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Abstract: Recent applications of convolutional neural networks (CNNs) in single
image super-resolution (SISR) have achieved unprecedented performance. How-
ever, existing CNN-based SISR network structure design consider mostly only
channel or spatial information, and cannot make full use of both channel and spa-
tial information to improve SISR performance further. The present work addresses
this problem by proposing a mixed attention densely residual network architecture
that can make full and simultaneous use of both channel and spatial information.
Specifically, we propose a residual in dense network structure composed of dense
connections between multiple dense residual groups to form a very deep network.
This structure allows each dense residual group to apply a local residual skip con-
nection and enables the cascading of multiple residual blocks to reuse previous
features. A mixed attention module is inserted into each dense residual group,
to enable the algorithm to fuse channel attention with laplacian spatial attention
effectively, and thereby more adaptively focus on valuable feature learning.
The qualitative and quantitative results of extensive experiments have demon-
strate that the proposed method has a comparable performance with other state-
of-the-art methods.

Keywords: Channel attention; Laplacian spatial attention; residual in dense;mixed
attention

1 Introduction

Single image super-resolution (SISR) is a low-level computer vision task that involves reconstructing
accurate high-resolution (HR) images from their low-resolution (LR) counterpart [1]. This task has been
widely used in numerous computer vision applications, such as video surveillance [2,3], medical imaging
[4], and satellite remote-sensing [5]. However, despite the extensive activity in this field, the task remains
highly challenging because LR images have a one-to-many relationship with their resulting HR images.
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Early SISR research focused on prediction-based [6], patch-based [7], and learning-based [8,9] SISR
methods. However, these methods suffer from two major problems: (1) they are optimized slowly with
poor optimization performance; (2) most of them rely on the feature prior to the image, and the quality of
the restored SR image is generally poor once the prior features are biased.

These issues have been addressed by the recent development of deep learning technology, which has
achieved unprecedented success with SISR and other visualization tasks. Convolutional neural networks
(CNNs) have a strong learning ability and the advantage of end-to-end training optimization. This strong
learning capability is particularly valuable for SISR applications because LR images are almost
completely composed of low-frequency information, and the SISR task can be regarded in general as a
process of learning the high-frequency information lost in the original LR image. Dong et al. [8]
proposed the super-resolution (SR) CNN (SRCNN) model, which was the first development of CNN-
based SISR technology. The model employed a simple CNN with three convolutional layers and
achieved a level of SISR performance surpassing all conventional SISR methods at that time. Then, Kim
et al. [10] proposed very deep SR (VDSR) with a 20-layer residual structure and a recursive structure
composed of a 20-layer deeply-recursive convolutional network (DRCN) [11], which greatly decreased
the difficulty of training a deep model, and achieved better SISR performance than previous methods.
Later, Tai et al. [12] proposed a very deep 52-layer deep recursive residual network (DRRN) structure,
which repeated recursive blocks consisting of multiple residual units to increase the depth and reduce the
number of training parameters. In addition, multi-path structures were used in the recursive blocks to
reduce problems associated with gradient explosion and gradient disappearance, which increased training
efficiency and achieved leading SISR performance. Later studies [13–16] achieved remarkable SISR
performance by applying a generative adversarial network (GAN) proposed by Goodfellow et al. [17].
Comparable performance was achieved by Tai et al. [18], using the proposed MemNet, which is a
network composed of multiple recursive persistent memory blocks. Although these models have achieved
significantly improved SISR performance, they interpolate the LR input to the required size, which
introduces artifacts into the output SR image, and suffer from high computational cost that greatly
increases the time required for model training and testing.

