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Abstract: The work presented in this paper was conducted to quantify the rela-
tionship between the pore characteristics and mechanical properties of white sand-
stone. The study include tests carried out under the coupling effects of chemical
corrosion, temperature, nuclear magnetic resonance, and mechanical tests. Com-
puter fractal theory was employed to describe and quantify the characteristics of
the growth of pores in white sandstone under the same coupling effect. A custom
developed program code, in the MATLAB software platform, was used for calcu-
lating the growths of the pores in white sandstone when subjected to coupling
effects. The correlation between the computer fractal dimension of the growth
of the pores in rock and characteristics of mechanical damage was accordingly
analyzed. The results showed that when the temperature was set at a level lower
than 100°C, it caused damage to the rock and strength reduction, primarily due to
the rates of chemical reactions, the generation, and evolution of pores in the rock
mass under the coupling effects of chemical corrosion and temperature. Overall, it
was observed that the higher the value of the computer fractal dimension, the
higher the growth of the pores, and the lower the uniaxial compressive strength
of the white sandstone.

Keywords: White sandstone; pore characteristics; mechanical properties;
MATLAB; chemical corrosion; temperature; fractal dimension; nuclear magnetic
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1 Introduction

New pores usually appear in the rock mass due partly to chemical corrosion. As the corrosion further
intensifies, additional pores will develop and grow, along with the previous pores inside the rock.
Damage also concurrently occurs in the inside of the rock under the influence of temperature. The
coupling effect of these two factors will further accelerate the deterioration of rock. Therefore,
determining the growth status of the pore structures inside the rock and analyzing the relationship
between the characteristics of the pore structure and the macro-mechanical properties of the rock in such
conditions are of great significance as it sheds light on the mechanism of rock damage.

This work is licensed under a Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original
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Fractal, a term derived from the Latin word Fractus, was first introduced to the field of natural sciences
by Benoit Mandelbrot in the 1970s to characterize complicated graphics and complex processes. Without
relenting, Mandelbrot promoted the fractal theory and its applications to a new evolutional stage in the
subsequent years of his research [1,2]. Consequently, more and more researchers became cognizant that
fractal theory constituted an effective methodology for quantifying complex and irregular pore structures.
The theory has since been extended to more application fields [3–6].

Many researchers have devoted time to study the mechanical properties of rocks under the effects of a
single environmental factor or the combined effects of multiple environmental factors, through the
application of computer fractal theory in rock mechanics. Li et al. studied the damage characteristics of
sandstone pore structure under freezing and thawing effects and associated the rock NMR results with
mechanical failure characteristics [7–11]. Wang et al. conducted theoretical and experimental research on
the damage model of deep soft rocks under multi-field coupling effects and analyzed its creep behavior
[12–18]. Tang et al. conducted experimental studies on the macro-mechanical effects of rocks in a
hydrochemical environment and analyzed the mechanism of rock damage caused by the hydrochemical
environment [19–22]. Cai et al. [23] conducted an experimental study on the relationship between the
mechanical properties and porosity of sandstone that had undergone hydrochemical corrosion.
Concurrently, these researchers also conducted preliminary studies on the mechanism of chemical
corrosion. The study results from other researchers show that the scale distribution and spatial distribution
of mesoscopic defects (such as pores, cracks, etc.) in the rock structure and the distribution of rock
fragmentation after macroscopic fracture featured distinctive fractal characteristics [24–28]. Computer
fractal dimension can be used to quantitatively characterize the degree of damage and fragmentation of
rocks. Chen et al. [29] conducted a fractal analysis on four types of artificial rock cores. With the
computer fractal dimensions used, these researchers were able to satisfactorily classify the artificial rock
cores into different categories. Xie et al. [30] concluded that the relationship between fluid flow and the
heterogeneous structure and anisotropic physical properties of reservoir rocks can be better explained
when the pore size distribution was employed in the analysis instead of fractal structure parameters.

