using the T-X family idea, several new classes of distributions have been introduced in the literature.
Now, we introduce the proposed family. Let T � expð1Þ; then its cdf is given by

V ðtÞ ¼ 1� e�t; t 	 0 (5)

The density function corresponding to Eq. (5) is

vðtÞ ¼ e�t; t > 0 (6)

If vðtÞ follows Eq. (6) and settingW ½FðxÞ� ¼ log
logð1þ h� hFðx; nÞh

logð1þ h

 !
in Eq. (4), we define the cdf

of the NG-X family by

GðxÞ ¼ 1� logð1þ h� hFðx; nÞh
logð1þ h

 !
; x 2 R: (7)

The density function corresponding to Eq. (7) is

gðxÞ ¼ h2f ðx; nÞFðx; nÞh�1

logð1þ hÞð1þ h� hFðx; nÞhÞ ; x 2 R: (8)

The key motivations for using the NG-X distributions in practice are the following:

� A very simple and convenient method to modify the existing distributions.

� To improve the characteristics and flexibility of the existing distributions.

� To introduce the extended version of the baseline distribution having closed form of distribution
function.

� To provide the best fit to data in the medical sciences and other related fields.
� Another most important motivation of the proposed approach is to introduce new distributions by

adding only one additional parameter rather than adding two or more parameters.

4 Sub-Model Description

In this section, we introduce a special sub-model of the proposed family, called a new generalized Weibull
(NG-W) distribution. Let Fðx; nÞ be the cdf of the Weibull distribution given by Fðx; nÞ ¼ 1� e�cxa ; x 	 0;
a; c > 0; where n ¼ ða; �Þ. Then, the cdf of the NG-W has the following expression

Gðx; h; nÞ ¼ 1� logð1þ h� hð1� e�cxaÞhÞ
logð1þ hÞ

 !
; x 	 0; a; c; h > 0: (9)

The pdf and hrf of the NG-W model are given, respectively, by

gðx; h; nÞ ¼ ah2cxa�1e�cxað1� e�cxaÞh�1

logð1þ hÞð1þ h� hðð1� e�cxaÞhÞ ; x > 0; (10)
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and

hðx; h; nÞ ¼ ah2cxa�1e�cxað1� e�cxaÞh�1

logð1þ h� hðð1� e�cxaÞhÞð1þ h� hðð1� e�cxaÞhÞ ; x > 0:

For different values of the model parameters, plots of the density function of the NG-W distribution are
sketched in Fig. 2.

The plots for the hrf of the NG-W distribution are presented in Figs. 3 and 4.

Figure 2: Different plots for the density function of the NG-W distribution

Figure 3: Increasing and decreasing hazard functions of the NG-W distribution
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5 Maximum Likelihood Estimation

Here, we obtain the maximum likelihood estimators (MLEs) of the model parameters of the NG-W
distribution. Let x1; x2 . . . ; xn be the observations from pdf given in Eq. (10) with parameters a; h and c.
Then, the log-likelihood function corresponding to Eq. (11) is given by

Lðxi;a;h;cÞ ¼ n logaþ 2n loghþ n logcþða� 1Þ� n logðlogð1þ hÞÞ�
Xn
i¼1

logð1þ h� hð1� e�cxai ÞÞ: (11)

The log-likelihood function can be maximized either directly or by solving the nonlinear likelihood
function obtained by differentiating Eq. (11). We used the goodness of fit function in R with “Nelder-
Mead” algorithm to obtain the MLEs. The first order partial derivatives of Eq. (11) with respect to the
parameters are given, respectively, by

@

@a
Lðxi; a; h; cÞ ¼ n

a
þ
Xn
i¼1

log xi þ ðh� 1Þc
Xn
i¼1

logðxiÞxai e�cxai

1� e�cxai
þ hc

Xn
i¼1

ðlog xiÞxai e�cxai

ð1þ h� hð1� e�cxai ÞÞ; (12)

@

@h
Lðxi; a; h; cÞ ¼ 2n

h
þ
Xn
i¼1

logð1� e�cxai Þ � n

ðlogð1þ hÞÞð1þ hÞ �
Xn
i¼1

e�cxa

ð1þ h� hð1� e�cxai Þ
� �

; (13)

and

@

@c
Lðxi; a; h; cÞ ¼ n

c
þ ðh� 1Þ

Xn
i¼1

xai e
�cxai

ð1� e�cxai Þ þ
Xn
i¼1

hxai e
�cxai

ð1þ h� hð1� e�cxai ÞÞ: (14)

Setting
@

@a
Lðxi; a; h; cÞ, @

@h
Lðxi; a; h; cÞ and @

@c
Lðxi; a; h; cÞ equal to zero and solving numerically these

expressions simultaneously yields the MLEs of ða; h; cÞ. From Eqs. (12)–(14), it is clear that these
expressions are not in closed form. Therefore, computer software with the iterative methods used such as
the Newton-Raphson type algorithms can be used obtains a unique solution of the MLEs.