Numerous efforts have focused on developing network models that can be more rapidly trained and
tested. For example, Dong et al. [9], proposed a fast version of the original SRCNN model denoted as
FSRCNN, which addressed slow model training and testing by applying post-up sampling, and further
zooming and expanding the channel to make the model flops closer to real time. Lim et al. [19] achieved
significant performance improvements by proposing enhanced deep SR (EDSR) and multi-scale deep SR
(MDSR) technology, which removes unnecessary batch normalization (BN) layers in the residual
structure because they are not required for SISR tasks. Zhang et al. [20] proposed a residual dense
network (RDN) structure based on DenseNet [21], which learned the features of all previous layers via
densely grouped connections (DGCs), and further introduced the residual long-skip connection (LSC) and
the short-skip connection (SSC) to reduce training difficulties.

Recent work has demonstrated that applying an attention mechanism provides enhanced SISR
performance. Here, the attention mechanism for humans can be regarded as the ability to focus on the
most important and valuable information from a much larger set of information. The attention mechanism
was first applied to natural language processing [22,23], and some recent studies have introduced it into
the field of computer vision, such as image classification [24], and object detection [25]. Use of the
attention mechanism can be very helpful in SISR tasks because it enables information to be treated
selectively, resulting in greatly reduced computational cost and effective SISR performance improvement.
For example, Zhang et al. [26] achieved surpassing SISR performance by proposing a 400-layer residual
channel attention network (RCAN) model based on channel-wise attention [24], which improved SISR
performance by modeling the relationship between channels. Channel-wise attention was later improved

134 CSSE, 2021, vol.39, no.1



by Anwar et al. [27] in SENet [24]. This work further proposed Laplacian spatial attention (LSA), densely
connected residuals blocks (RBs), and cascading residuals, which achieved improved SISR performance.
However, the use of densely connected RBs dramatically increased the computational cost. Liu et al. [28]
proposed a non-local recurrent network (NLRN) structure, which introduced non-local modules into a
recurrent network to improve the SISR performance through spatial attention (SA). Efforts to improve the
human visual system (HVS) performance of SISR have introduced models based on the GAN, including
the SRGAN [14] model and the enhanced SRGAN (ESRGAN) [13] model. Although both of these
models improve the perceptual quality of the image, the generated SR image is too bright.

Although many existing CNN-based SISR methods have achieved state-of-the-art performance, they also
suffer from some problems. First, most models improve SISR performance by stacking multiple convolutional
layers. In particular, ResNet [29] and DenseNet [21] are widely used in SISR methods [10,13,14,18–20,26–
28,30–33] and image retrieval [34] to build very deep networks. However, simply stacking convolution
layers to form deep network models cannot guarantee high SISR performance [26]. Other studies have
demonstrated that a relatively deep network can be constructed by stacking several RBs connected by LSCs
[19,20]. However, while this has been shown to achieve better performance in image recognition tasks, its
application in the SISR task often causes the gradient to disappear or explode during the training process
and fails to obtain better performance. Moreover, whether increasing the network depth can further improve
SISR performance remains to be verified, and the optimum means of designing deeper models are still
unclear. By contrast, while some models consider the relative dependencies between features or channels
[26,33], most existing models do not [8–14,18–20,30–32,35–37]. Therefore, the means of extracting the
most useful features and enhancing the discriminative learning ability of SISR models as much as possible
under their limited capacities remains underdeveloped. In addition, most methods that apply the attention
mechanism treat channels equally, while some models use either CA or SA and rarely combine both
attention models, which reduces the discriminative learning ability of the model. Although Hu et al. [38]
proposed SISR models based on both SA and CA, the attention models were inefficient.

The above discussed issues are addressed in the present work by proposing a mixed attention dense
residual network (MADRN) to obtain a deep and powerful network for better feature correlation learning,
which is a key component of the learning process. Specifically, we propose a mixed attention (MA)
mechanism that effectively integrates LSA and CA to learn the most useful features adaptively, and thereby
further improve the discriminative learning ability of the model. Additionally, the difficulty of training deep
networks is decreased by applying a residual in dense (RID) structure, which is a basic unit for building a
deep model with dense residual groups (DRGs). The use of DRGs addresses the gradient disappearance and
explosion problems associated with stacking several RBs connected by LSCs to form a deep network. The
RID structure not only can effectively promote feature reuse but can also avoid redundant feature learning
and the transmission of low-frequency information through the network backbone to enable effective
learning of the lost high-frequency information in LR images. The qualitative and quantitative results of
extensive experiments demonstrate that the proposed method has a comparable performance with other
state-of-the-art methods and can achieve superior visual quality, as demonstrated by Fig. 1.

