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Abstract: The present paper aims to develop the Kuhn-Tucker and Fritz John cri-
teria for saddle point optimality of interval-valued nonlinear programming pro-
blem. To achieve the study objective, we have proposed the definition of
minimizer and maximizer of an interval-valued non-linear programming problem.
Also, we have introduced the interval-valued Fritz-John and Kuhn Tucker saddle
point problems. After that, we have established both the necessary and sufficient
optimality conditions of an interval-valued non-linear minimization problem.
Next, we have shown that both the saddle point conditions (Fritz-John and
Kuhn-Tucker) are sufficient without any convexity requirements. Then with the
convexity requirements, we have established that these saddle point optimality
criteria are the necessary conditions for optimality of an interval-valued non-linear
programming with real-valued constraints. Here, all the results are derived with
the help of interval order relations. Finally, we illustrate all the results with the
help of a numerical example.

Keywords: Convexity of interval valued function; extended Fritz-John theorem;
Interval order relation; Karlin’s constraint; saddle point optimality

1 Introduction

The optimality conditions of a constrained nonlinear programming problem with differentiability
(especially, Karush-Kuhn-Tucker conditions) and without differentiability (Kuhn-Tucker and Fritz John
optimality criteria) play important roles in the area of nonlinear programming. A few decades ago, these
familiar results of optimization had been developed in the crisp environment. However, because of the
fluctuation and the randomness of the parameters of a real-life decision-making problem, it has become a
difficult task for the decision-makers to develop the optimality conditions of such decision-making
problems, including optimization problems in which most of the parameters are imprecise. Thus, the
study of optimality with or without differentiability of an imprecise optimization problem is an important
research topic.
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Depending upon the nature of different parameters of a real-life optimization problem, the following
types are categorized

� Crisp optimization problem

� Fuzzy optimization problem

� Stochastic optimization problem

� Interval optimization problem

In a crisp optimization problem, the objective function and all the constraints are deterministic. The
generalized form of a crisp optimization problem is

Find �x 2 Xð Þ if it exists such that

f �xð Þ ¼ min
x2X

f xð Þ;
where X ¼ x : x 2 T ; gi xð Þ � 0; i ¼ 1; 2;…;mf g
and f ; gi : T � Rnð Þ ! R
The equivalent saddle point problem of the above-mention minimization problem is
Find x� 2 T ; s� ¼ s�k : k ¼ 1; 2;…; l

� � 2 Rl; s�k � 0;
if exist such that w x�; sð Þ � w x�; s�ð Þ � w x; s�ð Þ; s ¼ sk : k ¼ 1; 2;…; lð Þ 2 Rl; sk � 0; 8x 2 T

where w x; sð Þ ¼ f xð Þ þ Pl
k¼1

skgk xð Þ and f ; gk : T � Rnð Þ ! R:

Here, the point x�; s�ð Þ satisfying the above inequality is called the saddle point of w x; sð Þ. Using this
saddle point criterion or differentiability assumption, several researchers established optimality criteria of
a nonlinear optimization problem. In this area, Karush [1] derived optimality conditions of constrained
nonlinear programming. A few years later, the same conditions were developed independently by Kuhn
and Tucker [2]. From that time onwards, these conditions were as familiar as KKT conditions. However,
a few years ago, using inequality constraint qualifications and saddle point criteria, John [3] developed
the same in a different approach before Kuhn and Tucker.

In a fuzzy optimization problem, the objective function f xð Þ and all the constraints gi xð Þ are considered
either as fuzzy sets or fuzzy numbers and the inequality of the condition of saddle points is not an ordinary
sign—it depends upon the ordering of fuzzy numbers. In this area, Bellman and Zadeh [4] first introduced the
concept of fuzzy in the decision-making problem. Then, Delgado et al. [5] proposed the advancement of
fuzzy optimization. On the other hand, Wu [6] introduced the saddle point optimality criteria of the fuzzy
optimization problem. After that, Gong and Li [7] derived the same in the fuzzy optimization problem.
Recently, Li et al. [8] and Bao and Bai [9] made their significant contributions to fuzzy nonlinear
programming. In a stochastic optimization problem, the objective function f xð Þand all the constraints
gi xð Þ are taken as random variables with proper probability density functions and the inequality sign in
the definition of the saddle point is dependent on the nature of random variables. Here, a number of
researchers, including Nemirovski et al. [10] Chen et al. [11,12], Bedi et al. [13], Nemirovski and
Rubinstein [14], and others contributed their works in non-linear stochastic programming.