Figure 4: Unimodal hrf of the NG-W distribution
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With the objective of showing the likelihood equations have a unique solution in the parameters; we
sketched the profile log-likelihood functions of the parameters of NG-W distribution for the stomach
cancer data. Figs. 5 and 6, confirm the uniqueness in the support of the parameters of the proposed model.

6 Data Source and its Graphical Representation

The data set used in this study is representing the remission times of stomach cancer patients released by
Cancer Research Foundation. These remission times and are used here only for illustrative purposes. The
descriptive measures of the data are presented in Tab. 1.

The Kaplan–Meier survival plot of the data is sketched in Fig. 7.

Figure 5: The log-likelihood as a function of a and c:

Figure 6: The log-likelihood as a function of h:
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From Fig. 7, it is clear, that the more time passes the more chance of survival decreases. The total time
test (TTT) plot is an important graphical approach to check whether the data can be applied to a particular
distribution or not. The TTT plot is used to check the behavior of the data to see whether the data has a
monotonic or non-monotonic failure rate function. The hrf is said to be

� Constant, if the TTT plot is graphically presented as a straight diagonal.

� Increasing, if the TTT plot is concave.

� Decreasing, if the TTT plot is convex.

� U-shaped if the TTT plot is convex and then concave,

� Unimodal, if the TTT plot is concave and then convex.

For further detail, we refer the interested readers to Aarset [17]. The TTT plot presented in Fig. 8,
indicating that the bladder cancer data has a unimodal shaped failure rate.

7 Model Selection Criteria

Model selection is one of the fundamental tasks of scientific inquiry to choose a statistical model from a
group of candidate models. A number of statistical procedures are available to decide about the goodness of
fit among the competing distributions. The most commonly used criteria are the (i) Akaike information
criterion (AIC), (ii) Bayesian information criterion (BIC), (iii) Anderson Darling (AD) test statistic and
(iv) Kolmogorov Simonrove (KS) test statistic with the corresponding p-value. A model with the lowest
values for these statistics could be chosen as the best model to fit the data.

Table 1: Descriptive measures of the stomach cancer patient’s data

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.100 3.952 7.190 9.422 11.400 60.000

Figure 7: The Kaplan–Meier survival plot of the stomach cancer patient’s data
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8 Application of the NG-W Model to the Stomach Cancer Data

In this section, we provide data analysis of the stomach cancer patient’s data to illustrate the NG-W
model. We fit the proposed model to this data, and the comparison is made with the Weibull,
Kumaraswamy–Weibull (Ku-W), and exponentiated Weibull (EW) models.

For the stomach cancer data, the MLEs with standard errors of the competing models are provided in
Tab. 2. Whereas, values of the AIC, BIC, AD and KS statistics with p-values are presented in Tab. 3.
From the results provided in Tab. 3, it is clear that the NG-W model could be chosen as the best model
among the fitted models since the proposed model has the lowest values of the AIC, BIC, AD and KS.
The analysis is performed via the optim() R-function with the argument method = “BFGS”.

The plot of the distribution function of the NG-W distribution is displayed in Fig. 9. The plot sketched in
Fig. 9, reveal that the NG-W model closely fits the stomach cancer patient’s data.

Figure 8: The TTT plot of the stomach cancer patient’s data

Table 2: Estimated values with standard error (in parentheses) of the competing models

Dist. â ĉ ĥ â b̂

NG-W 0.699
(0.182)

2.219
(0.751)

2.163
(1.201)

Weibull 1.085 1.028

(0.086) (0.117)

EW 0.826 1.556 1.757

(0.768) (0.445) (0.184)

Ku-W 0.562 0.764 2.624 5.051

(0.577) (0.735) (3.186) (15.86)
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9 Bayesian Estimation

Bayesian inference procedures have been taken into consideration by many statistical re- searchers,
especially researchers in the field of survival analysis and reliability engineering. In this section, a
complete sample data is analyzed through Bayesian point of view. We assume that the parameters α, γ
and θ of NG-W distribution have independent prior distributions as

a � Gammaða; bÞ; c � Gammaðc; dÞ; h � Gammaðe; f Þ;
where a; b; c; d; e and f are positive. Hence, the joint prior density function is formulated as follow:

pða; c; hÞ ¼ badcf e

�ðaÞ�ðcÞ�ðeÞ a
a�1cc�1he�1e�ðbaþdcþf hÞ: (15)

In the Bayesian estimation, the actual value of the parameter may be adversely affected by the loss when
choosing an estimator. This loss can be measured by a function of the parameter and the corresponding
estimator. Five well-known loss functions and associated Bayesian estimators and corresponding posterior
risk are presented in Tab. 4.

