
Exploration on the Load Balancing Technique for Platform of Internet of Things

Donglei Lu1, Dongjie Zhu2,*, Yundong Sun3, Haiwen Du3, Xiaofang Li4, Rongning Qu4,
Yansong Wang3, Ning Cao1 and Helen Min Zhou5

1School of Artificial Intelligence, Wuxi Vocational College of Science and Technology, Wuxi, 214028, China
2School of Computer Science and Technology, Harbin Institute of Technology, Weihai, 264209, China

3School of Astronautics, Harbin Institute of Technology, Harbin, 150001, China
4Department of Mathematics, Harbin Institute of Technology, Weihai, 264209, China

5School of Engineering, Manukau Institute of Technology, Auckland, 2241, New Zealand
�Corresponding Author: Dongjie Zhu. Email: zhudongjie@hit.edu.cn

Received: 08 January 2021; Accepted: 27 February 2021

Abstract: In recent years, the Internet of Things technology has developed
rapidly, and smart Internet of Things devices have also been widely popularized.
A large amount of data is generated every moment. Now we are in the era of big
data in the Internet of Things. The rapid growth of massive data has brought great
challenges to storage technology, which cannot be well coped with by traditional
storage technology. The demand for massive data storage has given birth to cloud
storage technology. Load balancing technology plays an important role in improv-
ing the performance and resource utilization of cloud storage systems. Therefore,
it is of great practical significance to study how to improve the performance and
resource utilization of cloud storage systems through load balancing technology.
On the basis of studying the read strategy of Swift, this article proposes a reread
strategy based on load balancing of storage resources to solve the problem of unba-
lanced read load between interruptions caused by random data copying in Swift.
The storage asynchronously tracks the I/O conversion to select the storage with
the smallest load for asynchronous reading. The experimental results indicate that
the proposed strategy can achieve a better load balancing state in terms of storage
I/O utilization and CPU utilization than the random read strategy index of Swift.

Keywords: The Internet of Things; cloud storage; Swift; load balancing;
scheduling algorithm

1 Introduction

With the rapid development of the Internet of Things technology and the popularization of smart mobile
terminal devices, massive amounts of data are being generated at all times, marking that it has now entered
the era of big data [1,2], and posing a huge challenge to storage systems. However, traditional storage
technology cannot respond well to the demand for massive data storage, cloud storage technology thus
has emerged at the historic moment [3,4]. At present, there are many new cloud storage systems with
high scalability such as Swift [5,6]. Swift, an object storage sub-project of OpenStack, provides cloud

This work is licensed under a Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

Computer Systems Science & Engineering
DOI:10.32604/csse.2021.016683

Article

echT PressScience

mailto:zhudongjie@hit.edu.cn
http://dx.doi.org/10.32604/csse.2021.016683
http://dx.doi.org/10.32604/csse.2021.016683


storage services that store and retrieve large amounts of data through simple RESTful APIs. Its goal is to
provide data storage with high scalability, high availability, and high durability [7,8].

As a cloud storage system, Swift can better meet the needs of massive data storage capacity, but its
system performance and resource utilization still need to be urgently optimized. In Swift, when a user
requests to download an object, the proxy server first finds the storage queue where all copies of the
object are located from the object ring according to the consistent hash algorithm. Then it uses an
algorithm to randomly sort these binaries, and finally reads the data on the storage array according to the
sorted order. It is possible to assign many read requests to a single storage system because it is random
without considering the difference in the performance of the storage subsystems, making the response
speed of the system directly affected by busy equipment and other problems. The storage routine of the
copy of the object may have a relatively large upper limit, resulting in a load imbalance. When the load
is unbalanced, it will cause a waste of system resources, and also affect the response time and throughput
of the whole system, resulting in poor user experience. To solve this problem, a better method is needed
to allocate read requests, reasonably use the resources of the cloud storage system, achieve load balancing
during reading, and improve the availability of the entire cloud storage system.

Based on the above analysis, this paper proposes a read strategy based on load balancing of storage node
resources. Under this strategy, the proxy node selects the storage node with the least load for reading based on
the I/O utilization rate received from the storage node in real-time. The experimental results show that this
strategy can achieve a better load balancing state in terms of storage I/O utilization and CPU utilization than
the random read strategy index of Swift.