However, the damage analysis in most of the above studies was based on the macro-mechanical
parameters. The rock damage and degradation mechanism under the influence of a single environmental
factor or multiple environmental factors were proposed based on conjecture, from the perspective of
macroscopic appearance. In essence, this subjective deduction cannot fully nor accurately reflect the real
damage of a rock from a mesoscopic perspective. Although some researchers have taken a lead in
successfully using methods, such as nuclear magnetic resonance technology and computer fractal theory,
to analyze the changing behavior of rock pore structure, under the influence of a single or the combined
influence of multiple environmental factors. Besides, many researchers have also managed to successfully
correlate the macro-mechanical parameters. However, the inaccurate processing of the pore image along
with the existence of defects in the programming of computer fractal dimensions, often led to a certain
deviation in the analysis results. Furthermore, there are relatively few studies on the mechanical
properties of white sandstone under the coupling effects of chemical corrosion and temperature. Thus, the
connection between the macroscopic mechanical properties of white sandstone and mesoscopic damage
should be investigated along with the corresponding quantitative analysis.

Based on existing studies, white sandstone samples were first soaked in acidic, neutral, and alkaline
solutions at different temperatures. The treated white sandstone samples were then subjected to nuclear
magnetic resonance and uniaxial compression tests. The macroscopic mechanical property and
mesoscopic damage of the white sandstone samples were then analyzed. Lastly, the fractal characteristics
of the sandstone pore development were analyzed after the introduction of value filtering and edge
processing to the programming of the computer fractal dimension. In this paper, the computer fractal
dimension of pore evolution in the rock was successfully correlated to the macroscopic mechanical
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behavior. A quantitative analysis was also carried out to shed light on the mechanism of rock damage under
the coupling effects of chemical corrosion and temperature.

2 Sample Preparation and Laboratory Test Scheme

2.1 Preparation of the Rock Samples

The rock samples were sourced from Zigong in Sichuan Province, China. The rock was characterized
with good macroscopic homogeneousness. Thereafter, the rock was then fabricated into a standard rock
sample with dimensions of 50 mm × 100 mm through cutting, coring, and sanding. This standard rock
sample did not contain any obvious visual defects such as cracks or joints. The smoothness of its two
ends was lower than 0.05 mm. Besides, the deviation of the angle between the two ends and the plane
vertical axis was lower than 0.25°. XRD analysis (presented in Fig. 1) shows that the mineral
composition of the rock sample comprised of 55.37% quartz, 41.6% kaolin, 2.3% polylithionite, and
0.7% calcite.

2.2 Rock Treatment and Laboratory Test Procedure

The steps of the test were as follows:

1. The rock samples were placed in an RPH-80, constant temperature and humidity chamber, and dried
at a constant temperature of 25°C for 96 h.

2. About 20 L H2SO4 solution with a concentration of 0.1 mol/L and 20 L NaOH solution with the same
concentration of 0.1 mol/L were prepared. Distilled water (20 L) was set as the control of the neutral
pH environment.

3. The white sandstone samples were soaked in the as-prepared H2SO4 solution, NaOH solution, and
distilled water, respectively. The solutions and distilled water with samples in them were then
placed in the RPH-80 constant temperature and humidity chamber. The temperature inside the
chamber was adjusted to 0, 25, 50, 75, and 100°C by adjusting the heating rate to different levels.

4. The samples will react with the chemicals during the soaking process, thus resulting in the shifting of
the pH value of the solutions. Therefore, the pH value of the solutions should be monitored on daily

Figure 1: XRD spectra of the white sandstone samples
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basis during the soaking process. Besides, the pH value of the solutions should be adjusted to the
original value by adding acidic or alkaline solutions into the original solutions. When the pH
value of the 100°C H2SO4 solution no longer varied, the white sandstone samples were retrieved
from the chemical solutions at different temperatures.

After the soaking treatment of the rock samples in the chemical solutions at different temperatures, the
white sandstone samples were subjected to nuclear magnetic porosity test. This was done using a
MesoMR23060HI magnetic resonance imaging analyzer. The samples were then subjected to a uniaxial
compression test (with a monotonic loading rate of 50 N/S under the stress control mode) using a TAW-
200 electronic multifunctional material mechanics testing machine. Lastly, the computer fractal dimension
of the pores in the white sandstone, under the coupling effects, was obtained from computations using
custom developed codes in the MATLAB software platform. The degree of pore development was
analyzed and quantified using the fractal characteristics of the sandstone.

