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Abstract: The two-dimensional (2-D) system has a wide range of applications in
different fields, including satellite meteorological maps, process control, and digi-
tal filtering. Therefore, the research on the stability of 2-D systems is of great sig-
nificance. Considering that multiple systems exist in switching and alternating
work in the actual production process, but the system itself often has external per-
turbation and interference. To solve the above problems, this paper investigates
the output feedback robust H∞ stabilization for a class of discrete-time 2-D
switched systems, which the Roesser model with uncertainties represents. First,
sufficient conditions for exponential stability are derived via the average dwell
time method, when the system’s interference and external input are zero. Further-
more, in the case of introducing the external interference, the weighted robust H∞

disturbance attenuation performance of the underlying system is further analyzed.
An output feedback controller is then proposed to guarantee that the resulting
closed-loop system is exponentially stable and has a prescribed disturbance
attenuation level γ. All theorems mentioned in the article will also be given in
the form of linear matrix inequalities (LMI). Finally, a numerical example is
given, which takes two uncertain values respectively and solves the output feed-
back controller’s parameters by the theorem proposed in the paper. According to
the required controller parameter values, the validity of the theorem proposed in
the article is compared and verified by simulation.

Keywords: 2-D systems; robust H∞ control; LMI; output feedback; switched
systems; Roesser model

1 Introduction

The issue of stability analysis and controller synthesis is a hot research topic. Reference Medvedeva
et al. [1–3] investigated the stability of one-dimensional (1-D) continuous-time or discrete-time systems.
Considering the complexity of many manufacturing processes and physical phenomena, a 2-D
continuous-time or discrete-time system that depends on two independent variables has its irreplaceable
application area. 2-D systems have attracted considerable research attention in control theory and practice
over the past few decades due to their wide applications. Reference Du et al. [4–7] showed multi-
dimensional digital filtering, linear image processing, signal processing, and process control. Different
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models such as the Roesser model and Fornasini–Marchesini model can represent 2-D systems, and the
stability issues concerning these two models can be found [8,9].

On the other hand, considerable interest has been devoted to the research of switched systems during the
recent decades. A switched system comprises a family of subsystems described by continuous or discrete-
time dynamics and a switching law that specifies the active subsystem at each instant of time. The
switching strategy improves control performance [10–13] and arise many engineering applications, such
as in motor engine control, constrained robotics, and satellite image control systems [14]. As far as time-
dependent switching is concerned, the average dwell time (ADT) switching is employed in most
references owing to its flexibility [15,16].

However, perturbations and uncertainties widely exist in practical systems. In some cases, the
perturbations can be merged into the disturbance, which can be bounded in the appropriate norms. The
main advantage of robust H∞ control is that its performance specification considers the system’s worst-
case performance in terms of energy gain. This is more appropriate for system robustness analysis and
robust control under modeling disturbances than other performance specifications. Recently, the problems
of robust H∞ control and filtering for 2-D systems have been studied by many researchers [17–20], and
so do the same problems of switched systems [21–23]. However, to the best of our knowledge, the output
feedback robust H∞ control problem of 2-D switched systems in the Roesser model with uncertainties has
not yet been thoroughly investigated, which motivates this present study.

In this paper, we confine our attention to the robustH∞ control problem of discrete 2-D switched systems
described by the Roesser model with uncertainties. The main theoretical contributions are threefold: (1) We
contribute to the development of stabilization for a class of 2-D switched systems that are exponentially
stable, which the Roesser model with uncertainties represents. (2) A sufficient condition is presented to
ensure a 2-D switched system’s exponential stability at a given disturbance attenuation level robust
weighted H∞. (3) Based on the above two points, this article further designs the output feedback
controller of the closed-loop system.

The paper is organized as follows. According to the current research results, we first study the
exponential stability of 2-D switched systems described by the Roesser model with uncertainties. Further,
when the system contains perturbations, we analyze the robust H∞ performance index of the system.
Finally, we design an output feedback controller for the open-loop system, and an example is given to
illustrate the effectiveness of the proposed method.

2 Notation

The following notations are used throughout the paper: the superscript “T” denotes the transpose, and the
notation X ≥ Y (X > Y) means that matrix X − Y is positive semi-definite (positive definite, respectively). �k k
denotes the Euclidean norm. I represents the identity matrix. Diag aif g denotes a diagonal matrix with the
diagonal elements ai, i = 1, 2,…,n. X-1 denotes the inverse of X. Rn denotes the n dimensional vector. Z+

represents the set of all non-negative integers. The l2 norm of a 2-D signal w(i,j) is given by

wk k2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP1
i¼0

P1
j¼0

w i; jð Þk k2
s

, where w(i,j) belongs to l2 0;1½ Þ; 0;1½ Þf g.