2 Related Work

The research progress of load balancing technology is described in this section. Load balancing is
mainly used to expand the bandwidth of the system, improve its resouce utilization, reduce its response
time, avoid a single point of failure in the system, and enable users to obtain relatively consistent access
quality no matter where they are [9].

DNS load balancing is the first load balancing technology used at present. The same domain name
corresponds to multiple IPs on the domain name server. When a user initiates a request, the domain name
will be resolved by the domain name server to a different IP address, and the user request will also be
distributed to different servers for processing [10]. The DNS load balancing scheme is relatively simple
to operate, but it also has some disadvantages. First, the polling algorithm is used for resolving the
domain name to the server, and load distribution cannot be performed based on the difference in server
processing capabilities. In this case, the worst-performing server in the cluster will become the bottleneck
of the system, and the server with strong processing capability will not function well. Second, when a
host server is unavailable due to a failure, user requests will still be distributed to the server, but the
server cannot respond to user requests. At this time, the server needs to be removed from the DNS
settings. The modified settings will not take effect after a certain period of time because there are multiple
domain name servers between the user and the domain name server, and there are caches on the domain
name servers. During this period, none of the requests assigned to the server can be responded to.

Many researchers have proposed improvements to load balancing scheduling algorithms for specific
application scenarios and different goals in their research on load balancing scheduling algorithms. Sun
et al. believe that the traditional static load balancing scheduling algorithm may cause a large difference
in the CPU utilization of the backend server. According to the CPU and memory usage of the server, they
proposed a genetic algorithm-based load balancing scheduling algorithm [11]. The difference in CPU
utilization of the back-end servers in this algorithm is less than 35%. To overcome the shortcomings of
the traditional genetic algorithms such as local convergence and premature, Yang et al. [12] proposed a

340 CSSE, 2021, vol.38, no.3



load balancing scheduling algorithm based on an adaptive niche genetic algorithm to reduce the average
response time of the system. Li et al. [13] proposed a load balancing scheduling algorithm based on the
ant colony algorithm to achieve the load balancing of cloud computing resources through the adaptive
heuristic information of ant colony. Aiming at the deficiencies of the traditional ant colony algorithm
such as single pheromone, single population, prone to premature stagnation, and slow convergence, Shi
et al. [14] proposed a load balancing algorithm based on an improved polymorphic ant colony by adding
elite ant pheromone and local optimization pheromone based on traditional ant colony algorithm and
using local detection and global search methods to make different types of ant colonies work together. Hu
et al. [15] proposed a consistent hash load balancing scheduling algorithm based on dynamic feedback by
combining the dynamic feedback mechanism and the consistent hashing algorithm to achieve the real-
time adjustment of the server load so that the system could achieve a load balancing state. Wang et al.
[16] proposed a grid workflow task scheduling algorithm based on load balancing, which focused on the
prediction of node load weights, mainly for the optimization of grid system. Tan et al. [17] proposed to
evaluate the load of the server using the group decision analytic hierarchy process while establishing a
load prediction model using a neural network and then combined the weighted round-robin algorithm
with the load prediction model to propose a dynamic load balancing scheduling algorithm. The algorithm
calculates and updates the weight of the server according to the results of load prediction. In terms of the
scheduling time span and resource load balance, Lu et al. [18] proposed a trust-driven resource load
balancing scheduling algorithm to improve the load balance of system resources. Wang et al. [19]
proposed a dynamic load balancing algorithm based on the division of task type. User requests are
divided into CPU consumption and I/O consumption according to their resource consumption. The load
balancing scheduler allocates load according to the request type to improve system throughput.

3 Load Balancing Read Strategy Based on Swift Storage Node Resources

3.1 Strategy Design

In Swift, to achieve reliable data storage, the same data will be stored in three copies by default, and to
avoid data loss caused by a failure of a storage node, three copies of the data will be stored separately in
different areas. Here, the area is a logical concept, which can be a rack or a data center. Therefore,
different copies will not be stored on the same storage node but will be stored on different storage nodes.
Swift’s read strategy is to randomly select a storage node to read after obtaining all the storage nodes of
the data copy. This is likely to result in some storage nodes reading with too many requests, while others
are relatively idle, resulting in an unbalanced load. The key to the improvement strategy proposed in this
paper is to make use of the characteristics of replicas on different storage nodes to allocate read requests
more reasonably, so as to achieve the purpose of rational use of resources and load balancing.

