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Abstract: The subtitle recognition under multimodal data fusion in this paper
aims to recognize text lines from image and audio data. Most existing multimodal
fusion methods tend to be associated with pre-fusion as well as post-fusion, which
is not reasonable and difficult to interpret. We believe that fusing images and
audio before the decision layer, i.e., intermediate fusion, to take advantage of
the complementary multimodal data, will benefit text line recognition. To this
end, we propose: (i) a novel cyclic autoencoder based on convolutional neural
network. The feature dimensions of the two modal data are aligned under the pre-
mise of stabilizing the compressed image features, thus the high-dimensional fea-
tures of different modal data are fused at the shallow level of the model. (ii) A
residual attention mechanism that helps us improve the performance of the recog-
nition. Regions of interest in the image are enhanced and regions of disinterest are
weakened, thus we can extract the features of the text regions without further
increasing the depth of the model (iii) a fully convolutional network for video
subtitle recognition. We choose DenseNet-121 as the backbone network for fea-
ture extraction, which effectively enabling the recognition of video subtitles in
complex backgrounds. The experiments are performed on our custom datasets,
and the automatic and manual evaluation results show that our method reaches
the state-of-the-art.

Keywords: Deep learning; convolutional neural network; multimodal; text
recognition

1 Introduction

Nowadays, with the rise of short video in social networks, the scale of video resources has greatly
increased, even beyond the scale of image data. As a kind of data that combines audio and image
modalities, the video contains much more information than independent audio and image data, however,
in the face of massive video data, it becomes more difficult to utilize the data of these two modalities.
Video subtitles recognition is different from single-modal text recognition, although both audio sequences
and text sequences contain information about a sentence, the audio is expressed in a time sequence and
the text is expressed in a spatial sequence, and the dimensional sizes of the features expressed by the two
modal data do not match each other.
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There are similarities between the analysis of multimodal data and sentiment analysis [1–3]. Most of the
existing studies on multimodal data for video data are for tasks such as video sentiment analysis, action
recognition [4,5], motion prediction, video categories [6], and task tracking [7]. The above studies have
something in common that the ultimate desired goal is a single classification result without temporal
order characteristics, e.g., the goal of video sentiment analysis studies is to predict the emotional state
conveyed in a video, and the goal of action prediction is to predict the category of action represented by
the content presented in the current video clip. It is clear that the final output of the above study does not
retain the original sequence information in the video, making it impossible to apply the above study
method to video subtitle recognition.

Existing researches on video subtitles recognition only study the two types of data separately or uses the
methods in the fields of optical character recognition (OCR) and speech recognition (ASR) to obtain the two
recognition results, respectively, and perform a simple result analysis and error correction. The above-
mentioned methods are not able to fully utilize multimodal data, resulting in a waste of resources. Thus,
the task of studying multimodal fusion is of great practical importance.

In this paper, inspired by some articles on relationship extraction [8], complex context processing [9] and
attention mechanisms [10], we will present an efficient fully convolutional network for video subtitle
recognition. The cyclic autoencoder improves the performance of the model for image feature
compression and solves the problem of image feature extraction. The multimodal fusion module takes full
advantage of the complementary nature of the two modal data and preserves the temporal characteristics
of the data. CTC (Connectionist Temporal Classification) [11] translates the output of the fully connected
layer into labels.

Besides, to enhance feature extraction of audio and images, our backbone network uses a densely
connected convolutional network with attentional mechanism. We evaluate our approach to custom
datasets. It is observed that our method achieves promising performance. The main contributions are
summarized as follows:

A residual attention module is introduced into the image feature extraction module, and the softening
mask branch in the residual attention module is divided into positive and negative directions. The shallow
features are analyzed through the encoder-decoder structure, which enhances the features of the image
text and suppresses the interference of non-textual targets, enabling the model to extract text features
more accurately.

Cyclic autoencoder based on a convolutional neural network is introduced, which enables the model to
compress the image size without losing any feature information while ensuring that the compressed features
still have temporal features.

Replacing recurrent neural networks with fully convolutional networks for sequence-to-sequence text
line recognition of fused data, achieving good performance while solving the drawbacks of recurrent
neural networks.