3 Problem Formulation and Preliminaries

The uncertain Roesser model for a 2-D switched system G : u ! y is given by the following state
equation:
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�x k; lð Þ ¼ Ad k;lð Þ Dð Þx k; lð Þ þ Bd k;lð Þw k; lð Þ
z k; lð Þ ¼ Cd k;lð Þx k; lð Þ þ Dd k;lð Þw k; lð Þ; k; l ¼ 0; 1; 2 � � � (1)

with

�x k; lð Þ ¼ xh k þ 1; lð Þ
xv k; l þ 1ð Þ

� �
; x k; lð Þ ¼

xh k; lð Þ
xv k; lð Þ

2
4

3
5

Ad k;lð Þ Dð Þ ¼ Ad k;lð Þ þ Fd k;lð ÞGd k;lð Þ k; lð ÞHd k;lð Þ

where Gd k;lð Þ k; lð Þis an unknown uncertain matrix and satisfies the norm bounded condition
GTd k;lð Þ k; lð ÞGd k;lð Þ k; lð Þ � I , and where xh k; lð Þ 2 Rn1and xv k; lð Þ 2 Rn2 denote the system horizontal state
and vertical state, respectively. Furthermore, x k; lð Þ is the whole state in Rn with n ¼ n1 þ n2, and
w k; lð Þ 2 Rq is the interference input which belongs to w k; lð Þ 2 l2 0;1½ Þ; 0;1½ Þf g. u k; lð Þ 2 Rp and
z k; lð Þ 2 Rq are control input and control output respectively; k and l are integers in Z.
d k; lð Þ : Zþ � Zþ ! N ¼ 1; 2; 3 � � � ;Nf g is the switching signal. N is the number of subsystems.
d k; lð Þ ¼ i; i 2 N denotes that the ith subsystem is activated., Ai, Bi, Ci, Di, Fi, Gi, Hi, are constant
matrices with appropriate dimensions.

The boundary condition satisfies:

X 0ð Þ ¼ xhT 0; 0ð Þ; xhT 0; 1ð Þ; � � � ; xvT 0; 0ð Þ; xvT 1; 0ð Þ; � � �� �T
(2)

It is easy to know from the above formula X 0ð Þk k2,1.

Remark 1. “In this paper, it is assumed that switching occurs only at each sampling point of k or l. The
switching sequence can be described as

k0; l0ð Þ; d k0; l0ð Þð Þ; � � � ; kk ; lkð Þ; d kk ; lkð Þð Þ; � � � (3)

with kk ; lkð Þ denoting the kth switching instantly. It should be noted that the value of d k; lð Þ only depends on
k+l [24,25].

Definition 1. System (1) is said to be exponentially stable under d k; lð Þ if for a given j ≥ 0, there exist
positive constants c and f, such thatX
kþl¼D

x k; lð Þk k2 � fe�c D�jð Þ X
kþl¼j

x k; lð Þk k2r (4)

holds for all D ≥ j [26].

Remark 2. From Definition 1, it is easy to see that when j is given,
P

kþl¼j
x k; lð Þk k2r will be bounded, andP

kþl¼D
x k; lð Þk k2r will tend to be zero exponentially as D goes to infinity, which also means that x k; lð Þk k will

tend to be zero exponentially.

Definition 2. For a given scalar c > 0, system (1) is said to have a weighted disturbance attenuation level
c under switching signal d k; lð Þ if it satisfies the following conditions [4]:

(1) when w k; lð Þ=0, system (1) is asymptotically stable or exponentially stable;

(2) under the zero-boundary condition, we have
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X1
k¼0

X1
l¼0

fkþl zk k22
� �

, c2
X1
k¼0

X1
l¼0

wk k22Þ; 80 6¼ w k; lð Þ 2 l2 0;1½ Þ; 0;1½ Þf g (5)

where 0 <f< 1 and the l2-norm of 2D discrete signal z k; lð Þ and w k; lð Þ are defined as

zk k22¼ z k þ 1; lð Þk k22þ z k; l þ 1ð Þk k22; wk k22¼ w k þ 1; lð Þk k22þ w k; l þ 1ð Þk k22 (6)

Definition 3. For any k þ l ¼ D � j ¼ kz þ lz, let Nd j;Dð Þ denote the switching number of d �ð Þ on an
interval z;D½ Þ. If

Nd j;Dð Þ � N0 þ D� j

sa
(7)

holds for given N0 � 0 and sa � 0, then the constant sa is called the average dwell time and N0 is the chatter
bound [27].

Lemma 1. For a given matrix S ¼ S11 S12
S21 S22

� �
, where S11 and S22 are square matrices, the following

conditions are equivalent [28].

ið ÞS, 0;

iið ÞS11, 0, S22 � ST12S
�1
11 S12, 0;

iiið ÞS22, 0, S11 � S12S�1
22 S

T
12, 0.

Lemma 2. Assuming that x 2 Rp; y 2 Rq and U ;V ;W are a suitable dimension matrix, then inequality
xTUVWyþ yTWTVTUTx � e1xTUUTxþ e2yTWWTy is true for any VTV � I, if and only if there exist
positive scalars e1; e2 and e1 � e2.

Proof.

0 � ffiffiffiffi
e1

p
UTx� 1ffiffiffi

e1
p VWy

� �T ffiffiffiffi
e1

p
UTx� 1ffiffiffi

e1
p VWy

� �
¼ e1xTUUTx� xTUVWy� yTWTVTUTxþ 1

e1
yTWWTy

� e1xTUUTx� xTUVWy� yTWTVTUTxþ 1
e2
yTWWTy

4 Exponential Stability Analysis

This section focuses on the exponential stability analysis of the 2D switched systems. The following
theorem presents sufficient conditions that can guarantee that system (1) is exponentially stable.