Alternatively, if the parameters involved in a nonlinear programming problem are in interval form, then
the objective function or constraints or both of the corresponding nonlinear programming problems are in
interval form. Thus, a nonlinear programming problem in an interval environment is of the form:

Find �x 2 X ; if exists, such that

f �xð Þ ¼ f �xð Þ; �f �xð Þ
h i

¼ fc �xð Þ; fr �xð Þh i ¼ min
x2X

f xð Þ; �f xð Þ
h i

¼ min
x2X

fc xð Þ; fr xð Þh i;
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whereX ¼ x : x 2 T ; gk xð Þ ¼ gkc xð Þ; gkr xð Þh i�min 0; 0h i; k ¼ 1; 2;…; l
� �

;

f ; gk are interval� valued function defined on T � Rnð Þ
and fc; gkc and fr; gkr are centre and radius of f and gi; respectively:

And the equivalent saddle point problem is

Find �x 2 T ; s� ¼ s�k : k ¼ 1; 2;…; l
� � 2 Rl; s�k � 0;

if exist, such that

w x�; sð Þ�minw x�; s�ð Þ�minw x; s�ð Þ; s ¼ sk : k ¼ 1; 2;…; lð Þ 2 Rl; sk � 0; 8x 2 T

where w x; sð Þ ¼ wc x; sð Þ;wr x; sð Þh i ¼ fc xð Þ þ Pl
k¼1

skgkc xð Þ; fr xð Þ þ Pl
k¼1

skgkr xð Þ
� �

.

The inequality �min involved in the above-mentioned problem is not the usual inequality sign. This
inequality is dependent on an interval order relation. In this area, Wu [15] derived the KKT conditions of
interval-valued non-linear programming problems. In his work, he introduced two different optimization
techniques with the help of Ishibuchi and Tanaka [16] partial interval order relations. Recently, Rahman
et al. [17] established the optimality conditions of nonlinear interval-valued programming using Bhunia
and Samanta’s [18] interval ranking. However, no one has derived the Saddle point optimality criteria for
an interval-valued non-linear programming problem till now.

2 Research Gap and Contribution

In the existing literature, several researchers contributed their works on interval analysis (especially,
interval ordering). Among them, Bhunia and Samanta [18] proposed a complete interval order relation.
There are lots of applications of Bhunia and Samanta [18] order relation in the area of inventory
management. Among those, the works of Shaikh and Bhunia [19], Shaikh et al. [20], Rahman et al.
[21,22], … etc. are worth-mentioning. The above-mentioned works are the application of interval
analyses in inventory control. To the best of our knowledge, no one can apply the interval technique in
the other part of the optimization and operations research. The major of parameters of the real-life
problems, especially optimization problems are imprecise due to uncertainty. Currently, the development
of optimization theory in imprecise environments (Fuzzy, Stochastic, and Interval) has become a popular
research topic. Hence, this topic has opened a new horizon in the world of mathematics. In this work, for
the first time, the saddle point optimality criteria (like Extended Kuhn Tucker and Fritz-John) of interval-
valued non-linear programming problems have been established.

This work is enhanced by introducing the concepts of interval order relations in derivative-free
optimization. With the help of Bhunia and Samanta’s [18] interval ranking, the definitions of the
minimizer, maximizer, and some beautiful concepts of interval non-linear programming have been
proposed. With these concepts, the Interval Fritz-John Saddle point problem and Interval Kuhn-Tucker
Saddle point problem are defined. After that, the necessary and sufficient optimality criteria of those
problems are derived. Finally, using these saddle optimality criteria, the optimality conditions of a non-
linear programming problem have been established. These are the contributions of this work.

3 Some Basic Definitions and Results

In this section, we have mentioned Bhunia and Samanta’s [18] interval order relations. Then, using these
definitions of order relations, we have brought into the definitions of convexity, minimizer of an interval-
valued function, and some simple results.
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3.1 Interval Order Relations

The definitions of Bhunia and Samanta’s [18] ordering, �max and �min between two intervals in I Rð Þ
for both maximization and minimization problem are given below.

where, I Rð Þ ¼ �a; a½ � : a; �a 2 R and a � �af g
Definition 1. Let C ¼ c;�c½ � = cc; crh i, B = D ¼ d; �d

� 	 ¼ dc; drh i2 I Rð Þ:
Then, C �max D , cc � dc; if cc 6¼ dc

cr � dr; if cc ¼ dc



and C >max D , C�maxD & C 6¼ D

Definition 2.

C �min D , cc � dc; if cc 6¼ dc
cr � dr; if cc ¼ dc



and C <min D , C� minD & C 6¼ D

3.2 Minimizer and Convexity of an Interval-valued Function

Let T � Rn and G : T ! I Rð Þ be an interval valued function defined by

G xð Þ ¼ g xð Þ; �g xð Þ
h i

¼ gc xð Þ; gr xð Þh i,

where gc xð Þ ¼ �g xð Þ þ g xð Þ
2

; gr xð Þ ¼ �g xð Þ � g xð Þ
2

;

Definition 3. A point x� 2 T is the local minimizer of the interval valued function G xð Þ if

9 a d > 0 such that g x�ð Þ; �g x�ð Þ
h i

� min g xð Þ; �g xð Þ
h i

; 8x 2 B x�; dð Þ \ T ;

where Bðx�; dÞ is an open ball whose center is at x� and radius d.