2 Related Work

2.1 Text Line Recognition

Before 2015, all text line recognition methods were equivalent to character recognition methods due to
the lack of a good label alignment method for sequence-to-sequence recognition tasks. In 2013, Bissacco
et al. [12] proposed a text line recognition model, PhotoOCR, to combine and recognize the text in an
image by an over-segmentation method that The over-segmentation method slices the text lines into
multiple character structures, and the fragments are combined and recognized by a Beam Search
algorithm based on dynamic programming to obtain a directed graph containing the probability values of
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various text combinations, and the optimal path is selected as the final text recognition result. This approach
is the first to consider text lines as a whole for recognition, departing from the traditional cut-and-score
solution, and achieves good results on the ICDAR2013 text line recognition dataset.

In 2015, Shi et al. [13] proposed a novel model for image text line sequence recognition called
Convolutional Recurrent Neural Network (CRNN), by combining Deep Convolutional Neural Network
(DCNN) [14], Recurrent Neural Network (RNN) [15] and a label alignment algorithm called
Connectionist Temporal Classification (CTC) allows the model to directly use text sequence labels for
end-to-end learning. By using a DCNN, the feature representation in the image data can be learned
directly without manual feature extraction and pre-processing steps, while by adding an RNN model after
the DCNN model, the model can capture the contextual information implied in the image features to
achieve a more stable text sequence recognition. Besides, thanks to the properties of both structures, the
model only needs to restrict the image height during the training and testing phases and the length of the
input text sequence can be arbitrary.

2.2 Multimodal Learning

The study of multimodal learning began in the 1970s, great breakthroughs have taken place in this field
after deep learning is put forward in the 21st century. Nowadays, there are four main research directions in
multimodal learning: data modal mapping transformation, data modal alignment, multimodal data fusion,
multimodal data collaboration.

In 2018, Audebert et al. [16] proposed a model based on multiscale image semantic segmentation for the
delineation of the street, pavement, and water boundaries for urban overhead views. They set up two different
ways to fuse the city top view with the satellite remote sensing map, pre-fusion, and post-fusion. In this way,
they investigate the performance differences of different fusion methods on the final semantic segmentation
results of the model. The experiments prove that although the performance of the model can be greatly
improved by the pre-fusion method, the model's immunity to noise is not as expected, while the post-
fusion can compensate for the effects of errors and gaps in the data and is robust to noisy data.

2.3 Application of Video Data

The study of multimodal data fusion has received extensive attention from scholars at home and abroad
in recent years. The application of video data is an important scenario for multimodal data fusion research.
Video data often contain implicit modal data such as audio, images, frame sequences, language models,
subtitles, etc., which can be used for sentiment analysis, video categorization, caption recognition, and
other various research tasks. Fukui et al. [17] argued that in a visual quizzing task, the representation
vector of video data with text data is used directly multimodal pooling methods that multiply or add at
the elemental level do not produce sufficient feature expressions to achieve the task goal, so they
proposed a bilinear pooling method for multimodal data, which can combine and express these two
modal features efficiently. And it achieves optimal performance in a visual question-and-answer task in
the Visual7W dataset.

In 2019, Yu et al. [18] proposed a general uniformity attention mechanism for capturing the feature
interaction expression within and between modal. By applying this attentional mechanism to their
multimodal network model further enhances the visual quizzing task's ability to achieve the optimal
performance.

In 2018, on the task of fraud detection in video, Krishnamurthy et al. [19] proposed a multimodal
learning approach based on deep learning. By using different neural network models to extract features
from video, audio, facial expression, and text, respectively, and abstracting the data to one-dimensional
vectors, then representing vectors of different modal features are directly stitched together and input to
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the fully connected network for classification of the results. This method achieves better performance, but the
operation of flattening the features results in a loss of spatial information in the features, which affects results.
This problem was addressed to some extent by Poria et al. [20], who applied multimodal data fusion to video
in sentiment analysis. They eliminated the spreading part of the merged model and instead made the extracted
features have the same size in the channel dimension by pre-set parameters, and then cascaded the individual
features in the channel dimension for stitching and input into the classification. In 2019, Majumder et al. [21]
further optimized their model based on this study. The fusion of the model was divided into multiple levels,
with the three expression level features first entered two by two into the bimodal fusion model, and then the
obtained deep features are further input into the three-modal fusion model to obtain the final fusion features
for sentiment classification. Compared with existing state-of-the-art models, the accuracy of their model
improved by 1 to 2 percentage points.