Theorem 1. Consider 2D discrete switched system (1) with w k; lð Þ ¼ 0, for a given positive constant
f < 1, if there exist a set of positive-definite symmetric matrices Pi 2 Rn�n; i 2 N and two positive
scalars e1; e2, such that

�fPi AiTPi 0 e1HiT

PiAi �Pi PiFi 0
0 FiTPi �e2I 0
e1Hi 0 0 �e1I

2
664

3
775, 0 (8)

e1 � e2 (9)

Then, the system is exponentially stable for any switching signal with the average dwell time satisfying
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sa . s�a ¼
ln l

� lnf
(10)

where l ≥ 1 satisfies

Pi � lPj;8i; j 2 N (11)

Proof. Without loss of generality, we assume that the ith subsystem is active. For the ith subsystem, we
consider the following Lyapunov function candidate:

V i x k; lð Þð Þ ¼ xT k; lð ÞPix k; lð Þ (12)

where Pi is an n� n positive-definite matrix for any i 2 N, and thus V i x k; lð Þð Þ. 0; 8x k; lð Þ 6¼ 0 and
V i k; lð Þ ¼ 0 only when x k; lð Þ ¼ 0. Then we have V i �x k; lð Þð Þ � fV i x k; lð Þð Þ ¼
xT k; lð Þ AiT Dð ÞPiAi Dð Þ � fPið Þ.

Using Lemma 1 to (8), we can get the equivalent inequality as follows:

�fPi AiTPi 0 e1HiT

PiAi �Pi PiFi 0
0 FiTPi �e2I 0
e1Hi 0 0 �e1I

2
664

3
775, 0 ) �fPi þ e1HiTHi AiTPi

PiAi �Pi þ 1
e2
PiFiFiTPi

� �
, 0

) �fPi AiTPi

PiAi �Pi

� �
þ e1

HiT

0

� �
Hi 0

� �þ 1

e2

0
PiFi

� �
0 FiTPi

� �
, 0 (13)

Then using Lemma 2 to (13), we can get

�fPi AiTPi

PiAi �Pi

� �
þ HiT

a
0

� �
GiT 0 FiTPi

� �þ 0
PiFi

� �
Gi Hi

a 0
� �

, 0 (14)

Using Lemma 1 to (14), we can get

AT
i Dð ÞPiAi Dð Þ � fPi , 0 (15)

Form (15), we know

V i �x k; lð Þð Þ � fV i x k; lð Þð Þ (16)

The equality holds only if V i �x k; lð Þð Þ ¼ V i x k; lð Þð Þ ¼ 0.

It follows from (16) thatX
kþl¼Nþ1

V i k; lð Þ � f
X

kþl¼N

V i k; lð Þ � fN�N0þ1
X

kþl¼N0

V i k; lð Þ (17)

Now, let n = Nd j;Dð Þ denote the switching number of d �ð Þ on an interval j;D½ Þ, and let
mk�nþ1 ,mk�nþ2 , � � � ,mk�1 ,mk denote the switching points of d �ð Þ over the interval j;D½ Þ, thus, for
D 2 mk ;mkþ1½ Þ, we have from (16)X
kþl¼D

V d mkð Þ k; lð Þ,fD�mk
X

kþl¼mk

V d mkð Þ k; lð Þ (18)

Using (11) and (12), at switching instant mk ¼ k þ l, we have
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X
kþl¼mk

V d mkð Þ k; lð Þ � l
X

kþl¼mk

V d mk�1ð Þ k; lð Þ (19)

Also, according to Definition 3, it follows that

n ¼ Nd j;Dð Þ � N0 þ D� j

sa
(20)

Therefore, the following inequality can be obtained easily:P
kþl¼D

V d mkð Þ k; lð Þ,fD�mk
P

kþl¼mk

V d mkð Þ k; lð Þ � lfD�mk
P

kþl¼m�
k

V d mk�1ð Þ k; lð Þ, lfD�mk
P

kþl¼mk�1

V d mk�1ð Þ k; lð Þfmk�mk�1 � � � �

, ln�1fD�mk�nþ1
P

kþl¼mk�nþ1

V d mk�nþ1ð Þ k; lð Þ � lnfD�mk�nþ1
P

kþl¼m�
k�nþ1

V d jð Þ k; lð Þ, lnfD�j P
kþl¼j

V d jð Þ k; lð Þ (21)

Combining (20), inequality (21) can be written as follows:X
kþl¼D

V d mkð Þ k; lð Þ � e� �lnl
sa
�lnfð Þ D�jð Þ X

kþl¼j

V d jð Þ k; lð Þ (22)

There exist two positive constants a and b (a ≤ b) such thatX
kþl¼D

x k; lð Þk k2 � b

a
e� �ln l

sa
�lnfð Þ D�jð Þ X

kþl¼j

x k; lð Þk k2 (23)

By Definition 1, we know that if� ln l
sa

� lnf >0, that is sa. s�a ¼ ln l
� lnf, the 2D discrete switched system

is exponentially stable.

The proof is completed.

Remark 3. Note that when l ¼ 1 in (10), (11) turns out to be Pi ¼ Pj;8i; j 2 N . In this case, we have

sa. s�a ¼ lnl
� lnf, which means that the switching signal can be arbitrary.

5 Robust H∞ Performance Analysis

This section focuses on the Robust H∞ stabilization problem for a class of discrete-time 2D switched
systems represented by a Roesser model with uncertainties. The following theorem presents sufficient
conditions that can guarantee that system (1) is exponentially stable and has a prescribed weighted H∞

disturbance attenuation level c.