The improvement strategy proposed in this paper mainly includes load information collection module
and sorting module.

(1) Load information collection module.

The main function of the load information collection module is to collect the load information of the
storage node. When a user makes requests, the proxy node will first accept the user’s request, then find
the specific storage node where the user’s request object is located according to the consistent hash ring,
and finally submit the request to the storage node for processing. Therefore, the specific processing of
data is implemented on the storage node. The specific operations of data mainly include data storage and
data reading, and these operations are inseparable from the disk. When the disk is idle, data reading is
faster, and vice versa. Therefore, this paper proposes indicators based on I/O substitution. The storage
stack collects its own disk I/O at regular intervals and feeds it back to the proxy agent.

CSSE, 2021, vol.38, no.3 341



(2) Sorting module.

There are multiple copies of data in Swift. When a user initiates a download request, the specific storage node
to access to read is selected by the proxy node. In the reading strategy proposed in this paper, the proxy server
selects the storage routine with the smallest disk I/O for reading. The proxy node then maintains a list of the IP
addresses of the storage node and the disk I/O utilization of the storage node. When the disk I/O utilization rate is
received from the storage node, the list will update the corresponding the Disk I/O utilization of the storage node.
When the proxy node receives the download request from the user, it obtains the storage node where all copies of
the object are located by querying the consistent hash ring. The storage node where the object copy is located is
then sorted according to the disk I/O utilization in the storage node information list maintained by the agent node.
Finally, the data is read according to the sorted storage node order. If the reading is successful, the result is directly
returned, if it fails, the data is read from the second storage node in the list. And the rest can be done in the same
manner. The reading of the improvement strategy is shown in Fig. 1.

Load balancing read strategy based on Swift storage node resources.

Proxy node Storage node

User download request

The agent node obtains 
the partition number of 
the object through the 

query ring

Get the storage node of 
all copies of the object 

by the partition number

Select one from the 
sorted storage node list 

to start reading

Read 
successfully?

Return data to the user

Is the last copy?N

N

Y

Read failed

Y

The proxy node accepts 
the I/O load information 

of the storage node

Update the I/O load 
information list of the 

storage node

Storage node try to 
collect I/O load 

information

Send I/O load 
information to the agent 

node

Figure 1: Diagram of reading strategy based on storage node resource load balancing

342 CSSE, 2021, vol.38, no.3



3.2 Strategy Implementation

The implementation of the Swift reading strategy based on the load balancing of storage node resources
mainly includes an I/O load information collection module, a communication module, and a sorting module.
The relationship of each module is shown in Fig. 2.

(1) Load collection module.

The load information in this paper refers to the I/O utilization of disk. Under Linux, the iostat command
is used to monitor the I/O status of the system, and the disk utilization can be viewed through the iostat-x
command, as shown in Fig. 3.

where %util represents the ratio of all processing I/O time to the total statistical time during the statistical
time. For example, if the statistical time is 1 second, and 0.0173 seconds are processing I/O in the above
figure, then %util = 0.0173/1 = 1.73%. The larger the %util, the busier the disk.

(2) Communication module.

The communication module includes server and client, and the client runs on the storage node, collects
its own disk utilization in real time, and then calls the SendLoad (IP, load) method to send its own disk
utilization to the server. The server runs on the agent node and maintains a storage Node List of storage
node information. The list contains IP and load fields. The server has registered the SendLoad IP, load)
method. When the client calls this method, the load information of the corresponding IP in the storage
Node List will be updated. The server also registers a GetLoad() method, which can be called to get
storage node information storage Node List.

(3) Sorting module

According to the download request of the user, the proxy node obtains a list of nodes of all storage nodes
of a copy of the requested data by searching the ring. The number of storage nodes included in this list is the
number of copies. The structure diagram of the storage node is shown (this diagram is above), which contains
the IP information of the storage node. The storage node information storage Node List maintained by the
agent node can be obtained by calling the GetLoad() method. Then the storage node list nodes are sorted in an
ascending order according to the load size of the storage node in the storage Node List, so that the storage
node with a small load is sorted to the front of the list, and the storage node with a large load is sorted to the
back of the list. Then the system will prioritize the allocation of read requests to the storage node with the
least load.