2 Mixed Attention Densely Residual Network (MADRN)

2.1 Network Architecture

As shown in Fig. 2, the proposed MADRN architecture can be divided into four components: shallow
feature extraction, RID structure for deep feature extraction, upscaling module and reconstruction module. It
is assumed that the LR input and the SR output of the MADRN are represented by ILR and ISR, respectively,
and Conv represents a convolutional layer. A shallow feature F0 is extracted from the LR input using only a
single Conv layer as follows [20,37]:
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F0 ¼ HConv ðILRÞ; (1)

where HConv (·) denotes the function that extracts the shallow feature from ILR. Then F0 is fed into the RID
structure and forwarded to the front of the upscaling module by an LSC for the upscaling operation. In
addition, a deep feature is extracted from F0 as follows:

FN ¼ HRID ðF0Þ; (2)

Figure 1: Visual comparison. “img_046” from Urban100 and “Yumeiro Cooking” from
Manga109 respectively perform visual results of 4× SR. Comparing other state-of-the-art methods, our
method achieves better visual quality and restores more realistic image details

Figure 2: The frame of mixed attention densely residual network (MADRN)
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where HRID(·) denotes the function that extracts the deep feature based on a very deep RID structure. To the
best of our knowledge, HRID (·) is a novel function for use in SISR and has a very wide receptive domain
Then, the low-frequency information in F0 is added to FN through an LSC, and thereby bypasses
transmission through the network. Next, the upscaled feature FUP is obtained by fusing and scaling the
shallow and deep features in the upscaling module as follows:

FUP ¼ HUPðF0 þ FN Þ; (3)

where HUP (·) represents the function of the upscaling module.

Several options exist for implementing the upscaling module, such as the transposed convolution layer
(also known as a deconvolution layer) [39], nearest-neighbor interpolation with convolution [40] and a sub-
pixel convolution layer [41]. These types of post-upsampling methods consume less memory and provide a
faster running speed, and better upsampling performance than pre-upsampling methods [8,11,12,42], while
pre-upsampling methods often introduce more effect, such as noise and blurring [43]. Thus, we apply a sub-
pixel convolution layer for the upscaling module, and then obtain the final reconstructed output ISR through a
convolution layer as follows:

ISR ¼ HRECON ðFUPÞ ¼ HRECON ðILRÞ; (4)

where HRECON (·) and HMADRN (·) represent functions of the reconstruction module and the entire MADRN
structure, respectively.

A number of loss functions have been applied for optimizing SISR models, including the commonly
employed L1 loss function [13,18,20,26,31,44,45], L2 loss function [8–11,35,46], and perceptual [36]
and adversarial [13,14] losses. The validity of the proposed MADRN model can be best demonstrated by
employing a common loss function. Therefore, we apply the L1 loss function in the present study. Given
a training set comprising N LR images and their corresponding HR images, denoted fI iLR; I iHRgNi¼1ð Þ, the
training optimization goal of the MADRN model is to minimize the following L1 loss:

L hð Þ ¼ 1

N

XN

i¼1

HMADRN I iLR
� �� I iHR

�� ���� ��
1
; (5)

where h represents the parameters of the MADRN model, which are optimized in the present study using the
stochastic gradient descent (SGD) method. Additional details regarding the training process are discussed in
Subsection 3.1 after the proposed RID and MA structures have been presented.

2.2 Residual in Dense (RID) Structure

The very deep RID structure is composed of N DRGs and an MA module with connections made by
DGCs. Each DRG includes a stack of b RBs with a local residual skip connection (LRSC) between each
block, and an MA module used to mine the dependency among features. This structure enabled the
proposed network to exceed four hundred layers and achieve better performance SISR performance.