Theorem 2. For given positive scalars c and f < 1, there exist symmetric and positive-definite matrices
Pi 2 Rn�n; i 2 N , and two positive scalars e1; e2,such that

�fPi 0 AiTPi 0 CiT e1HiT

0 �c2 BiTPi 0 DiT 0
PiAi PiBi �Pi PiFi 0 0
0 0 FiPi �e2I 0 0
Ci Di 0 0 �I 0
e1Hi 0 0 0 0 �e1I

2
6666664

3
7777775
, 0 (24)

e1 � e2 (25)

Then, 2D switched system (1) is exponentially stable and has a prescribed weighted H∞ disturbance
attenuation level c for any switching signals with average dwell time satisfying (10), where
μ ≥ 1 satisfies (11).

74 CSSE, 2021, vol.39, no.1



Proof. It is an obvious fact that (24) implies that inequality (8) holds. By Lemma 2, we can find that
system (1) is exponentially stable when w k; lð Þ= 0. Now we are able to prove that system (1) has a
prescribed weighted H∞ performance γ for any nonzero w k; lð Þ 2 l2 0;1½ Þ; 0;1½ Þf g.

To establish the weighted H∞ performance, we choose the same Lyapunov functional candidate as in
(12) for the system (1). Following the proof line of Theorem 1, we can get

V i �x k; lð Þð Þ � fV i x k; lð Þð Þ þ c2wTw� zT z

if

� ¼ AiT Dð ÞPiAi Dð Þ � fPi þ CiTCi AiT Dð ÞPiBi þ CiTDi

BiTPiAi Dð Þ þ DiTCi BiTPiBi � c2 þ DiTDi

� �
, 0 (26)

Using Lemma 1 to (26), we can get the equivalent inequality as follows:

�fPi þ CiTCi CiTDi AiT Dð Þ
DiTCi �c2 þ DiTDi BiT

Ai Dð Þ Bi � Pið Þ�1

2
4

3
5, 0

,
�fPi þ CiTCi CiTDi AiT

DiTCi �c2 þ DiTDi BiT

Ai Bi � Pið Þ�1

2
4

3
5þ

HiT
a

0
0

2
4

3
5GiT 0 0 FiT

� �þ 0
0
Fi

2
4

3
5Gi Hi

a 0 0
� �

, 0

(27)

Pre- and post-multiplying (24) by diag I I Pið Þ�1 I I I
	 


, we obtain

�fPi 0 AiT 0 CiT e1HiT

0 �c2 BiT 0 DiT 0
Ai Bi � Pið Þ�1 Fi 0 0
0 0 Fi �e2I 0 0
Ci Di 0 0 �I 0
e1Hi 0 0 0 0 �e1I

2
6666664

3
7777775
, 0 (28)

Using Lemma 1 to (28), we can get

�fPi þ CiTCi þ e1HiT
a Hi

a CiTDi AiT

DiTCi �c2 þ DiTDi BiT

Ai Bi � Pið Þ�1 þ 1
e2
FiFiT

2
4

3
5, 0 (29)

Then using Lemma 2, we find that (29) is equivalent to (27).

Thus it can be obtained from (24) that

V i �x k; lð Þð Þ � fV i x k; lð Þð Þ þ c2wTw� zTz, 0 (30)

Then we have

V i �x k; lð Þð Þ � fV i x k; lð Þð Þ þ c2wTw� zT z (31)

Let

F k þ lð Þ ¼ zk k22�c2 wk k22¼ zh k; lð Þ
zv k; lð Þ

����
����
2

2

�c2
wh k; lð Þ
wv k; lð Þ

����
����
2

2

(32)

Summing up both sides of (31) from (D-1) to 0 with respect to l and 0 to (D-1) with respect to k,
respectively, and applying the zero-boundary condition, one gets
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P
kþl¼D

V d mkð Þ k; lð Þ,fD�1 P
kþl¼D�1

V d mkð Þ k; lð Þ � P
kþl¼D�1

F k; lð Þ,fD�mk
P

kþl¼mk

V d mkð Þ k; lð Þ � PD�1

m¼mk

P
kþl¼m

fD�1�k�lF k; lð Þ

� lfD�mk
P

kþl¼m�
k

V d mk�1ð Þ k; lð Þ � PD�1

m¼mk

P
kþl¼m

fD�1�k�lF k; lð Þ

, lfD� m�
k �1ð Þ P

kþl¼m�
k �1

V d mk�1ð Þ k; lð Þ � lfD�mk
P

kþl¼m�
k �1

F k; lð Þ � PD�1

m¼mk

P
kþl¼m

fD�1�k�lF k; lð Þ

, lNd kþl; Dð ÞfD� m�
k �1ð Þ P

kþl¼m�
k �1

V d mk�1ð Þ k; lð Þ � lNd kþl; Dð Þ PD�1

m¼m�
k �1

P
kþl¼m

fD�1�k�lF k; lð Þ

, lNd kþl; Dð ÞfD� m�
k �1ð Þ P

kþl¼mk�1

V d mk�1ð Þ k; lð Þ � lNd kþl; Dð Þ PD�1

m¼mk�1

P
kþl¼m

fD�2�k�lF k; lð Þ

� lNd kþl�1; Dð ÞfD�mk�1
P

kþl¼m�
k�1

V d mk�2ð Þ k; lð Þ � PD�1

m¼m�
k�1

P
kþl¼m

lNd kþlþ1; Dð ÞfD�1�k�lF k; lð Þ
� � �
,

P
kþl¼0

lNd kþl; Dð ÞfDV d 1ð Þ k; lð Þ � PD�1

m¼0

P
kþl¼m

lNd kþl; Dð ÞfD�1�k�lF k; lð Þ

(33)