Definition 4. A point x� 2 T is a global minimizer of G xð Þ if
g x�ð Þ; �g x�ð Þ
h i

� min g xð Þ; �g xð Þ
h i

; 8x 2 T :

Proposition 1. The pointx� 2 T is a local minimizer of G xð Þ iff
x� is local minimizer of gc xð Þ;when gc xð Þ 6¼ constant
x� is local minimizer of gr xð Þ;when gc xð Þ ¼ constant



Proof. The proof is immediately followed from the definition of interval ordering.

Definition 5. The interval-valued function G is said to be c-r convex over a convex subset T if
G kx1 þ 1� kð Þx2ð Þ � mink G x1ð Þ þ 1� kð Þ G x2ð Þ for each k 2 0; 1ð Þ and 8x1; x2 2 T :

Proposition 2. Let T� Rn be convex set and G be an interval valued function of the form
G xð Þ ¼ gc xð Þ; gr xð Þh i: If gc and gr are convex, then G xð Þ is c-r convex.

Proof. The proof follows from the definition of c-r convex and the �min order relation.

Lemma 1. Let A ¼ a; �a½ � ¼ ac; arh i; B ¼ b; �b
� 	 ¼ bc; brh i and C ¼ c;�c½ � ¼ cc; crh i 2 I Rð Þ.

Then, A� min B� minC iff

ac � bc � cc if ac 6¼ bc 6¼ cc
ac � bc and br � cr if ac 6¼ bc ¼ cc
ar � br and bc � cc if ac ¼ bc 6¼ cc
ar � br � cr if ac ¼ bc ¼ cc

8>><
>>:

Proof. The proof of this Lemma follows from the definitions of interval order relations.
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4 The Interval-Valued Minimization and Saddle Point Problems

Here, we have introduced Interval-valued Minimization Problem (IMP), local interval-valued
minimization problem, and interval-valued saddle points (Fritz-John and Kuhn-Tucker) problems
respectively. Then, we have established the relation between their solutions.

Let T � Rn and f; gi : T ! I Rð Þ is the interval-valued functions of the form:

F xð Þ ¼ f xð Þ; �f xð Þ
h i

¼ fc xð Þ; fr xð Þh i

Gi xð Þ ¼ g
k
xð Þ; �gk xð Þ

h i
¼ gkc xð Þ; gkrh i; k ¼ 1; 2;…; l:

4.1 The Interval-Valued Minimization Problem (IMP)

(IMP)

Find �x 2 X ; if exists, such that
F x�ð Þ ¼ fc x�ð Þ; fr x�ð Þh i ¼ min

x2X
F xð Þ ¼ min

x2X
fc xð Þ; fr xð Þh i;

where X ¼ x : x 2 T ; gk xð Þ ¼ gkc xð Þ; gkr xð Þh i �min 0; 0h i; k ¼ 1; 2;…; l
� �

The set X is called the feasible region, x� is the solution and F x�ð Þ is the minimum of the problem IMP.

4.2 The Local Interval-Valued Minimization Problem (LIMP)

(LIMP)

Find x� inX ; such that there exists some open ball B x�; dð Þ centre at x�with radious d > 0
x 2 B x�; dð Þ \ X ) F x�ð Þ �minF xð Þ

4.3 The Interval-Valued Fritz John Saddle-Point Problem (IFJSP)

(IFJSP)

Find x� 2 T ; r�o 2 R; r� ¼ r�k : k ¼ 1; 2;…; l
� � 2 Rl; r�o; r

�
k � 0;

If exist, such that

p x�; r�o; r
� ��minp x�; r�o; r

�� ��minp x; r�o; r
�� �
; r ¼ rk : k ¼ 1; 2;…; lð Þ 2 Rl; rk � 0; 8x 2 T

where

p x; ro; rð Þ ¼ pc x; ro; rð Þ; pr x; ro; rð Þh i ¼ roF xð Þ þ
Xl

k¼1

rkGk xð Þ

¼ rofc xð Þ
Xl

k¼1

rk gkc xð Þ; rofr xð Þ þ
Xm
k¼1

rk gkr xð Þ
* +

4.4 The Interval-Valued Kuhn-Tucker Saddle-Point Problem (IKTSP)

(IKTSP)

Find x� 2 T ; s� ¼ s�k : k ¼ 1; 2;…; l
� � 2 Rl; s�k � 0;

if exist, such that

w x�; sð Þ � minw x�; s�ð Þ �min w x; s�ð Þ; s ¼ sk : k ¼ 1; 2;…; lð Þ 2 Rl; sk � 0; 8x 2 T

where w x; sð Þ ¼ wc x; sð Þ;wr x; sð Þh i ¼ F xð Þ þ Pl
k¼1

skGk xð Þ ¼ fc xð Þ þ Pl
k¼1

skgkc xð Þ; fr xð Þ þ Pl
k¼1

skgkr xð Þ
� �
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Theorem 1.