The output Fg of the g-th DRG can be expressed as:

Fg ¼ HgðFg�1Þ ¼ HgðHg�1ð� � �H1ðF0Þ � � �ÞÞ; (6)

where Hg (·) represents the function of the g-th DRG, and Fg−1 denotes its input. The use of DGCs in the
residual groups to achieve a stable training effect and better SISR performance can be expressed as:

Fg ¼ HgðF0; � � � ;Fg�1;Fg;rÞ ¼ Hc;gðF0; � � � ;Fg�1;Fg;rÞ; (7)
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where Fg,r denotes the output of the local deep features of the g-th DRG, Hc,g(·) denotes the function of the
DGC in the g-th DRG, which cascades the output of all previous DRGs and follows a Conv 1 × 1 bottleneck
layer to reduce the dimension to that of Fg-1.

The output Fg,b of the b-th RB in the g-th DRG can be represented as:

Fg;b ¼ Hg;b ðFg;b � 1Þ ¼ Hg;b ðHg;b�1 ð� � � Hg; 1 ðFg�1ÞÞÞ; (8)

where Hg, b(·) denotes the function of the b-th RB in the g-th DRG, which consists of two Conv layers
sandwiching a rectified linear unit (ReLU) layer [47], and Fg,b−1 is its input. The use of LRSCs in each
DRG to make the proposed model more focused on learning useful information can be expressed in
terms of the output feature map Fg,m as follows.

Fg;m ¼ Hg;m ðFg�1Þ þ c � Fg�1 ; (9)

Fg ¼ HgðF0; � � � ;Fg�1;Hg;mðFg�1Þ þ c � Fg�1Þ;
Here, Hg, r (·) represents the function of the g-th DRG for learning high-frequency information, and c is

the corresponding residual scale factor.

2.3 Mixed Attention

AnMAmodule is embedded in the output of the last RB of each DRG to make the proposed model more
discriminative for each feature by adaptively adjusting the weight of each feature. The proposed MA module
is illustrated in Fig. 3. First, we propose a new mixed CA and LSA mechanism, and then implemented a
channel and spatial information fusion mechanism via an element-wise product. Assuming that Fg,b, and
Fg,m are the respective input and output feature maps of the MA module pertaining to the g-th DRG, the
output feature map Fg,m is obtained as

Fg;m ¼ Hg;ma ðFg;bÞ; (10)

where Hg,ma (·) represents the function corresponding to the CA, LSA and Fused Mechanism functions.
Details regarding the specific implementation of these three functions are presented as follows.

Channel Attention (CA). In the present work, the output Fg,mca of the CA module in the g-th DRG can
be expressed as follows [24]:

Fg;mca ¼ rðWUdðWDHGCPðFg;bÞÞÞ; (11)

where Fg,b is its corresponding input, HGCP(·) is the corresponding global pooling function, which is used to
collect channel statistics of the entire image. σ(·) and δ(·), respectively, represent the sigmoid gating function

Figure 3: Mixed attention
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and the RELU function [47], and WD and WU are weights that respectively, represent channel-downscaling
and channel-upscaling convolutional layers.

Laplacian Spatial Attention (LSA). The features in each feature map are relatively important, but most
existing SISR methods treat the features in each feature map equally. The present study proposes an LSA
mechanism to mechanism to exploit the potential relationships between features in SR images, and
thereby create a more accurate representation of the visual experience. The proposed LSA differs
substantially from the LSA proposed in previous studies [27,30]. Here, we use the convolutional layers of
three different kernel dilations to estimate the relative importance of each feature. The output feature map
Fg,msa of the LSA module in the g-th DRG can be expressed as follows.

Fg;msa3 ¼ d ðHD3 ðFg;bÞÞ
Fg;msa5 ¼ d ðHD5 ðFg;bÞÞ;
Fg;msa7 ¼ d ðHD7 ðFg;bÞÞ

(12)

Here, Fg,b is the corresponding input, and HD3(·), HD5(·), and HD7(·) denote Conv 3 × 3 operations with
dilation factors 1, 2 and 3, respectively. The resulting three different levels of features Fg,msa3, Fg,msa5, and
Fg,msa7, are concatenated as follows.