Load collection 
module

Communication 
module

Sorting module

Figure 2: The relationship between the modules of the improved read strategy

Figure 3: I/O usage

CSSE, 2021, vol.38, no.3 343



4 Experiment and Result Analysis

4.1 Experimental Environment Construction

According to the three-copy storage strategy advocated in Swift, the experimental deployment
includes authentication nodes, proxy nodes, storage nodes, and test clients. The experimental environment
is shown in Tab. 1.

4.2 Experimental Results and Analysis

In the Swift cloud storage system, I/O utilization, CPU utilization, and network outflow rate can well
represent the resource load status of storage nodes. In this paper, I/O utilization, CPU utilization, and
network outflow rate are used to compare the resource load balance of storage nodes in Swift’s read
strategy and the improved read strategy.

The experimental scenario is to read Swift itself after randomly sorting the storage nodes in the
replication list, and to read the storage nodes in the replication list after sorting according to the I/O load
conditions proposed in this paper

In the experiment, the number of concurrent users was 5, 10, 15, 20, 30, 40, and 50, and the file size
downloaded by users was 30M and 50M, respectively. The number of users increased gradually, with an
increase interval of 2s and 3s, respectively. In the strategy proposed in this paper, the I/O load
information of the storage node was collected every two seconds and the load information was reported
to the agent node. It was used by the proxy node to select the storage node from which to read the replica
for reading. The following table shows the time required for downloading (unit: s):

Taking 50 concurrent users as an example, the Swift read strategy proposed in this paper was compared
with the read strategy based on load balancing of storage node resources under the scenario of downloading
files of different sizes and time intervals, I/O utilization, CPU utilization, and network outflow rates.

A file with a size of 30M was downloaded, the number of users was increased every two seconds till
there were 50 users. According to the I/O load proposed in this paper, the I/O utilization, CPU utilization,
speed and network outflow rate of storage nodes are shown in Fig. 4.

A file with a size of 30 M was downloaded, the number of users was increased every three seconds till
there were 50 users. According to the I/O load proposed in this paper, the I/O utilization, CPU utilization,
speed and network outflow rate of storage nodes are shown in Fig. 5.

A file with a size of 50 M was downloaded, the number of users was increased every two seconds till
there were 50 users. According to the I/O load proposed in this paper, the I/O utilization, CPU utilization,
speed and network outflow rate of storage nodes are shown in Fig. 6.

A file with a size of 50M was downloaded, the number of users was increased every three seconds till
there were 50 users. According to the I/O load proposed in this paper, the I/O utilization, CPU utilization,
speed and network outflow rate of storage nodes are shown in Fig. 7.

Table 1: Experiment environment

Machine IP Deployment service Description

172.29.132.51 Object Server, Container Server, Accoount Server Storage node

172.29.132.52 Object Server, Container Server, Accoount Server Storage node

172.29.132.53 Keystone, Proxy Server, Object Server, Container
Server, Accoount Server

Authentication nodeProxy node,
Storage node

172.29.132.55 Test client Test client

344 CSSE, 2021, vol.38, no.3



According to the above experimental results, if a storage node was randomly selected for reading in
Swift, some storage node I/O utilization and CPU utilization were too high, while some other storage
node I/O utilization and CPU utilization rate were relatively low, resulting in a waste of resources. The
resource load balancing read strategy based on I/O utilization proposed in this paper will not cause the
I/O utilization and CPU utilization of some storage nodes to be too high, while the I/O utilization and
CPU utilization of other storage nodes When the rate is too low, the I/O utilization and CPU utilization of