If x�; r�o; r
�� �

is the solution of IFJSP and r�o > 0; then x�; r�=r�o
� �

is a solution of IKTSP. Conversely,
if x�; s�ð Þ is the solution of IKTSP, then x�; 1; s�ð Þ is the solution of IFJSP.

Proof.

First, let x�; r�o; r
�� �

be a solution of IFJSP, then

p x�; r�o; r
� ��minp x�; r�o; r

�� ��minp x; r�o; r
�� �
; r ¼ rk : k ¼ 1; 2;…; lð Þ 2 Rl; rk � 0; 8x 2 T

Now, by Lemma 1, four cases may arise:

Case� 1 : pc x�; r�o; r
� � 6¼ pc x�; r�o; r

�� � 6¼ pc x; r�o; r
�� �

Case� 2 : pc x�; r�o; r
� � 6¼ pc x�; r�o; r

�� � ¼ pc x; r�o; r
�� �

Case� 3 : pc x�; r�o; r
� � ¼ pc x�; r�o; r

�� � 6¼ pc x; r�o; r
�� �

Case� 4 : pc x�; r�o; r
� � ¼ pc x�; r�o; r

�� � ¼ pc x; r�o; r
�� �

Case-1 If pc x�; r�o; r
� � 6¼ pc x�; r�o; r

�� � 6¼ pc x; r�o; r
�� �
,

then, pc x�; r�o; r
� �

< pc x�; r�o; r
�� �

< pc x; r�o; r
�� �

i.e.,

r�o fc x�ð Þ þ Pl
k¼1

rkgkc x�ð Þ, r�ofc x�ð Þ þ Pl
k¼1

r�kgkc x�ð Þ, r�ofc xð Þ þ Pl
k¼1

r�kgkc xð Þ
i.e.,

fc x�ð Þ þ Pl
k¼1

ðrk=r�oÞgkc x�ð Þ < fc x�ð Þ þ Pl
k¼1

ðrk=r�oÞgkc x�ð Þ < fc xð Þ þ Pl
k¼1

ðrk=r�oÞgkc xð Þ
i.e.,

wc x�; r=r�o
� �

< wc x�; r�=r�o
� �

< wc x; r�=r�o
� �

i:e:; w x�; r=r�o
� � �minw x�; r�=r�o

� ��min wc x; r�=r�o
� �

Case-2 If pc x�; r�o; r
� � 6¼ pc x�; r�o; r

�� � ¼ pc x; r�o; r
�� �
,

then,

pc x�; r�o; r
� �

,pc x�; r�o; r
�� �

and pr x�; r�o; r
�� � � pr x; r�o; r

�� �
r�ofc x�ð Þ þ

Xl

k¼1

rkgkc x�ð Þ, r�ofc x�ð Þ þ
Xl

k¼1

r�kgkc x�ð Þ and r�ofr x�ð Þ þ
Xl

k¼1

rkgkr x�ð Þ � r�ofr xð Þ þ
Xl

k¼1

r�kgkr xð Þ

i:e:;

fc x�ð Þ þ
Xl

k¼1

rk=r
�
o

� �
gkc x�ð Þ, fc x�ð Þ þ

Xl

k¼1

rk=r
�
o

� �
gkc x�ð Þ

and

fr x�ð Þ þ
Xl

k¼1

rk=r
�
o

� �
gkr x�ð Þ � fr x�ð Þ þ

Xl

k¼1

rk=r
�
o

� �
gkr x�ð Þ since r�o . 0

� 	
i:e:; wc x�; ri=r�o

� �
,wc x�; r�i =r

�
o

� �
and wr x�; r�i =r

�
o

� � � wr x; r�i =r
�
o

� �
i:e:; w x�; ri=r�o

� ��minw x�; r�i =r
�
o

� � �minwr x; r�i =r
�
o

� �
:

Case-3 If pc x�; r�o; r
� � ¼ pc x�; r�o; r

�� � 6¼ pc x; r�o; r
�� �

then, similarly as Case-2, we have obtained w x�; ri=r�o
� � �minw x�; r�i =r

�
o

� � �minwr x; r�i =r
�
o

� �
:
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Case-4 If pc x�; r�o; r
� � ¼ pc x�; r�o; r

�� � ¼ pc x; r�o; r
�� �
, then similarly as Case-1, we get

wr x�; ri=r�o
� � � wr x�; r�i =r

�
o

� � � wr x; r�i =r
�
o

� �
i:e:; w x�; ri=r�o

� ��minw x�; r�i =r
�
o

� � �minwr x; r�i =r
�
o

� �
:

Hence, combining all the cases first part of the theorem is proved.

Conversely, let x�; s�ð Þ be a solution of IKTSP.