Fg;msc ¼ ½Fg;msa3; Fg;msa5; Fg;msa7�; (13)

Then, we apply a Conv layer and δ(·) to further adjust the relative importance of the features and obtain
an output feature map Fg,msa with the same size as Fg,b:

Fg;msa ¼ d ðHg;msd ðFg;mscÞÞ; (14)

where Fg,msc is the corresponding input, and Hg,msd (·) is the function of the Conv Layer.

Fused Mechanism. The proposed CA and LSA modules, respectively, explore the relationship between
different channels and features within each channel. Consequently, we take advantage of both attention
mechanisms by applying the element-wise product, denoted as �, to integrate Channel the Fg,mca and
Fg,msa feature maps as follows.

Fg;m ¼ Fg;mca � Fg;msa; (15)

2.4 Implementation Details

Now we will introduce the implementation details of MADRN. We set the number N of DRGs in the
RID structure of the MADRN model equal to 21, where each DRG has b = 10 RB blocks. In addition,
we apply a Conv 3 × 3 layer with dilation factors of 1, 2, and 3 in the LSA module and a Conv 1 × 1
layer for channel downscaling and channel upscaling in the CA module, while the kernel size of all other
Conv layers without special description is only 3 × 3. Except for Conv 1 × 1 layers, other convolution
layers apply zero padding to ensure the same input and output size. In addition, with the exception of the
channel-downscaling and bottleneck layers, all convolution kernel number are set as C = 64. In the
bottleneck layer, the Conv filters number increases as the number of DRGs in the MADRN increases.
Additionally, the reduction ratio of the channel-downscaling layer in the MA is set to r = 16. We
followed a previously proposed scheme [20,44] for the upscaling module HUP(·) by applying the sub-
pixel layer in the efficient sub-pixel CNN (ESPCNN) structure [41] for upsampling to obtain the coarse
to fine feature, and finally applied a Conv layer with a filter number of 3 to output the color image. We
stress that the proposed model is also applicable to gray-scale images.
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3 Experiments

3.1 Settings

Following a previously proposed experimental scheme [19,20,31,37], we employed 800 HR images from
the DIV2K dataset [48] as the training dataset and adopted five benchmark datasets: Set5 [46], Set14 [49],
BSD100 [50], Urban100 [51], and Manga109 [52], each with different characteristics as the testing datasets.
The bicubic interpolation (BI) function in MATLAB was employed to obtain corresponding LR images based
on ×2, ×3, and ×4 degradations applied to each image in the testing datasets. All experimental results were
evaluated according to the peak signal to noise ratio (PSNR) and the structural similarity method (SSIM) of
the transformed YCbCr space on the luminance channel. Moreover, we extended the limited training dataset,
to avoid overfitting by randomly rotating the images in the training dataset by 90°, 180°, and 270°, and by
horizontal flipping. We randomly selected 16 LR color image patches with a size of 48 pixels ×48 pixels as
the input of each batch, and optimized our model using the ADAM optimizer with hyperparameters set to
β1 = 0.9, β2 = 0.99, and E = 10–8. The learning rate was initialized to 10–4, and training was conducted for
1000 epochs, with the learning rate reduced by half after every 200 epochs. We implemented the proposed
MADRN model on Pytorch 1.0 and conducted training on the Nvidia Tesla V100 GPU.