3 Analysis of NMR Images of White Sandstone

3.1 Macroscopic Mechanical Property of White Sandstone under the Coupling Effects

Tab. 1 shows the uniaxial compressive strength results of each rock sample under different coupling
effects of chemical corrosion and temperature.

It can be seen from Tab. 1 that the uniaxial compressive strength of the rock samples under the coupling
effects vary from one another. When the temperature was set at the same level, the uniaxial compressive
strength of the samples in acidic and alkaline environments is lower than that in the neutral environment.
In the same chemical (acid or alkali) environment, the uniaxial compressive strength of the samples

Table 1: Mechanical properties of the white sandstone under coupling effects

Rock sample # Soaking solution pH value Temperature °C Uniaxial compressive
strength RC/MPa

A0 H2SO4 1 0 27.5

A25 H2SO4 1 25 25.5

A50 H2SO4 1 50 25.0

A75 H2SO4 1 75 23.0

A100 H2SO4 1 100 12.8

B0 Distilled water 7 0 32.5

B25 Distilled water 7 25 31.6

B50 Distilled water 7 50 30.2

B75 Distilled water 7 75 29.4

B100 Distilled water 7 100 27.1

C0 NaOH 13 0 27.0

C25 NaOH 13 25 25.2

C50 NaOH 13 50 25.0

C75 NaOH 13 75 22.5

C100 NaOH 13 100 15.7
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decreases with an increase in the temperature and thereafter, remains constant at 0, 25, and 50°C,
respectively. Once the temperature exceeds 75°C, the uniaxial compressive strength of the samples
decrease sharply. In the neutral environment (pH = 7), the uniaxial compressive strength of the samples
exhibit a gradually small declining trend with an increase in the temperature.

The reason is that when the temperature is lower than 100°C, the damage to the rock caused by
temperature is negligible. At these temperature conditions, the rock damage and degradation is mostly
due to the chemical (acid or alkali) environment, thus resulting in the decline in its uniaxial compressive
strength. Higher temperature causes damage to the rock, thus reducing its strength mainly by affecting the
rate of the chemical reactions.

3.2 Mesoscopic Damage of White Sandstone After the Coupling Effects

Two-dimensional nuclear magnetic resonance images that represent the position of the central cross-
section of each rock sample are presented in Fig. 2. The information of the uniaxial compressive strength
of each rock sample is also included in Fig. 2. The bright area in each image is the area where water
molecules are located, and the surrounding area in black is the background of the image. The brightness
of the image reflects the water content in the rock. Specifically, the brighter the color, the higher the
water content in this area, which further indicates a higher porosity in the area. Based on these
interpretive features, MRI can provide a visual distribution of pore sizes inside the rock sample.

Figure 2: Relationship between the NMR images of different rock samples and their uniaxial compressive
strength values
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It can be seen from Fig. 2 that in an acidic or alkaline environment, the corrosion of the rock samples
caused by the chemical solution gradually intensifies with an increase in the temperature. Specifically, new
pores first appear in the rock samples and then, gradually develop and increase along with an increase of the
initial pores in the whole rock mass. In a neutral environment, no distinct corrosion of the rock samples
triggered by water can be observed as the temperature is increased. Besides, for the initial pores in the
rock mass that remained unchanged there were no new pores that appeared in the rock samples.

The reason is that in an acidic or alkaline environment, minerals such as kaolin in the rock sample
undergo chemical reactions with H2SO4 or NaOH to form water-soluble substances. Furthermore, an
increase in temperature promotes the chemical reaction rate, resulting in the occurrence of new pores or
an increase in the size of initial pores. In a neutral environment, minerals in the rock sample hardly
dissolve in water or react with water.