0 20 40 60 80 100 120 140 160

0

20

40

60

80

100

Time(s)

node1-shuffle node2-shuffle node3-shuffle

0 20 40 60 80 100 120 140 160

0

20

40

60

80

100

Time(s)

node1-sort node2-sort node3-sort

0 20 40 60 80 100 120 140 160

0

20

40

60

80

100

Time(s)

node1-shuffle node2-shuffle node3-shuffle

0 20 40 60 80 100 120 140 160

0

20

40

60

80

100

Time(s)

node1-sort node2-sort node3-sort

0 20 40 60 80 100 120 140 160

0

2

4

6

8

10

12

Time(s)

node1-shuffle node2-shuffle node3-shuffle

0 20 40 60 80 100 120 140 160

0

2

4

6

8

10

12

Time(s)

node1-sort node2-sort node3-sort

I/
O

(%
)

I/
O

(%
)

C
PU

(%
)

C
PU

(%
)

N
et

w
or

k 
ou

tf
lo

w
 r

at
e(

M
B

/s
)

N
et

w
or

k 
ou

tf
lo

w
 r

at
e(

M
B

/s
)

Figure 4: I/O utilization, CPU utilization and network outflow rate at 30M/2s

CSSE, 2021, vol.38, no.3 345



each storage node is relatively close. It shows that the resource load balancing read strategy based on I/O
utilization has a good effect on I/O resource and CPU resource load balancing.

From the above results, it can be found that the network outflow rate of storage node 3 was always very
high. The reason is that storage node 3 had good machine performance and acted as a proxy node. All the data
were returned to the user through the proxy node. Additionally, the network outflow rate of storage node

0 20 40 60 80 100 120 140 160

0

20

40

60

80

100

Time(s)

node1-shuffle node2-shuffle node3-shuffle

0 20 40 60 80 100 120 140 160

0

20

40

60

80

100

Time(s)

node1-sort node2-sort node3-sort

0 20 40 60 80 100 120 140 160

0

20

40

60

80

100

Time(s)

node1-shuffle node2-shuffle node3-shuffle

0 20 40 60 80 100 120 140 160

0

20

40

60

80

100

Time(s)

node1-sort node2-sort node3-sort

0 20 40 60 80 100 120 140 160

0

2

4

6

8

10

12

Time(s)

node1-shuffle node2-shuffle node3-shuffle

0 20 40 60 80 100 120 140 160

0

2

4

6

8

10

12

Time(s)

node1-sort node2-sort node3-sort

I/
O

(%
)

I/
O

(%
)

C
PU

(%
)

C
PU

(%
)

N
et

w
or

k 
ou

tf
lo

w
 r

at
e(

M
B

/s
)

N
et

w
or

k 
ou

tf
lo

w
 r

at
e(

M
B

/s
)

Figure 5: I/O conversion, CPU utilization, and network conversion rate at 30M/3s

346 CSSE, 2021, vol.38, no.3



3 itself in the improved read strategy was higher than that that in Swift’s own read strategy, indicating that
proxy node 3 received more read requests because the improved read strategy allocated user requests
according to the utilization status of storage I/O. The I/O performance of storage node 3 was better than
that of storage node 1 and storage node 2, so more requests were allocated, also implying that the reading
strategy proposed in this paper is also effective in scenarios with different storage node performances.

0 20 40 60 80 100 120 140 160 180 200 220 240

0

20

40

60

80

100

Time(s)

node1-shuffle node2-shuffle node3-shuffle

0 20 40 60 80 100 120 140 160 180 200 220 240

0

20

40

60

80

100

Time(s)

node1-sort node2-sort node3-sort

0 20 40 60 80 100 120 140 160 180 200 220 240

0

20

40

60

80

100

Time(s)

node1-shuffle node2-shuffle node3-shuffle

0 20 40 60 80 100 120 140 160 180 200 220 240

0

20

40

60

80

100

Time(s)

node1-sort node2-sort node3-sort

0 20 40 60 80 100 120 140 160 180 200 220 240

0

2

4

6

8

10

12

Time(s)

node1-shuffle node2-shuffle node3-shuffle

0 20 40 60 80 100 120 140 160 180 200 220 240

0

2

4

6

8

10

12

Time(s)

node1-sort node2-sort node3-sort

I/
O

(%
)

I/
O

(%
)

C
PU

(%
)

C
PU

(%
)

N
et

w
or

k 
ou

tf
lo

w
 r

at
e(

M
B

/s
)

N
et

w
or

k 
ou

tf
lo

w
 r

at
e(

M
B

/s
)

Figure 6: I/O utilization, CPU utilization, and network outflow rate at 50M/2s

CSSE, 2021, vol.38, no.3 347



It can be seen from Tab. 2 that the download time of the resource load balancing read strategy based on
I/O utilization is less than the random read time of Swift, but the improvement is not significant. The reason is
that the network speed during downloading has reached the bandwidth limit, which has become the
performance bottleneck of the system, so the download time is not significantly improved.