3.2 Model Analysis

We investigated the effects of the proposed RID structure andMAmechanism on the SISR performance of
the MADRN model. This was conducted by constructing a baseline (Lbase) model, composed of only
21 cascaded DRGs, and each DRG is composed of 10 cascaded RBs to form a very deep model with more
than 400 layers. In particular, the Lbase model includes only LRSCs between the RBs and applies none
between the other RBs and the DRGs. In addition, we constructed similar models with the LSC module
(the LLSC model), the RID structure (the LRID model), and both the LSC module and RID structure (the
LLSC+RID model). We also included the MA module within the Lbase model and the LLSC+RID model to
obtain the Lbase+MA and LLSC+RID+MA models, respectively. It is noted from Tab. 1 that the Lbase model
obtains a relatively low PSNR value of 37.77 dB for the Set5 dataset with ×2. degradation. However, the
PSNR values obtained by the LLSC and LRID models increased to 37.94 dB and 37.96 dB, respectively.
These increases can be attributed to the capability of the LLSC model to bypass the transmission of low-
frequency information, while the LRID model is able to learn all previous hierarchical features. We also note
that the LLSC+RID model obtains a higher PSNR value of 38.02 dB, indicating that the combined use of the
LSC and RID structure can effectively build a very deep model, while simply stacking RBs, as is done in
the Lbase model, cannot achieve good SISR performance. We also observe from Tab. 1 that the LLSC+RID+MA

model obtains a PSNR value of 38.03 dB, which is slightly greater than that of the LLSC+RID model. This
indicates that the MA module can improve the performance of the model by adaptively learning the
dependencies between features and combining this information well. However, the Lbase+MA model provides
significantly reduced SISR performance. This is mainly because the Lbase+MA model is composed of simply
stacked very deep convolutional layers on the basic model and cannot employ the LSC module and RID
structure to help propagate information in the previous layer and bypass low-frequency information.
Therefore, we applied the LLSC+RID+MA model in the remainder of the experiments.

Table 1: Effects of various modules

Lbase LLSC LRID LMA LLSC+RID LLSC+RID+MA

Long skip connection (LSC) ✓ ✓ ✓

Residual in dense (RID) ✓ ✓ ✓

Mixed attention (MA) ✓ ✓

PSNR (dB) 37.77 37.94 37.96 35.78 38.02 38.03

We give the best PSNR value on Set5 (2×) in 100 epochs.
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3.3 Comparison with State-of-the-art SISR Methods

To validate our model, we compared the SISR performance of the MADRN model with that of13 state-
of-the-art methods, including SRCNN [8], FSRCNN [9], VDSR [10], LapSRN [30], SRDenseNet [32],
MemNet [18], EDSR [19], SRMDNF [37], NLRN [28], DBPN [31], RDN [20], RCAN [26] and CARN
[35]. As has been done in previous studies [35,19], we also applied the self-ensemble method to further
improve the performance of our MADRN model and denote this model herein as MADRN+.

PSNR and SSIM Metric Results. The PSNR and SSIM results obtained by the various models
considered are listed in Tab. 2 for the ×2, ×3, and ×4 LR images in the testing datasets. The results
demonstrate that the MADRN+ model provided superior SISR performance compared with all other
methods considered for the ×2, ×3, and ×4 LR images. Other than the MADRN+ model, the SISR
performance of the proposed MADRN model and RCAN [35] is comparable and superior to all other
methods. The main reason is that RCAN [35] uses channel-wise attention in each of the RBs to learn the
interrelationships between channel-wise features, which makes the model more focused on useful
features. However, the proposed MADRN model applied only one MA module in each DRG, whereas a
total of 20 channel-wise attention modules were applied in each DRG in RCAN [35]. Accordingly, the
proposed model is more efficient.