4 Distribution Characteristics of White Sandstone

Various geometric properties of the rock, such as pore distribution, crack distribution, crack density,
fracture toughness, etc., all exhibit fractal characteristics. Without doubt, fractal theory has become an
indispensible bridge between macroscope and microscope. The coupling effects of chemical corrosion
and temperature results in the appearance of new pores in the rock mass. These pores inherently affect
and to some extent govern the mechanical properties of the rock. Therefore, fractal theory can be used to
describe the characteristics of the pore distribution, thus quantitatively illustrating the relationship
between pores and mechanical properties of the rock.

The NMR images of the rock obtained via MRI technology veritably reflect the characteristics of the
pore growth. It raises the possibility for the calculation of the pore fractal dimension. In this paper, the
box dimension was used to mathermatically characterize the fractal characteristics of the pores in the rock
under the coupling effects of chemical corrosion and temperature. The computational characterization is
based on Eq. (1) as expressed below:

DS ¼ � lim
r!0

lgNðrÞ
lg r

(1)

where Ds is the fractal dimension of the pore in the rock under the coupling effects; r is the side length of the
square box; N(r) is the number of boxes required in the coverage of the whole graph by the square boxes with
a side length of r.

According to the MRI images in the center area of each rock sample presented in Fig. 2, the
characteristic information of the pores in the images can be obtained. The computer fractal dimension
was calculated using a custom developed program code in the MATLAB software platform. The box
number N(r), which corresponds to the side length r was obtained. The logarithmic coordinates of r and
N(r) were subjected to regression analysis. The absolute value of the slope of the fitted curve is the
computer fractal dimension of the pore structure. The correlation coefficient (R) can also be determined
from the regression analysis.

During program execution and running the MATLAB code, the data was subjected to median filtering
after image binarization to improve accuracy and precision of the pore image. During computer fractal
dimension programming, the edges were first marked out in the grayscale image. The computer fractal
dimension of the area within this boundary area was calculated. The interference outside of the pore
graphics was ruled out to ensure a more accurate and precise calculation of the computer fractal
dimensions. The computer fractal dimension of a Sierpinski triangle is 1.58. The box dimension
calculated in this study was 1.58210, indicating that computational results with very high precision can
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be obtained with custom developd program codes. This ultimately improves the accuracy of the calculation
results of the computer fractal dimension analysis.

Each MRI image was subjected to the measurement of computer fractal dimension of the pores in
the rock. The computer fractal dimension of each sample was thereafter calculated and the results are
listed in Tab. 2.

It can be seen from Tab. 2 that the computer fractal dimension (D) of the pores in each rock sample is
higher than 1.0. The computer fractal dimension varies within a short-range. The correlation coefficient of
computer fractal dimension for each MRI image is greater than 0.97. This indicates that the spatial
distribution of the rock pore growth under the different coupling effects has fractal characteristics within
a certain consistent scale from a statistical perspective.

Fig. 3 shows the variation of the fractal dimension (D) under different coupling effects of chemical
corrosion and temperature. In the figure, the Legend A represents acidic conditions, B neutral conditions,
and C alkaline conditions.

It can be seen from Fig. 3 that the computer fractal dimension under acidic (A) conditions is
quantitatively larger than that under alkaline (C) or neutral (B) conditions. Also, the computer fractal
dimensions under alkaline (C) conditions is larger than that under neutral (B) conditions (DAcidic >
DAlkaline > DNeutral). Theoretically, the larger the computer fractal dimension (D) of the pore distribution
in the rock, the more grown the pores are and the more irregular the distribution is. Therefore, the pores
in the white sandstone under acidic and alkaline conditions have relatively larger sizes and more
irregularly distributed. The results further infer that pores have smaller sizes and more evenly distributed
under neutral conditions.