3 Method

In this section, we first introduce the architecture of the proposed fully convolutional network for video
subtitles recognition. Then, we will describe each component in detail.

3.1 Network Architecture

The overview of our fully convolutional network is illustrated in Fig. 1, composed of a cyclic
autoencoder, multimodal data fusion module, and a CTC (Connectionist Temporal Classification) module.

The formal definition of a caption recognition task based on multimodal data fusion is as follows,
assuming a grayscale input of an image with height H and width W:

Fin image ¼ fpx;y;cjx 2 ½1;W �; y 2 ½1;H �g (1)

An audio input with a duration of T seconds and a sample rate of P is:

Fin audio ¼ fptjt 2 ½1; T � P�g (2)

Figure 1: Network structure of our fully convolutional sequence modeling
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The final output of the model is a sequence of text results:

Fout ¼ fCiji 2 ð0; lÞ; l 2 ½1;T � P�g;Ci 2 D (3)

For preprocessing, the audio is converted to mono and the sampling frequency of the audio is fixed, then
the audio is converted to a spectrum using a sliding window and the Short Time Fourier Transform (STFT) is
computed for the audio. A cyclic autoencoder is introduced in the feature compression section, which enables
the model to compress the original image features non-equally without losing any feature information while
ensuring that the compressed features are still temporally sequential. The features of the multimodal data in
the feature extraction layer are each entered into the cyclic self-encoder to obtain features of equal length, and
then the two features are concatenated on the channel dimension, each column in the sequence is separately
inputted to the full connection layer for classification. We use CTC as the final loss function to obtain
sequence identification results.

3.2 Cyclic Autoencoder

The traditional method of image scaling to compress the image is likely to lead to a large loss of image
information, making image feature extraction difficult [22,23]. The most commonly used feature
compression method today is autoencoder. The autoencoder is a network model for compressing the
feature vector dimensions, which consists of an encoder and a decoder. The input content of the model is
labeled as the true value of the output content, and then through unsupervised learning, the model is
enabled to learn the given Patterns of data hidden in feature vectors to eliminate redundancy and
dimensionality reduction of data features.

Assume that the input image to be compressed is:

Gin ¼ ððg11; g12; � � � g1jÞ; ðg21; g22; � � � g2jÞ; ðgi1; gi2; � � � gijÞÞ (4)

Where i and j represent the length and width of the image. The resulting output is given as:

Gout ¼ ððg11; g12; � � � g1lÞ; ðg21; g22; � � � g2lÞ; ðgk1; gk2; � � � gklÞÞ (5)

Where k, l stands for the length and width of the output image, it should be noted that the length and width
of the output image should be smaller than the input image, and the size of the output image varies with
the input.

The autoencoder is defined formally as follows, assuming the input feature vector is:

x ¼ ðx1; x2; � � � ; xdÞT (6)

Where d is the dimension of the input vector and assumes that the output feature vector is:

h ¼ ðh1; h2; � � � ; heÞT (7)

Where e is the hidden layer feature vector dimension. Our goal is to find a mapping function Ed,e (x)
such that:

h ¼ Ed;eðxÞ; ðd > eÞ (8)

The features of the input vector are preserved as much as possible while the dimension of the output
vector is smaller than the dimension of the input vector.

The ultimate goal is to be able to obtain a mapping function Ed,e (x) of the encoder that projects the input
to the hidden layer and allows the feature vector reconstructed by the mapping function De;dðhÞ of the
decoder to differ as little as possible from the input so that the hidden layer features learn as much as
possible about the pattern of the input features.
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x ¼ Dd;eðEd;eðxÞÞ (9)

As shown in Fig. 2 (left), the autoencoder is able to compress the dimensions of the feature vector well,
however, the model has several shortcomings: (i). The autoencoder's intermediate hidden layer must have
fewer feature vectors than the dimensions of the input features, as the autoencoder will only copy the
original data. (ii) The feature vectors learned by the autoencoder do not necessarily preserve the spatial
structural properties of the input feature vectors, due to the structural nature of fully connected neural
networks that result in connections between network layers that are not locally sensitive. As shown in
Fig. 2 (right), autoencoder based on convolutional neural network with local connections using
convolutional operation both reduce the model training parameters and ensure that the compressed feature
vector continues to maintain its original temporal characteristics, which is a good solution to the second
shortcoming of the autoencoder. However, the first defect is still not solved, and the compression ratio of
the feature vector is still insufficient, making it impossible for the two modal data to be aligned.