Table 2: Average PSNR/SSIM on five benchmark datasets

Method Scale Set5 Set14 BSD100 Urban100 Manga109

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

Bicubic ×2 33.66/0.9299 30.24/0.8688 29.56/0.8431 26.88/0.8403 30.80/0.9339

SRCNN [8] ×2 36.66/0.9542 32.45/0.9067 31.36/0.8879 29.50/0.8946 35.60/0.9663

FSRCNN [9] ×2 37.05/0.9558 32.66/0.9088 31.53/0.8920 29.88/0.9020 36.67/0.9710

VDSR [10] ×2 37.53/0.9587 33.03/0.9124 31.90/0.8960 30.76/0.9140 37.22/0.9750

LapSRN [30] ×2 37.52/0.9591 33.08/0.9130 31.08/0.8950 30.41/0.9101 37.27/0.9740

MemNet [18] ×2 37.78/0.9597 33.28/0.9142 32.08/0.8978 31.31/0.9195 37.72/0.9740

EDSR [19] ×2 38.11/0.9602 33.92/0.9195 32.32/0.9013 32.93/0.9351 39.10/0.9773

SRMDNF [37] ×2 37.79/0.9601 32.32/0.9159 32.05/0.8985 31.33/0.9204 38.07/0.9761

NLRN [28] ×2 38.00/0.9603 33.46/0.9159 32.19/0.8992 31.81/0.9246 –/–

DBPN [31] ×2 38.09/0.9600 33.85/0.9190 32.27/0.9000 32.55/0.9324 38.89/0.9975

RDN [20] ×2 38.24/0.9614 34.01/0.9212 32.34/0.9017 32.89/0.9353 39.18/0.9780

RCAN [26] ×2 38.27/0.9614 34.11/0.9216 32.41/0.9026 33.34/0.9384 39.43/0.9786

CARN [35] ×2 37.76/0.9590 33.52/0.9166 32.09/0.8978 31.92/0.9256 38.36/0.9765

MADRN (ours) ×2 38.28/0.9615 34.04/0.9206 32.38/0.9018 33.12/0.9365 39.39/0.9781

MADRN+(ours) ×2 38.33/0.9616 34.19/0.9214 32.42/0.9023 33.35/0.9376 39.55/0.9787

Bicubic ×3 30.39/0.8682 27.55/0.7742 27.21/0.7385 24.66/0.7349 26.95/0.8556

SRCNN [8] ×3 32.75/0.9090 29.30/0.8215 28.41/0.7863 26.24/0.7989 30.48/0.9117

FSRCNN [9] ×3 33.18/0.9140 29.37/0.8240 28.53/0.7910 26.43/0.8080 31.10/0.9210

VDSR [10] ×3 33.66/0.9213 29.77/0.8314 28.82/0.7976 27.14/0.8279 32.01/0.9340

LapSRN [30] ×3 33.81/0.9220 29.79/0.8325 28.82/0.7980 27.07/0.8275 32.21/0.9350

MemNet [18] ×3 34.09/0.9248 30.01/0.8350 28.96/0.8001 27.56/0.8376 32.51/0.9369
(Continued)
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Qualitative Results. We further illustrated the advantages of the proposed MADRN model by
comparing the visual results obtained by the various methods for the Manga100 dataset with ×4 LR
images. The results shown in Fig. 4 indicate that most of the obtained SR images have not been
accurately reconstructed and suffer severe blurring artifacts and somewhat ambiguous lines, whereas only
the DBPN [31], RCAN [26], and the MADRN model recover sharp results that are close to the ground-
truth SR images. This is particularly evident for “img_092” in the Urban datasets, which includes rich
textural details. Here, most of the methods considered produce serious blur artifacts, and, even worse, the
SR image results obtained by some of the older methods (i.e., SRCNN [8], FSRCNN [9], and LapSRN
[30]) exhibit serious loss of image information. These issues are further illustrated by the results obtained
for the “EverydayOsakanaChan” image in the Manga109 dataset. Here, the image includes a variety of
structural information, and the SR images produced by most of the older methods suffer from very

Table 2 (continued).