0 20 40 60 80 100 120 140 160 180 200 220 240

0

20

40

60

80

100

Time(s)

node1-shuffle node2-shuffle node3-shuffle

0 20 40 60 80 100 120 140 160 180 200 220 240

0

20

40

60

80

100

Time(s)

node1-sort node2-sort node3-sort

0 20 40 60 80 100 120 140 160 180 200 220 240

0

20

40

60

80

100

Time(s)

node1-shuffle node2-shuffle node3-shuffle

0 20 40 60 80 100 120 140 160 180 200 220 240

0

20

40

60

80

100

Time(s)

node1-sort node2-sort node3-sort

0 20 40 60 80 100 120 140 160 180 200 220 240

0

2

4

6

8

10

12

Time(s)

node1-sort node2-sort node3-sort

0 20 40 60 80 100 120 140 160 180 200 220 240

0

2

4

6

8

10

12

Time(s)

node1-shuffle node2-shuffle node3-shuffle

I/
O

(%
)

I/
O

(%
)

C
PU

(%
)

C
PU

(%
)

N
et

w
or

k 
ou

tf
lo

w
 r

at
e(

M
B

/s
)

N
et

w
or

k 
ou

tf
lo

w
 r

at
e(

M
B

/s
)

Figure 7: I/O utilization, CPU utilization, and network conversion rate at 50M/3s

348 CSSE, 2021, vol.38, no.3



5 Conclusion and Discussion

This paper mainly studied the reading strategy in Swift. First, by analyzing the implementation of data
reading process, we found that Swift stored multiple copies and needed to specify the storage node to read the
copy. The copy reading strategy adopted by Swift is a random choice without considering the resource load
of storage nodes. To address this issue, this paper proposed a reading strategy based on I/O load information.
According to the feedback on I/O utilization rate from the storage node, the storage node with the least I/O
utilization rate is selected for providing the data copy requested by users, which solves the problem that some
storage nodes are overloaded while other storage nodes are lightly loaded due to the random selection of data
reading strategy in Swift. The experimental results show that, compared with the original data reading
strategy in Swift, the strategy based on load balancing of storage node resources proposed in this paper
can make the resource load of storage nodes more balanced.

The next step of the research can start from data migration such as monitoring the storage capacity of
storage nodes to avoid excessive capacity of some storage nodes and low capacity of others and migrating the
data to the storage nodes with larger capacity to balance their storage load.

Acknowledgement: The authors are grateful to the anonymous referees for having carefully read earlier
versions of the manuscript. Their valuable suggestions substantially improved the quality of exposition,
shape, and content of the article.

Funding Statement: This work is supported by the Fundamental Research Funds for the Central
Universities (Grant No.HIT.NSRIF.201714), Weihai Science and Technology Development Program
(2016DXGJMS15), Key Research and Development Program in Shandong Provincial (2017GGX90103)
and Weihai Scientific Research and Innovation Fund (2020).

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] D. J. Zhu, Y. D. Sun and H. W. Du, “HUNA: A method of hierarchical unsupervised network alignment for IoT,”

IEEE Internet of Things Journal, vol. 8, no. 5, pp. 3201–3210, 2021.

Table 2: Download time in different scenarios

File size\time interval\read strategy amount of users

5 10 15 20 30 40 50

30M\ 2s\ shuffle
30M \2s \sort
30M \3s\ shuffle
30M \3s \sort
50M \2s\ shuffle
50M \2s \sort
50M \3s \shuffle
50M \3s\ sort

19.85 37.82 44.90 57.30 83.81 114.24 142.29

14.16 27.93 42.03 54.87 82.44 108.61 135.98

17.95 33.62 48.85 63.69 94.35 129.44 154.85

16.81 31.65 45.94 62.00 91.19 122.49 153.97

23.06 49.22 68.10 92.62 141.17 184.34 232.74

23.07 45.41 67.69 89.98 134.63 181.27 226.35

24.86 47.51 73.72 94.83 141.12 183.81 232.90

24.57 45.63 68.33 92.28 135.31 180.24 226.22

CSSE, 2021, vol.38, no.3 349



[2] Badshah and Afzal, “Smart security framework for educational institutions using internet of things (IoT),”
Computers Materials & Continua, vol. 61, no. 1, pp. 81–101, 2019.