Table 3: Goodness of fit measures of the competing models

Dist. AIC BIC AD KS P-value

NG-W 160.751 168.043 0.794 0.089 0.517

Weibull 163.020 174.882 0.898 0.093 0.455

EW 162.909 173.401 0.834 0.093 0.468

Ku-W 162.761 172.485 0.803 0.091 0.485

Figure 9: The fitted cdf for the stomach cancer data
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Next, we provide the posterior probability distribution for a complete data set.We define the function a as

’ða; c; hÞ ¼ aa�1cc�1he�1e�ðbaþdcþf hÞ; a > 0; c > 0; h > 0

The joint posterior distribution in terms of a given likelihood function L(data) and joint prior distribution
pða; c; hÞ id define as

p�ða; c; h=dataÞ / pða; c; hÞLðdataÞ: (16)

Hence, we get the joint posterior density of parameters a, c and h for complete sample data by combining
the likelihood function and joint prior density provided in Eq. (16). Therefore, the joint posterior density
function is given by

p�ða; c; h=xÞ ¼ K’ða; c; hÞ
Yn
i¼1

h2
acxa�1

i e�cxai ð1� e�cxai Þh�1

logð1þ hÞð1þ h� hð1� e�cxai ÞhÞ
; (17)

where K is given as

K�1 ¼
Z1
0

Z1
0

Z1
0

’ða; c; hÞ
Yn
i¼1

h2
acxa�1

i e�cxai ð1� e�cxai Þh�1

logð1þ hÞð1þ h� hð1� e�cxai ÞhÞ
dadcdh:

It is clear from Eq. (17) that there is no closed form for the Bayesian estimators under the five loss
functions described in Tab. 4, so we suggest using a MCMC procedure based on 10000 replicates to
compute Bayesian estimators. The corresponding Bayesian estimates and posterior risk are provided in
Tab. 5. The 95% credible and HPD intervals for each parameter of the NG-W distribution are provided in
Tab. 6. The posterior samples extracted by using the Gibbs sampling technique. Moreover, we provide
the posterior summary plots in Figs. 10 and 11. These plots confirm that the sampling process is of the
prime quality and the convergence does occur.

Table 4: Bayes estimator and posterior risk under different loss functions

Loss function Bayes estimator Posterior risk

L1 ¼ SELF ¼ ðh� dÞ2 Eðh=xÞ Varðh=xÞ

L2 ¼ WSELF ¼ ðh� dÞ2
h

ðEðh�1=xÞÞ�1 Eðh=xÞ � ðEðh�1=xÞÞ�1

L3 ¼ MSELF ¼ ð1� d

h
Þ2 Eðh�1=xÞ

Eðh�2=xÞ 1� Eðh�1=xÞ2
Eðh�2=xÞ

L4 ¼ PLF ¼ ðh� dÞ2
d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eðh2=xÞ

q
2ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eðh2=x

q
Þ � Eðh=xÞÞ

L5 ¼ KLF ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d

h
�

ffiffiffi
h
d

rs
Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eðh=xÞ
Eðh�1=xÞ

s
2ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eðh=xÞEðh�1=xÞ

q
� 1
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Table 5: Bayesian estimates and their posterior risks of the parameters under different loss functions based
on the stomach cancer patient’s data

Bayes ba bc bh
Loss functions Estimate Risk Estimate Risk Estimate Risk

SELF 0.7546 0.0027 2.1639 0.0769 2.0502 0.0288

WSELF 0.7510 0.0036 2.1284 0.0355 2.0361 0.0141

MSELF 0.7475 0.0047 2.0929 0.0167 2.0220 0.0069

PLF 0.7564 0.0035 2.1816 0.0167 2.0572 0.0140

KLF 0.7528 0.0047 2.1461 0.0166 2.0432 0.0069

Table 6: Credible and HPD intervals of the parameters a, c and h for stomach cancer Patient’s data set

Parameters Credible interval HPD interval

a (0.720, 0.789) (0.659, 0.860)

c (1.973, 2.335) (1.614, 2.699)

h (1.935, 2.160) (1.707, 2.364)

Figure 10: Plots of Bayesian analysis and performance of Gibbs sampling for the stomach cancer patient’s
data set. Trace plots of each parameter of NG-W distribution
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10 Concluding Remarks

In this article, we have introduced a new extension of the Weibull distribution, called a new generalized
Weibull distribution. The classical two-parameter Weibull model produced simple monotone hazard shapes,
as expected, that did not reect pattern of the unimodal hazard shape which is very important in biomedical
research. On the other hand, the new extension of the Weibull model is capable to capture the unimodal
hazard pattern. The proposed model along with the two-parameter Weibull, three-parameter exponentiated
Weibull and four-parameter Kumaraswamy Weibull were applied to the remission times of the stomach
cancer patient’s data. We observe that, in terms of the statistical significance of the model adequacy,
suggesting that the NG-W model could play a reasonable role as a good candidate for modeling the
stomach cancer data.

Funding Statement: School of Statistics, Shanxi University of Finance and Economics, Taiyuan china.
(i) The National Social Science Fund of China (17BTJ010) and (ii) The Fund for Shanxi “1331 Project”
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Figure 11: Plots of Bayesian analysis and performance of Gibbs sampling for the stomach cancer patients
data set. Autocorrelation plots of each parameter of NG-W distribution
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