To address the above existing problems, this paper proposes a cyclic autoencoder based on
convolutional neural network. Our model learns patterns from the input data, records the pattern features
from the previous round of training, and applies them to the next round of training, enabling the model to
learn information that was missed in the previous round, thus allowing the two modalities of data to be
aligned separately in terms of feature dimensions. Our cyclic autoencoder also improves the performance
of image feature compression, making the model more flexible and adaptable.

The form of the model is defined below:

Our cyclic autoencoder is shown in Fig. 3. The model consists of two parts, the encoder consists of two
dense blocks and a convolutional layer with a stride 1x2. The size of the convolution kernel in both
convolutional layers is 3 × 3. The stride of the convolutional operation is set to 2. The formula for
calculating the output size of a convolutional operation is as follows.

Sout ¼ Sin � f þ 2p

s

� �
þ 1 (10)

Where sin and sout represent the size of the input and output of the convolution operation, respectively, f is the
size of the convolution kernel, p is the number of edge padding, s is the stride.

The output size of each network layer is half of the input size, which makes the network layer in a way
that produces a pooling effect of It also does not ignore any information in the input features. Also, our
encoder that uses convolution operation with a stride of 2 has a smaller computation than a conventional

Figure 2: Model structure of autoencoder (left) and autoencoder based on convolutional neural network (right)
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encoder. The length and width of the feature map obtained from the encoder part are 1/4 of the original input
image, which means that the compression ratio of the image can reach 1:16.

Moreover, the number of convolutional kernels in each convolutional layer is the sum of the number of
convolutional kernels in the current round and the number of convolutional kernels in the previous round.
That is, assuming that the preset number of convolutional kernels in a single round is k when in the i-th
round of training, then the number of convolutional kernels in the current convolutional layer is i*k.
However, not all of the convolutional kernel parameters need to be trained, because training in the
previous i-1 rounds yielded the convolutional kernel parameters are already sufficient to express part of
the image pattern information. Thus there are only k convolutional kernels that can be modified in the
i-th round of training. To be able to stop the training at the appropriate time, we set a termination
condition for the model's training. Training is stopped when the accuracy of the model in the validation
set reaches 98% or more.

Since our ultimate goal is to be able to stably compress the features of the image without the need to restore
the compressed data, after training, only the parameters of the convolution kernel of the encoder will be left and
merged into the subsequent modules, and the parameters of the decoder will simply be discarded.

We expand the cyclic autoencoder by timeline, as shown in Fig. 4. Each dashed box represents a complete
cyclic autoencoder structure, and the light blue rectangles in the dashed boxes represent the input and output.
Since the compression performance of autoencoder is judged by whether the model's output can be kept in line
with the input, therefore the true value image used in training the model should be the input image. From left to
right, the number of training rounds increases, the connecting line between the two dashed boxes represents the
concatenating of the parameters of the convolutional layer and sets this part of the convolutional kernel to not
train. Training is stopped when it reaches the number of rounds of the pre-training setup or the termination
condition we set. The advantage of cyclic training is the ability to increase the channel dimension of the
intermediate feature vector while ensuring that the available intermediate vector dimension is less than the
input dimension of the vector dimension of the feature.