Table 2: Results of fractal dimension analysis of the rock samples

Rock sample# Soaking
solution

pH value Uniaxial compressive
strength RC/MPa

Fractal
dimension, D

Correlation
coefficient

A0 H2SO4 1 26.8 1.53503 0.9807

A25 H2SO4 1 25.1 1.53558 0.9798

A50 H2SO4 1 24.9 1.53550 0.9798

A75 H2SO4 1 23.0 1.53760 0.9809

A100 H2SO4 1 12.8 1.53797 0.9807

B0 Distilled water 7 32.5 1.53060 0.9801

B25 Distilled water 7 31.6 1.53071 0.9801

B50 Distilled water 7 30.2 1.53157 0.9803

B75 Distilled water 7 29.4 1.53156 0.9816

B100 Distilled water 7 27.1 1.53191 0.9809

C0 NaOH 13 27.2 1.53091 0.9811

C25 NaOH 13 25.2 1.53280 0.9798

C50 NaOH 13 25.0 1.53503 0.9807

C75 NaOH 13 22.5 1.53519 0.9908

C100 NaOH 13 15.7 1.53550 0.9798
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The computer fractal dimension (D) of the pores in the white sandstone under acidic and alkaline
conditions exhibits an overall increasing trend with an increase in the temperature. Under neutral conditions,
the computer fractal dimension (D) of the pores remains unchanged with an increase in the temperature.
Overall, the above results suggest that as the number of pores in the white sandstone increases with an
increase in temperature under acidic and alkaline conditions, the pore sizes become larger and the pore
distribution becomes more uneven as well. Under neutral conditions, whilst the number of pores exhibited
an increasing trend with increasing temperature, the pore distribution remained unchanged.

The probable reason is that the white sandstone underwent corrosion in acidic or alkaline environments.
As a result, new pores appeared and the initial pores became larger. Besides, the high temperature accelerated
the rate of chemical reactions. However, in the neutral environment (pH = 7), the white sandstone remains
unchanged even with an increase in temperature.

Fig. 4 shows the relationship between the fractal dimension and the uniaxial compressive strength of
white sandstone under different coupling effects of chemical corrosion and temperature. Similar to Fig. 3,
Legend A represents acidic conditions, B neutral conditions, and C alkaline conditions.

Figure 3: Variation of the fractal dimension (D) under different coupling effects of chemical corrosion and
temperature

Figure 4: Relationship between the fractal dimension and uniaxial compressive strength of white sandstone
under coupling effects
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In response to the coupling effects of chemical corrosion and temperature, it can generally be observed from
Fig. 4 that as the uniaxial compressive strength increases, the computer fractal dimension (D) of the pores in the
white sandstone exhibits a gradually decreasing trend. Specifically, the larger the computer fractal dimension (D),
the more grown the pores are and the smaller the uniaxial compressive strength is. When the graphical results are
compared with the neutral environment, denoted as Legend B in the figure, more distinctive changes in the
computer fractal dimension (D) of the pores in acidic or alkaline environments can be observed. These results
indicate that the pore growth of white sandstone due to the coupling effects of chemical corrosion and
temperature can be characterized and quantified based on computer fractal theory supplemented with uniaxial
compressive strength tests. That is, a correlationship exists between pore development and strength decay.
Overall, the findings substantiate the practical usage of computer fractal dimension to characterize the degree
of pore development relative to the compressive strength in white sandstone when subjected to the coupling
effects of chemical corrosion and temperature variations.

5 Conclusions

1. When the temperature was lower than 100°C, the damage to the rock caused by temperature was
negligibly small. However, the damage under different chemicals (namely acidic and alkaline)
environments resulted in a decline of the uniaxial compressive strength. Whilst the results
indicated that that temperature could potentially cause rock damage, the decay in strength was
predominantly driven by the rate of the chemical reactions.

2. The computer fractal dimension of the pores in the white sandstone under acidic and alkaline neutral
conditions was larger than that under neutral conditions. In general, the computer fractal dimension
(D) of the pores in the white sandstone exhibited an overall increasing trend with an increase in the
temperature. With increasing temperature, the pore size increased with pore distribution becoming
more uneven under both acidic and alkaline conditions. In the neutral environment (pH = 7), the
computer fractal dimension (D) of the pores in the white sandstone increased in size, but the
distribution remained unchanged.

3. The development of pores in the white sandstone exhibited good correlation with the strength decay
due to the coupling effect of chemical corrosion and temperature variations. That is the larger the
value of the computer fractal dimension, the more is the growth in the pores, and the smaller the
uniaxial compressive strength of the white sandstone.
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author upon request.
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