Then,

w x�; sð Þ �minw x�; s�ð Þ �minw x; s�ð Þ; s ¼ sk : k ¼ 1; 2;…; lð Þ 2 Rl ; sk � 0; 8x 2 T :

where¼ 1:F xð Þ þ
Xl

k¼1

skGk xð Þ ¼ 1:fc xð Þ þ
Xl

k¼1

skgkc xð Þ; 1:fr xð Þ þ
Xl

k¼1

skgkr xð Þ
* +

¼ p x; 1; sð Þ

Hence, p x�; 1; sð Þ �minp x�; 1; s�ð Þ �min p x; 1; s�ð Þ; s ¼ sk : k ¼ 1; 2;…; lð Þ 2 Rl ; sk � 0; 8x 2 T :

This completes the proof.

5 Optimality Conditions of IMP

5.1 Sufficient Optimality of IMP

The sufficient optimality criterion has been derived without convexity assumption of the interval
minimization problem (IMP).

Theorem 2. If x�; s�ð Þ is the solution of IKTSP, then x� is a solution of IMP. If x�; s�o; s
�� �

is a solution
of IFJSP and s�o > 0; then x� is a solution of IMP.

Proof.

First Part.

Let x�; s�ð Þ be a solution of IKTSP.

Then, 8s ¼ sk : k ¼ 1; 2;…; lð Þ 2 Rl ; sk � 0; 8x 2 T ; w x�; sð Þ �min w x�; s�ð Þ �minw x; s�ð Þ: where

w x; sð Þ ¼ wc x; sð Þ;wr x; sð Þh i ¼ F xð Þ þ Pl
k¼1

skGk xð Þ ¼ fc xð Þ þ Pl
k¼1

skgkc xð Þ; fr xð Þ þ Pl
k¼1

skgkr xð Þ
� �

:

Then, by Lemma 1., four cases may arise.

Case-1. If wc x�; sð Þ 6¼ wc x�; s�ð Þ 6¼ wc x; s�ð Þ,
then wc x�; sð Þ < wc x�; s�ð Þ < wc x; s�ð Þ; 8x 2 T ; s 2 Rl; where, wc x; sð Þ ¼ fc xð Þ þ Pl

k¼1
skgkc xð Þ: By the

Sufficient Optimality Criteria for real-valued objective function, we can say that fc x�ð Þ < fc xð Þ;
i:e:; F x�ð Þ�minF xð Þ:

Case-2. If wc x�; sð Þ 6¼ wc x�; s�ð Þ ¼ wc x; s�ð Þ,
then wc x�; sð Þ,wc x�; s�ð Þ and wr x�; s�ð Þ � wr x; s�ð Þ; 8x 2 T ; s 2 Rl:

Now, from first inequality, we have

fc x�ð Þ þ
Xl

k¼1

skgkc x�ð Þ < fc x�ð Þ þ
Xl

k¼1

s�kgkc x�ð Þ (1)

)
Xl

k¼1

sk � s�k
� �

gkc x�ð Þ, 0 8sk � 0; k ¼ 1; 2;…; l

Now; for any j; 1 � j � l; let sk ¼ s�k ; i ¼ 1; 2;…; j� 1; jþ 1;…;m; sj ¼ s�j þ 1
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Which gives gjc x�ð Þ < 0: Repeating this 8k; we get gkc x�ð Þ < 0.

Now; since; s�k � 0; and gkc x�ð Þ < 0;
Xl

k¼1

s�kgkc x�ð Þ � 0 (2)

But, again from (1) by setting sk ¼ 0,we obtain

fc x�ð Þ, fc x�ð Þ þ
Xl

k¼1

s�kgkc x�ð Þ

or;
Xl

k¼1

s�kgkc x�ð Þ. 0

(3)

Hence, from (2) and (3), we have
Pl
k¼1

s�kgkc x�ð Þ ¼ 0

Now, from wc x�; s�ð Þ ¼ wc x; s�ð Þ, we get

fc x�ð Þ þ
Xl

k¼1

s�kgkc x�ð Þ ¼ fc xð Þ þ
Xl

k¼1

s�kgkc xð Þ

i:e:; fc x�ð Þ ¼ fc xð Þ þ
Xl

k¼1

s�kgkc xð Þ
Xl

k¼1

s�kgkc xð Þ ¼ 0

" #
; 8x 2 T

which is possible only if s�k ¼ 0; 8k ¼ 1; 2;…; l and fc xð Þ is constant function.