Under the zero-initial condition, we haveX
kþl¼0

lNd kþl; Dð ÞfDV d 1ð Þ k; lð Þ ¼ 0 (34)

Thus, we have

XD�1

m¼0

X
kþl¼m

lNd kþl; Dð ÞfD�1�k�lF k; lð Þ, �
X

kþl¼D

V d mkð Þ k; lð Þ (35)

Multiplying both sides of (35) by l�Nd 0; Dð Þ, we can get the following inequality:

XD�1

m¼0

X
kþl¼m

l�Nd 0; kþlð ÞfD�1�k�l zk k22 , c2
XD�1

m¼0

X
kþl¼m

l�Nd 0; kþlð ÞfD�1�k�l wk k22 (36)

Noting Nd 0; k þ lð Þ � kþl
sa
, and using (10), we have

l�Nd 0; kþlð Þ ¼ el
�Nd 0; kþlð Þ ln l � e kþlð Þ lnf (37)

Thus

PD�1

m¼0

P
kþl¼m

e kþlð Þ lnffD�1�k�l zk k22 , c2
PD�1

m¼0

P
kþl¼m

l�Nd 0;kþlð ÞfD�1�k�l wk k22

) PD�1

m¼0

P
kþl¼m

fD�1 zk k22, c2
PD�1

m¼0

P
kþl¼m

fD�1�k�l wk k22

) PD�1

m¼0

P
kþl¼m

fD�1�k�lfkþl zk k22 , c2
PD�1

m¼0

P
kþl¼m

fD�1�k�l wk k22

) P1
m¼0

P
kþl¼m

fkþl zk k22 , c2
P1
m¼0

P
kþl¼m

wk k22

) P1
k¼0

P1
l¼0

fkþl zk k22,
P1
k¼0

P1
l¼0

c2 wk k22

(38)

According to Definition 3, we can see that system (1) is exponentially stable and has a prescribed
weighted robust H∞ disturbance attenuation level γ.

The proof is completed.
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6 Robust H∞ Control Problem

This subsection will deal with the Robust H∞ control problem of 2D switched systems via dynamic
output feedback. Our purpose is to design a dynamic output feedback controller such that the closed-loop
system is exponentially stable and has a specified robust weighted H∞ disturbance attenuation level γ.

Consider the following discrete 2D switched systems in the Roesser model with uncertainties:

�x k; lð Þ ¼ A1d k;lð Þ Dð Þx k; lð Þ þ B1d k;lð Þw k; lð Þ þ B2d k;lð Þu k; lð Þ
z k; lð Þ ¼ C1d k;lð Þx k; lð Þ þ D11d k;lð Þw k; lð Þ þ D12d k;lð Þu k; lð Þ; k; l ¼ 0; 1; 2 � � �
y k; lð Þ ¼ C2d k;lð Þx k; lð Þ þ D21d k;lð Þw k; lð Þ

(39)

where x k; lð Þ 2 Rn;w k; lð Þ 2 Rnw ; u k; lð Þ 2 Ru; z k; lð Þ 2 Rz and y k; lð Þ 2 Ry are, respectively, the state, the
disturbance input, the control input, the controlled output, and the measurement output of the plant, k and
l are integers in Zþ. A1

i;B1
i;B2

i;C1
i;C2

i;D11
i;D12

i and D21
i with i 2 N are constant matrices with

appropriate dimensions. We do not assume the disturbance input signal’s statistics w k; lð Þ other than that
its energy is bounded, i.e., wk k2,1.

Introduce the following output feedback controller of order nc:

�xc k; lð Þ ¼ Ac
d k;lð Þxc k; lð Þ þ Bc

d k;lð Þy k; lð Þ
u k; lð Þ ¼ Cc

d k;lð Þxc k; lð Þ þ Dc
d k;lð Þy k; lð Þ (40)

where

�xc k; lð Þ ¼ xhc k þ 1; lð Þ
xvc k; l þ 1ð Þ

� �
; xc k; lð Þ ¼ xhc k; lð Þ

xvc k; lð Þ
� �

The closed-loop system consisting of the plant (39) and the controller (40) is of the form

_̂x k; lð Þ ¼ �A
d k;lð Þ

x̂ k; lð Þ þ �Bd k;lð Þw k; lð Þ
z k; lð Þ ¼ �C

d k;lð Þ
x̂ k; lð Þ þ �Dd k;lð Þw k; lð Þ

(41)