Method Scale Set5 Set14 BSD100 Urban100 Manga109

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

EDSR [19] ×3 34.65/0.9280 30.52/0.8462 29.25/0.8093 28.80/0.8653 34.17/0.9476

SRMDNF [37] ×3 34.12/0.9254 30.04/0.8382 28.97/0.8025 27.57/0.8398 33.00/0.9403

NLRN [28] ×3 34.27/0.9266 30.16/0.8374 29.06/0.8026 27.93/0.8453 –/–

RDN [20] ×3 34.71/0.9296 30.57/0.8468 29.26/0.8093 28.80/0.8653 34.13/0.9484

RCAN [26] ×3 34.74/0.9299 30.64/0.8481 29.32/0.8111 29.08/0.8702 34.43/0.9498

CARN [35] ×3 34.29/0.9255 30.29/0.8407 29.06/0.8034 28.06/0.8493 33.50/0.9440

MADRN (ours) ×3 34.73/0.9297 30.66/0.8483 29.30/0.8106 28.97/0.8694 34.47/0.9501

MADRN+(ours) ×3 34.82/0.9300 30.77/0.8498 29.36/0.8114 29.21/0.8716 34.76/0.9513

Bicubic ×4 28.42/0.8104 26.00/0.7027 25.96/0.6675 23.14/0.6577 24.89/0.7866

SRCNN [8] ×4 30.48/0.8628 27.50/0.7513 26.90/0.7101 24.52/0.7221 27.58/0.8555

FSRCNN [9] ×4 30.72/0.8660 27.61/0.7550 26.98/0.7150 24.62/0.7280 27.90/0.8610

VDSR [10] ×4 31.35/0.8838 28.01/0.7674 27.29/0.7251 25.18/0.7524 28.83/0.8870

LapSRN [30] ×4 31.54/0.8852 28.09/0.7700 27.32/0.7275 25.21/0.7562 29.09/0.8900

SRDenseNet [32] ×4 32.02/0.8934 28.50/0.7782 27.53/0.7337 26.05/0.7819 –/–

MemNet [8] ×4 31.74/0.8893 28.26/0.7723 27.40/0.7281 25.50/0.7630 29.42/0.8942

EDSR [19] ×4 32.46/0.8968 28.80/0.7876 27.71/0.7420 26.64/0.8033 31.02/0.9148

SRMDNF [37] ×4 31.96/0.8925 28.35/0.7787 27.49/0.7337 25.68/0.7731 30.09/0.9024

NLRN [28] ×4 31.92/0.8916 28.36/0.7745 27.48/0.7346 25.79/0.7729 –/–

DBPN [31] ×4 32.47/0.8980 28.82/0.7860 27.72/0.7400 26.38/0.7946 30.91/0.9137

RDN [20] ×4 32.47/0.8990 28.81/0.7871 27.72/0.7419 26.61/0.8028 31.00/0.9151

RCAN [26] ×4 32.62/0.9001 28.86/0.7888 27.76/0.7435 26.82/0.8087 31.21/0.9172

CARN [35] ×4 32.13/0.8937 28.60/0.7806 27.57/0.7349 26.07/0.7837 30.47/0.9084

MADRN (ours) ×4 32.57/0.8996 28.84/0.7811 27.78/0.7436 26.73/0.8058 31.25/0.9184

MADRN+(ours) ×4 32.71/0.9011 28.96/0.7892 27.84/0.7448 26.98/0.8119 31.73/0.9216

The best and the second best results are highlighted and underlined respectively.
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serious loss of structural information. Accordingly, these methods can only recover some of the main contour
structures, and the finer textural information is affected by blur artifacts.

Figure 4: Visual comparison of our MADRN with other SR methods on the Urban100 dataset and the
Manga100 datasets for 4×SR
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4 Conclusions

The present work proposed the MADRN architecture to obtain a deep and powerful network for better
feature correlation learning in SISR applications. Specifically, we effectively integrated LSA and CA
modules into an MA mechanism to learn the most useful features adaptively, and thereby further improve
the discriminative learning ability of the model. Additionally, we applied an RID structure with DRGs to
reduce the difficulty of training deep networks. The RID structure not only promotes feature reuse but
can also avoid redundant feature learning and the transmission of low-frequency information through the
network backbone to enable effective learning of the lost high-frequency information in LR images. The
qualitative and quantitative results of extensive experiments demonstrated that the proposed method has a
comparable performance with other state-of-the-art methods and can achieve superior visual quality.
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