So, in this case fc x�ð Þ ¼ fc xð Þ.
Thus, from wr x�; u�ð Þ � wr x; u�ð Þ, we get

fr x�ð Þ þ
Xl

k¼1

s�kgkr x�ð Þ � fr xð Þ þ
Xl

k¼1

s�kgkr xð Þ

i:e:; fr x�ð Þ � fr xð Þ; s�k ¼ 0
� 	

Hence, F x�ð Þ�minF xð Þ:
Case-3 If wc �x; uð Þ ¼ wc �x; �uð Þ 6¼ wc x; �uð Þ
then,

wr x�; sð Þ � wr x�; s�ð Þ and wc x�; s�ð Þ,wc x; s�ð Þ; 8x 2 T ; s 2 Rl:

From wc x�; sð Þ ¼ wc x�; s�ð Þ;we get sk ¼ 0; 8k ¼ 1; 2;…; l

and from wc x�; s�ð Þltwc x; s�ð Þ; we get

fc x�ð Þ þ
Xl

k¼1

s�kgkc x�ð Þltfc x�ð Þ þ
Xl

k¼1

skgkc xð Þ; 8sk

) fc x�ð Þ þ
Xl

k¼1

s�kgkc x�ð Þltfc xð Þ þ
Xl

k¼1

s�kgkc xð Þ; for sk ¼ s�k

) fc x�ð Þltfc xð Þ s�k ¼ 0
� 	

i:e:; F x�ð Þ�minF xð Þ

∵

∵

∵
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Case-4. If wc x�; sð Þ ¼ wc x�; s�ð Þ ¼ wc x; s�ð Þ,
Then, wr x�; sð Þ � wr x�; s�ð Þ � wr x; s�ð Þ; 8x 2 T ; s ¼ sk : k ¼ 1; 2;…; lð Þ; sk � 0

Similar to case-1, we can say that F x�ð Þ �minF xð Þ.
Combining all the cases, the proof of the first part completes.

Second Part. The proof of this part follows from Theorem 1. and First part of this theorem.

5.2 Extended Fritz-John Saddle-Point Optimality Theorem

Here, we have derived the conditions for which the solution of IMP will be necessarily the solution of
IFJSP. For this purpose, we have stated and proved Extended Fritz-John saddle point necessary optimality
theorem. Before stating the theorem, we have stated the following Lemma (Mangasarian [23]):

Lemma 2. Let T 6¼ fð Þ � Rn. Also, let f1; f2 and f3 be m1; m2; m3 dimensional convex vector-valued
function on T and gk k ¼ 1; 2;…; lð Þ be convex functions on T .

If
f1 xð Þ, 0; f2 xð Þ � 0; f3 xð Þ � 0
gk xð Þ � 0; k ¼ 1; 2;…; l

� �
has no solution, x 2 T then there exist

p1 2 Rm1 ; p2 2 Rm2 ; p3 2 Rm3 and q ¼ qk : k ¼ 1; 2;…; lð Þ 2 Rl

such that

Xm1

i¼1

p1if1i xð Þ þ
Xm2

i¼1

p2if2i xð Þ þ
Xm3

i¼1

p3if3i xð Þ þ
Xl

k¼1

qkgk xð Þ � 0; 8x 2 T and p1i; p2i; p3i � 0

where fj ¼ fji : i ¼ 1; 2;…;mj; j ¼ 1; 2; 3
� �

; pj ¼ pji : i ¼ 1; 2;…;mj

� �
Theorem 3. Let T� Rn be a non-empty convex set, f be interval-valued c-r convex function on T and

gk k ¼ 1; 2;…; lð Þ be real-valued convex functions on T . If x� is a solution of IMP, then
x�; r�o; r

�� �
r�o 2 R; r� ¼ r�k : k ¼ 1; 2;…; l

� �
; r�o � 0; r�k � 0

� �
is a solution of IFJSP andPl

k¼1
r�kgk x�ð Þ ¼ 0, where F xð Þ ¼ fc xð Þ; fr xð Þh i.

Proof. Since x� is a solution of MP, then

F x�ð Þ �minF xð Þ; 8x 2 T :

i:e:;

either; fc x�ð Þ, fc xð Þ if fc x�ð Þ 6¼ fc xð Þ
or; fr x�ð Þ � fr xð Þ if fc x�ð Þ ¼ fc xð Þ:

Now, two cases may arise:

Case-1.
If fc x�ð Þ 6¼ fc xð Þ; then

fc xð Þ � fc x�ð Þ < 0

gk xð Þ < 0; k ¼ 1; 2;…; l

� �
has no solution 8x 2 T :
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By Lemma 2, there exist r�o 2 R; r ¼ rk : k ¼ 1; 2;…; lð Þ 2 Rl; r�o � 0; rk � 0 such that

r�o fc xð Þ � fc x�ð Þ½ � þ
Xl

k¼1

r�kgk xð Þ � 0 8x 2 T : (4)

Now; putting x ¼ x� in ð4Þ;we have
Xl

k¼1

r�kgk x�ð Þ � 0 (5)

But; since rk � 0; gk x�ð Þ < 0; we have
Xl

k¼1

r�kgk x�ð Þ � 0 (6)