with _̂x k; lð Þ ¼ �x k; lð Þ
�xc k; lð Þ

� �
; x̂ k; lð Þ ¼ x k; lð Þ

xc k; lð Þ
� �

and

A
~ d k;lð Þ ¼ A1

d k;lð Þ Dð Þ þ B2
d k;lð ÞDc

d k;lð ÞC2
d k;lð Þ B2

d k;lð ÞCc
d k;lð Þ

Bc
d k;lð ÞC2

d k;lð Þ Ac
d k;lð Þ

� �

¼ A1
d k;lð Þ þ B2

d k;lð ÞDc
d k;lð ÞC2

d k;lð Þ B2
d k;lð ÞCc

d k;lð Þ

Bc
d k;lð ÞC2

d k;lð Þ Ac
d k;lð Þ

� �
þ Fd k;lð Þ

0

� �
Gd k;lð Þ Hd k;lð Þ 0

� �
�Bd k;lð Þ ¼ B2

d k;lð ÞDc
d k;lð ÞD21

d k;lð Þ þ B1
d k;lð Þ

Bc
d k;lð ÞD21

d k;lð Þ

� �

�C
d k;lð Þ ¼ C1

d k;lð Þ þ D12
d k;lð ÞDc

d k;lð ÞC2
d k;lð Þ D12

d k;lð ÞCc
d k;lð Þ� �

; �Dd k;lð Þ ¼ D11
d k;lð Þ þ D12

d k;lð ÞDc
d k;lð ÞD21

d k;lð Þ

where

�Ad k;lð Þ ¼ A1
d k;lð Þ þ B2

d k;lð ÞDc
d k;lð ÞC2

d k;lð Þ B2
d k;lð ÞCc

d k;lð Þ

Bc
d k;lð ÞC2

d k;lð Þ Ac
d k;lð Þ

� �
; �Fd k;lð Þ ¼ Fd k;lð Þ

0

� �
; �Hd k;lð Þ ¼ Hd k;lð Þ 0

� �
.

For the closed-loop system (41), we state the 2D Robust H∞ control problem as finding a 2D dynamic
output feedback controller of the form in (40) for the 2D systems (39) such that the closed-loop system (41)
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has a specified weighted robust H∞ disturbance attenuation level γ. The controller design procedure is
provided in the following theorem.

Theorem 3. For given positive scalars �f, 1 and γ, if there exist symmetric positive definite
matrices Mi

11 . 0; �Mi
11 . 0, two positive scalars �e2;b and appropriate dimensions matrices

Dc
i; Zi;�i;�i; i 2 N such that

��fY i
M 0 Y i

A 0 Y i
C Y i

H

0 �c2 Y i
B 0 �DiT 0

Y iT
A Y iT

B �Y i
M Y i

F 0 0
0 0 Y iT

F ��e2I 0 0

Y iT
C

�Di 0 0 �I 0
Y iT
H 0 0 0 0 �bI

2
6666664

3
7777775
, 0 (42)

1

b
. �e2 (43)

with

Y i
M ¼ �Mi

11 I
I Mi

11

� �
; Y i

A ¼ AiT �Mi
11 þ C2

iT� AiT þ C2
iTDc

iTB2
iT

� Mi
11A

iT þ ZB2
iT

� �
; Y i

C ¼ C1
i þ D12

iDc
iC2

i
� T
Mi

11C1
iT þ ZD12

iT

" #
;Y i

H ¼ �HiT

Mi
11
�HiT

� �

Y i
B ¼ B1

iT �Mi
11 þ D21

iT� B2
iDc

iD21
i þ B1

ið ÞT
h i

;Y i
F ¼ �Mi

11F
i

Fi

� �

then 2D switched closed-loop system (41) is exponentially stable and has a prescribed weighted robust H∞

disturbance attenuation level γ for any switching signals with the average dwell time satisfying

sa . s�a ¼
ln l

� ln �f
(44)

where Mi
12
�MiT
12 ¼ I �Mi

11
�Mi
11;M

i
11
�Mi
12 þMi

12
�Mi
22 ¼ 0;MiT

12
�Mi
12 þMi

22
�MiT
12 ¼ 0 and l � 1 satisfies

Mi
11 Mi

12

MiT
12 Mi

22

" #
,l

Mj
11 Mj

12

MjT
12 Mj

22

" #
(45)

and the controller parameters can be obtained as follows:

Cc
i ¼ ZiT � Dc

iC2
iMi

11

� 
MiT

12

� �1
;Bc

i ¼ �Mi
12 �iT � �Mi

11B2
iDc

i
� 

Ac
i ¼ �Mi

12

� �1
�iT � �Mi

11 Ai þ B2
iDc

iC2
i

� 
Mi

11 þ B2
iCc

iMiT
12

� � � Bc
iC2

iMi
11

� �
MiT

12

� �1 (46)

Proof.Given Theorem 2 to the closed-loop system (41), the controller solves the 2D switched robustH∞

control problem if the following matrix inequalities hold

��fX i 0 �A
iT
X i 0 �C

iT
�e1 �H

iT

0 �c2 �BiTX i 0 �DiT 0
X i�A

i
X i�Bi �X i X i�Fi 0 0

0 0 �FiX i ��e2I 0 0
�C
i �Di 0 0 �I 0

�e1 �H
i 0 0 0 0 ��e1I

2
6666664

3
7777775
, 0 (47)
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Pre- and post-multiplying (47) by diag X ið Þ�1 I X ið Þ�1 I I 1
�e1
I

n o
leads to

��f X ið Þ�1 0 X ið Þ�1�A
iT

0 X ið Þ�1�C
iT

X ið Þ�1 �HiT

0 �c2 �BiT 0 �DiT 0
�A
i
X ið Þ�1 �Bi � X ið Þ�1 �Fi 0 0

0 0 �Fi ��e2I 0 0
�C
i
X ið Þ�1 �Di 0 0 �I 0

�Hi X ið Þ�1 0 0 0 0 � 1
�e1
I

2
66666664

3
77777775
, 0 (48)