[3] S. Xiong, Q. Ni and L. Wang, “SEM-ACSIT: Secure and efficient multiauthority access control for IoT cloud
storage,” IEEE Internet of Things Journal, vol. 7, no. 4, pp. 2914–2927, 2020.

[4] Q. Wang, F. Zhu and Y. Leng, “Ensuring readability of electronic records based on virtualization technology in
cloud storage,” Journal on Internet of Things, vol. 1, no. 1, pp. 33–39, 2019.

[5] D. J. Zhu, H. W. Du and Y. H. Wang, “An IoT-oriented real-time storage mechanism for massive small files based
on Swift,” International Journal of Embedded Systems, vol. 12, no. 1, pp. 72–80, 2020.

[6] P. Yang, N. Xiong and J. Ren, “Data security and privacy protection for cloud storage: A survey,” IEEE Access,
vol. 8, pp. 131723–131740, 2020.

[7] C. T. Yang, S. T. Chen and W. H. Cheng, “A heterogeneous cloud storage platform with uniform data distribution
by software-defined storage technologies,” IEEE Access, vol. 7, pp. 147672–147682, 2019.

[8] X. Shi, Y. Li and H. Xie, “An openflow-based load balancing strategy in SDN,” Computers, Materials &
Continua, vol. 62, no. 1, pp. 385–398, 2020.

[9] Y. Zhou and F. Liu, “Research on server load balancing technology,” Computer and Digital Engineering | Comput
Digit Eng, vol. 38, no. 4, pp. 11–14, 2010.

[10] R. Zhang, “Design and prototype implementation of load balancing scheme of DNS system,” M.S. dissertation.
Beijing University of Posts and Telecommunications, China, 2011.

[11] S. Lin, D. Luo and H. Zhang, “Research of load-balancing of web-server cluster based on genetic algorithms,”
Computer Measurement and Control, vol. 14, no. 10, pp. 1364–1365, 2006.

[12] Y. Yang, “Research on LVS load balancing scheduling based on adaptive niche genetic algorithm,” M.S.
dissertation. Southwest Jiaotong University, China, 2013.

[13] F. Li, “Research on cloud computing resource load balancing scheduling algorithm based on ant colony
algorithm,” M.S. dissertation. Yunnan University, China, 2013.

[14] C. Shi and Z. Li, “Research on load balancing algorithm based on improved polymorphic ant colony in Linux
cluster,” Journal of Sichuan University: Natural Science Edition, vol. 46, no. 5, pp. 1311–1315, 2009.

[15] L. C. Hu, Y. J. Xu and H. M. Xu, “Consistent hash load balancing algorithm based on dynamic feedback,”
Electronics and Computer, vol. 29, no. 1, pp. 177–180, 2012.

[16] Q. Wang, “Research on grid workflow scheduling algorithm based on load balancing,”M.S. dissertation. Xiamen
University, China, 2009.

[17] Q. Tan, “Research on load balancing strategy in cloud computing environment,” M.S. dissertation. Xiamen
University, China, 2014.

[18] L. Lv, “Research on resource load balancing scheduling algorithm in cloud computing environment,” M.S.
dissertation. Xinjiang University, China, 2010.

[19] H. Wang, “Research on adaptive load balancing scheduling strategy of web server cluster system,” Ph.D.
dissertation. Jilin University, China, 2013.

350 CSSE, 2021, vol.38, no.3


	Exploration on the Load Balancing Technique for Platform of Internet of Things
	Introduction
	Related Work
	Load Balancing Read Strategy Based on Swift Storage Node Resources
	Experiment and Result Analysis
	Conclusion and Discussion
	flink6
	References