Hence from (5) and (6), we have
Pl
k¼1

r�kgk x�ð Þ ¼ 0

Again from (4), we have

r�o fc xð Þ � fc x�ð Þ½ � þ
Xl

k¼1

r�ogk xð Þ � 0

or; r�ofc x�ð Þ � r�ofc xð Þ þ
Xl

k¼1

r�ogk xð Þ

or; r�ofc x�ð Þ þ
Xl

k¼1

r�ogk x�ð Þ � r�ofc xð Þ þ
Xl

k¼1

r�ogk xð Þ (7)

As gk x�ð Þ � 0; then
Xl

k¼1

rkgk x�ð Þ � 0 8r ¼ rk : k ¼ 1; 2;…; lð Þ 2 Rl; rk � 0:

Hence; r�ofc x�ð Þ þ
Xl

k¼1

rkgk x�ð Þ � r�ofc x�ð Þ þ
Xl

k¼1

r�kgk x�ð Þ
Xl

k¼1

r�kgk x�ð Þ ¼ 0

" # (8)

Therefore, from (7) and (8), we obtain

r�ofc x�ð Þ þ Pl
k¼1

rkgk x�ð Þ � r�ofc x�ð Þ þ Pl
k¼1

r�kgk x�ð Þ � r�ofc xð Þ þ Pl
k¼1

r�kgk xð Þ

Case-2. If fc x�ð Þ ¼ fc xð Þ,
then

fr x�ð Þ � fr xð Þ i:e:; fr x�ð Þ � fr x�ð Þ � fr xð Þ
i:e:; r�ofr x�ð Þ þ Pl

k¼1
rk :0 � r�ofr x�ð Þ þ Pl

k¼1
r�k :0 � r�ofr xð Þ þ Pl

k¼1
r�k :0

Combining both cases, we have obtained

r�o fc x�ð Þ; fr x�ð Þh i þ
Xl

k¼1

rk gk x�ð Þ; 0h i �min r�o fc x�ð Þ; fr x�ð Þh i þ
Xl

k¼1

r�k gk x�ð Þ; 0h i

�minr�o fc xð Þ; fr xð Þh i þ
Xl

k¼1

r�k gk xð Þ; 0h i

Hence, the proof is complete.

∵
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5.3 Extended Kuhn-Tucker Saddle-Point Optimality Theorem

Here, we have derived the necessary conditions (Extended Kuhn-Tucker saddle point optimality) for
which the solution of (IMP) will be necessarily the solution of (IKTSP). Before stating this theorem, we
have first stated Karlin’s constraint qualification which will be required as a hypothesis of this theorem:

Karlin’s Type Constraint Qualification

Let T � Rn be non-empty convex set and g ¼ gk : k ¼ 1; 2;…; lð Þ l-dimensional convex vector-valued
function on T . Then, g is said to satisfy constraint qualification of Karlin ðonTÞ if there exists no

p 2 Rl; p ¼ pk : k ¼ 1; 2;…; lð Þ; pk � 0 such that
Pl
k¼1

pkgk xð Þ � 0; 8x 2 T :

Theorem 4. Let T be convex set in Rn, F xð Þ ¼ fc xð Þ; fr xð Þh i be interval-valued c-r convex function
defined on T and g ¼ gk : k ¼ 1; 2;…; lð Þ be vector-valued function which satisfies Karlin’s constraints
qualification on T . If x� is the solution of IMP, then x�; s�ð Þ s�o 2 R; s ¼ sk : k ¼ 1; 2;…; lð Þ;�
s�o � 0; si � 0Þ is a solution of IKTSP.

Proof. Since g ¼ gk : k ¼ 1; 2;…; lð Þ satisfies the constraint qualification of Karlin,

there exists no p 2 Rl; p ¼ pk : k ¼ 1; 2;…lð Þ; pk � 0 such that
Pl
k¼1

pkgk xð Þ � 0; 8x 2 T :

Also, since x� is a solution of MP,

F x�ð Þ�minF xð Þ; 8x 2 T :

i:e:; fc x�ð Þ, fc xð Þ if fc x�ð Þ 6¼ fc xð Þ
fr x�ð Þ � fr xð Þ if fc x�ð Þ ¼ fc xð Þ:
Here, two cases may arise:

Case-1.

if fc x�ð Þ 6¼ fc xð Þ; then

fc xð Þ � fc x�ð Þ, 0

gk xð Þ, 0; k ¼ 1; 2;…; l

� �
has no solution 8x 2 T :

Then, there exist r�o 2 R; r ¼ rk : k ¼ 1; 2;…; lð Þ 2 Rl; r�o � 0; ri � 0 such that

r�o fc xð Þ � fc x�ð Þ½ � þ
Xl

k¼1

r�ogk xð Þ � 0 8x 2 T : (9)

Similar to Case-1 of Theorem 3, we obtain

Xl

k¼1

r�ogk x�ð Þ ¼ 0 and

r�ofc x�ð Þ þ
Xl

k¼1

rkgk x�ð Þ � r�ofc x�ð Þ þ
Xl

k¼1

r�kgi x
�ð Þ � �rofc xð Þ þ

Xm
i¼1

�rigi xð Þ
(10)