Definite Mi ¼ X ið Þ�1
;b ¼ 1

�e1
, we can obtain

��fMi 0 Mi�A
iT

0 Mi�C
iT

�e1Mi �HiT

0 �c2 �BiT 0 �DiT 0
�A
i
Mi �Bi �Mi �Fi 0 0

0 0 �Fi ��e2I 0 0
�C
i
Mi �Di 0 0 �I 0

�e1 �H
iMi 0 0 0 0 �bI

2
6666664

3
7777775
, 0 (49)

Partition Mi and Mið Þ�1 as

Mi ¼ Mi
11 Mi

12

MiT
12 Mi

22

" #
; Mi
� �1 ¼

�Mi
11

�Mi
12

�MiT
12

�Mi
22

" #
(50)

It is easy to show from (50) that Mi
12
�MiT
12 ¼ I �Mi

11
�Mi
11.

set

J i ¼
�Mi
11 I

�MiT
12 0

" #
; �J i ¼ I Mi

11

0 MiT
12

" #

Then it follows that MiJ i ¼ �J i; J iTMiJ i ¼ �Mi
11 I

I Mi
11

� �
. 0 and

Zi ¼ Mi
11 Dc

iC2
i

� T þMi
12Cc

iT ;�i ¼ Dc
iTB2

iT �Mi
11 þ Bc

iT �MiT
12

�i ¼ Mi
11 Ai þ B2

iDc
iC2

i
� T þMi

12 B2
iCc

i
� T� �

�Mi
11 þ Mi

11 Bc
iC2

i
� T þMi

12Ac
iT

� �
�MiT
12

Pre- and post-multiplying (49) diag J iT I J iT I I I
	 


and diag J i I J i I I I
	 


,
respectively, we have

��fJ iTMiJ i 0 J iTMi�A
iT
J i 0 J iTMi �C

iT
J iTMi �HiT

0 �c2 �BiTJ i 0 �DiT 0
J iT �A

i
MiJ i J iT �Bi �J iTMiJ i J iT �Fi 0 0

0 0 �FiJ i ��e2I 0 0
�C
i
MiJ i �Di 0 0 �I 0

�HiMiJ i 0 0 0 0 �bI

2
6666664

3
7777775
, 0 (51)
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with

J iTMiJ i ¼ �Mi
11 I

I Mi
11

� �
; J iTMi �C

iT ¼ C1
i þ D12

iDc
iC2

i
� T
Mi

11C1
iT þ ZD12

iT

" #
; J iTMi�A

iT
J i ¼ AiT �Mi

11 þ C2
iT� AiT þ C2

iTDc
iTB2

iT

� Mi
11A

iT þ ZB2
iT

� �

�e1J iTMi �HiT
a ¼ �HiT

Mi
11
�HiT

� �
; �BiT J i ¼ B1

iT �Mi
11 þ D21

iT� B2
iDc

iD21
i þ B1

ið ÞT
h i

; J iT �F ¼ �Mi
11F

i

Fi

� �

then we take

Y i
M ¼ J iTMiJ i;Y i

C ¼ J iTMi �CiT ; Y i
A ¼ J iTMi�AiTJ i; Y i

H ¼ J iTMi �HiT
a ;Y i

B ¼ �BiTJ i; Y i
F ¼ J iT .

The condition (42) can be obtained.

Remark 4. It is worth noting that in Theorems 1 and 2, the results are derived from the assumption that
the switching rule is not known a priori, but its value is available in each sampling period. In other words, the
switching sequence considered here does not include the random switching one.

In what follows, we present an algorithm for the design of a dynamic output controller.

Algorithm 1

Step 1. Given c and �f, solve the LMI (42) to obtain matrices Mi
11;

�Mi
11; Z

i;�i;�i; �e2; b and the dynamic
output feedback controller parameters Dc

i;with i 2 N .

Step 2. The invertible matrices Mi
12 and �Mi

12 can be computed in terms of the nonsingularity of
Mi

11
�Mi
11 ¼ I �Mi

12
�MiT
12 .

Step 3. The invertible matrices �Mi
22 andM

i
22 also can be computed by equationsMi

11
�Mi
12 þMi

12
�Mi
22 ¼ 0

and MiT
12

�Mi
12 þMi

22
�MiT
12 ¼ 0.

Step 4. By solving inequality (45), the constant l is obtained, and the average residence time sa can be
calculated from (44).

Step 5. By solving (46), the remaining controller parameters Ac
i;Bc

i and Cc
i; i 2 N can be obtained.

This completes the proof.

Remark 5. If there is only one subsystem in the system (39), it will degenerate into being a general 2D
Roesser model, which is a special model of 2D switched systems. Theorem 3 is also applicable for 2D
Roesser systems, which means that our results are more general than that just for 2D Roesser systems.

7 Numerical Example

In this section, we shall illustrate the results developed earlier via an example.

Subsystem 1

A1
1 ¼

0:31 0:43
0:35 0:41

� �
;B1

1 ¼
0:33
0:43

� �
;B1

2 ¼
0:1
0:43

� �
;F1 ¼ 0:46 0

0 0:48

� �
;H1 ¼ 0:64 0

0 0:47

� �

C1
2 ¼ 0:52 0:11½ �;D1

21 ¼ 0:2;C1
1 ¼ 0:53 0:34½ �;D1

11 ¼ 0:02;D1
12 ¼ 0:5

Subsystem 2

A2
1 ¼

0:39 0:35
0:42 0:38

� �
;B2

1 ¼
0:15
0:46

� �
;B2

2 ¼
0:1
0:46

� �
;F2 ¼ 0:48 0

0 0:39

� �
;H2 ¼ 0:54 0

0 0:49

� �

C2
1 ¼ 0:45 0:16½ �;D2

11 ¼ 0:03;D2
12 ¼ 0:6;C2

2 ¼ 0:75 0:17½ �;D2
21 ¼ 0:2
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Taking �f ¼ 0:6; c ¼ 5, according to Theorem 3, solving inequality (42) gives rise to the following
solutions:

M1
11 ¼

2:2703 0:3591
0:3591 2:4689

� �
; �M 1

11 ¼
1:4772 0:3845
0:3845 1:5167

� �
;M2

11 ¼
4:2613 �1:0701
�1:0701 3:6358

� �
; �M2

11 ¼
0:9256 �0:1493
�0:1493 1:3213

� �

b1 ¼ 1:9370; �e12 ¼ 0:4846; b2 ¼ 2:9542; �e22 ¼ 0:2916;�1 ¼ 0:9396 0:9915½ �;�2 ¼ �0:4323 �0:7422½ �

Z1 ¼ 2:0984
1:6106

� �
;�1 ¼ 0:0403 0:0794

0:0794 0:1787

� �
;�2 ¼ 0:0921 0:0917

0:0917 0:1607

� �
; Z2 ¼ �3:1152

�0:6319

� �

D2
c ¼ �1:2152;D1

c ¼ �2:5800

Then, Mi
12;

�Mi
12;

�Mi
22 and Mi

22 can be computed.

M1
12 ¼

�2:7127 0:9273
3:1397 0:8012

� �
; �M1

12 ¼
0:6625 �0:7491
�0:7491 �0:6625

� �
;M 2

12 ¼
�3:4868 1:2961
4:1048 1:1009

� �
; �M 2

12 ¼
0:5901 �0:8073
�0:8073 �0:5901

� �

M1
22 ¼

2:7127 �3:1397
�0:9273 �0:8012

� �
; �M 1

22 ¼
0:6600 0:0188
0:0188 1:6322

� �
;M2

22 ¼
3:4868 �4:1048
�1:2961 �1:1009

� �
; �M 2

22 ¼
0:9108 �0:1563
�0:1563 1:7467

� �

The positive scalar l ¼ 3:8438 can be obtained by solving inequality (45), then s�a ¼ lnl
� ln �f

¼ 2:6359

can be obtained from (44). And the rest of the controller parameters Ac
i;Bc

i;Cc
i; i 2 N can be obtained

by solving (46).

A1
c ¼

�0:1992 �0:1156
0:1686 0:0933

� �
;A2

c ¼
0:0213 0:0082
0:1834 0:0779

� �
;B1

c ¼
�1:0960
0:3458

� �
;B2

c ¼
�0:2204
0:3385

� �
C1
c ¼ �0:3870 �0:2203½ �;C2

c ¼ �0:1870 �0:0806½ �
Choosing sa ¼ 3, the simulation results are shown in Figs. 1–5, where the boundary condition of the

system is

x k; lð Þ ¼ 5
kþ1 ;80 � k � 16; l ¼ 0; x k; lð Þ ¼ 5

lþ1 ;80 � l � 16; k ¼ 0,

and w k; lð Þ ¼ 0:5 exp �0:045p k þ lð Þð Þ. It can be seen from Figs. 1 and 2 that the system is exponentially

stable. Furthermore, when the boundary condition is zero, When G1
1 ¼ G2

1 ¼
0:01 0
0 0:01

� �
by

computing, we get
P1
k¼0

P1
l¼0

fkþl zk k22= 4.0871 and
P1
k¼0

P1
l¼0

wk k22= 8.2411, and it satisfies the condition (2) in

Definition 2. It can be seen that the system has a weighted robust H∞ disturbance attenuation level c= 5.

If G1
1 ¼ G2

1 ¼
0:99 0
0 0:99

� �
by computing, we can get

P1
k¼0

P1
l¼0

fkþl zk k22= 4.0053 and
P1
k¼0

P1
l¼0

wk k22=
8.2411, and it also can be seen from Figs. 3 and 4 that the system is exponentially stable.
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Figure 1: Response of state xh k; lð Þ

Figure 2: Response of state xv k; lð Þ

Figure 3: Response of state xh k; lð Þ
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8 Conclusions

This paper has investigated the problems of stability and weighted robust H1 disturbance attenuation
performance analyses for 2D discrete switched systems described by the Roesser model with
uncertainties. An exponential stability criterion is obtained via the average dwell time method. Some
sufficient conditions for the existence of weighted robust H1 disturbance attenuation level c for the
considered system are derived from LMIs. Besides, a 2D output feedback controller is designed to solve
the robust H1 control problem. Finally, an example is also given to illustrate the applicability of the
proposed results. The future work will be associated with the following directions: 1) stability analysis
and stabilization for nonlinear continuous-time descriptor semi-Markov jump systems; and 2) finite-time
stabilization for nonlinear discrete-time singular Markov jump systems with piecewise-constant transition
probabilities subjected to average dwell time.

Data Availability: The authors declare that they have no conflicts of interest to report regarding the present
study.

Figure 4: Response of state xv k; lð Þ

Figure 5: Switching signal
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