Let r�o ¼ 0; then ri � 0; [from (9)]
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Now, from the second inequality of (10) we get

r�ofc x�ð Þ þ
Xl

k¼1

r�kgk x�ð Þ � r�ofc xð Þ þ
Xl

k¼1

r�kgk xð Þ

or; 0 � 0þ
Xl

k¼1

r�kgk xð Þ r�o ¼ 0 and
Xl

k¼1

r�kgk x�ð Þ ¼ 0

" #

or;
Xl

k¼1

r�kgk xð Þ � 0; 8x 2 T :

which is a contradiction (According to Karlin’s constraint qualification). Hence, r�o > 0:

Now, from (10), we have

fc x�ð Þ þ
Xl

k¼1

rk=r
�
o

� �
gk x�ð Þ � fc x�ð Þ þ

Xl

k¼1

r�k=r
�
o

� �
gk x�ð Þ � fc xð Þ þ

Xl

k¼1

r�k=r
�
o

� �
gk xð Þ

i:e:; fc x�ð Þ þ
Xl

k¼1

skgk x�ð Þ � fc x�ð Þ þ
Xl

k¼1

s�kgk x�ð Þ � fc xð Þ þ
Xl

k¼1

s�kgk xð Þ; where sk ¼ rk=r
�
o

Case-2. If fc x�ð Þ ¼ fc xð Þ,
then

fr x�ð Þ � fr xð Þ i:e:; fr x�ð Þ � fr x�ð Þ � fr xð Þ

i:e:; fr x�ð Þ þ
Xl

k¼1

sk :0 � fr x�ð Þ þ
Xl

k¼1

s�k :0 � fr xð Þ þ
Xl

k¼1

s�k :0

Combining both cases, we have

fc x�ð Þ; fr x�ð Þh i þ
Xl

k¼1

sk gk x�ð Þ; 0h i�min fc x�ð Þ; fr x�ð Þh i þ
Xl

k¼1

s�k gk x�ð Þ; 0h i

�min fc xð Þ; fr xð Þh i þ
Xl

k¼1

s�k gk xð Þ; 0h i

Hence, the proof is completed.

6 Numerical Example

To illustrate the saddle point optimality criteria, we have considered the following simple example:

Find �x 2 X ¼ x 2 R : �xþ 3 � 0f g; such that f �xð Þ ¼ min
x2X

f xð Þ;
where f xð Þ ¼ � x2 þ 1

� �
; 3x2 þ 1

� 	
Solution. fc xð Þ ¼ x2 6¼ constant: Hence; minimizers of fc and f are the same:

Clearly; �x ¼ 3 is the minimizer of fc xð Þ; and so that of f xð Þ:
Therefore; the minimum value of f xð Þ is �10; 28½ �

∵
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Now, the saddle point optimality criterion for this problem is that:

A necessary and sufficient condition that �x ¼ 3 is that there exists a real number �u such that

f �x; uð Þ�minf �x; �uð Þ�minf x; �uð Þ;8x 2 R and 8u 2 R; u � 0 (11)

where f x; uð Þ ¼ � x2 þ 1
� �

; 3x2 þ 1
� 	þu �xþ 3ð Þ

Clearly, for �x ¼ 3; �u ¼ 6; f �x; uð Þ ¼ f �x; �uð Þ and fc �x; �uð Þ � fc x; �uð Þ,
then, interval inequality (11) holds for �x ¼ 3; �u ¼ 6.

Hence, f x; uð Þ has saddle point at �x ¼ 3; �u ¼ 6.

7 Conclusion

In this paper, the derived saddle point (Fritz-John & Kuhn-Tucker) optimality criteria of interval-valued
non-linear programming are called Extended Fritz-John and Extended Kuhn-Tucker saddle point criteria.
Furthermore, we have shown that the Extended saddle point criteria are the sufficient conditions, so the
point �x 2 X is the minimizer of the IMP. After considering all constraints of the IMP as real-valued
convex functions and Karlin’s constraint qualification, we illustrated that Extended Fritz-John and
Extended Kuhn-Tucker Type saddle point criteria are also necessary conditions. For these purposes, the
paper has introduced the definition of the minimizer, convexity of an interval-valued function, as well as
Interval-valued Fritz-John and Interval-valued Kuhn-Tucker saddle point problems. Here, all the results
have been established without differentiability assumptions of the objective function and constraints.
Thus, these saddle point optimality criteria are called optimality criteria without differentiability. The
concepts of this work will help to solve imprecise real-life problems like inventory control, supply chain
management, problems of game theory,… etc.

For future work, one may attempt to establish the duality theory of IMP, saddle point optimality criteria
of an interval optimization problem with several objective functions. One may also attempt to extend the
concept of this paper in fuzzy, Type-2 fuzzy, and Type-2 interval environment [24].
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