3.3 Bi-direction Residual Attention Module

He et al. [24] proposed a network structure called residual module to improve the training method of the
network and solve the degradation problem. First of all, assuming that there is a neural network with fewer
layers that have reached the saturation accuracy, then adding multiple identity mapping layers (identity
mapping, i.e., y = x) after it will not affect the accuracy. In this way, while increasing the number of
network layers, at least it will not reduce the accuracy. The important inspiration of the residual module
comes from the idea of using the identity mapping to directly pass the output of the previous layer to the
back layer. The structure of the residual module is in Fig. 5:

Figure 3: Cyclic autoencoder network diagram
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Assuming that the current layer input of the neural network is x, and the expected output is, according to
the above, when the accuracy rate is close to saturation, the current learning goal will be converted into an
identity map, so that the degradation problem will not lead to accuracy decline. According to the structure
diagram of the residual module in Fig. 5, we directly take the input x as the initial value of the output and
define the final output value as. It can be found that when, the entire map is transformed into an identity map.
Using this method to define the output value of the network layer, the learning goal of the network layer will
be converted into the difference between the target value and the input, which is also the origin of the term
residual. At this time, the training goal of the network becomes to make close to 0. The proposed residual
module effectively solves the degradation problem caused by too many network layers and brings the
possibility of training ultra-deep networks with large network depth.

To enable the text detection model to have a certain sensitivity to the target semantic information in the
shallow features of the feature extractor. We introduce a new attention mechanism to strengthen the regions
of interest in the image and weaken the regions of non-interest so that we can improve the performance of the
model in extracting the features of the text area without further increasing the depth of the model. BRAM
adds two new soft mask branches based on the original image feature forward branch: forward soft mask
branch and negative soft mask branch. Assuming that the attention mechanism module is in the two
neural network layers, x represents the feature input of the previous network layer, Hi;cðxÞ represents the
mapping relationship between the two network layers corresponding to the attention mechanism module,
Fi;cðxÞ represents the mapping relationship between the backbone branches, PAi;cðxÞ and NAi;cðxÞ
respectively represents positive and negative bidirectional soft mask branch, the definition of the attention
mechanism module is as follows:

+
+ ...

......

...

...

1st 2nd N-th

Figure 4: The unrolled diagram of our cyclic autoencoder by time line

Figure 5: The Structure of Residual Module
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Hi;cðxÞ ¼ Fi;cðxÞ þ PAi;cðxÞ � Fi;cðxÞ � NAi;cðxÞ � Fi;cðxÞ (11)

Where i is the product of the height and width of the input feature, representing the spatial coordinate value in
the specified input feature. c represents the channel position in the input feature.

The bidirectional residual attention module is usually added in the middle of two adjacent convolutional
neural network layers. Namely, the feature input received by the module and the feature output provided by
the module should have the same size in the length and width dimensions.

The structure of the module is shown in Fig. 6. The yellow dotted box is the overall structure of the two-
way residual attention mechanism. The module has three branches in total: the main branch, the forward soft
mask branch, and the negative soft mask branch. The main branch can be simplified as a basic residual
convolution block, which contains t layers of residual convolution units. Without considering the
influence of the two soft mask branches, the module can directly implement the most common image
feature extraction function. The two soft mask branches are roughly the same in structure and are
composed of an encoder-decoder based on the residual block. The difference is that the mask results
obtained by the two branches respectively enhance and suppress the feature maps in the main branch,
which makes the representation of the feature map clearer.

This module contains two hyperparameters that can be selected and set, p represents the number of
residual blocks that serve as a buffer before and after the attention module, and t represents the number of
residual blocks that need to be extracted in the main branch.

Figure 6: Bi-direction residual attention module
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3.4 Multimodal Fusion

The model structure of the early image text sequence prediction is shown in Fig. 7. The images are the
first feature extracted by a convolutional neural network, and then the obtained feature map is expanded in
columns to obtain the set of feature vectors and input to a derivative network such as RNN or LSTM [25].
However, since recurrent neural networks are used in the model to predict sequences, there is an inevitable
need to address the problems: The model cannot be trained in parallel, and the training process is prone to
gradient disappearance and gradient explosion problems. To solve some of the above problems, this paper
proposes a text line sequence recognition model based on the fully convolutional network. By replacing
the original recurrent neural network with a convolutional neural network layer, the problem is eliminated
while maintaining the original prediction performance.

The most representative network in the field of computer vision is the convolutional neural network.
Based on the fact that convolutional kernels have local connections, the network model computes the
features of each pixel from the surrounding neighboring pixels, making the convolutional neural network
context-sensitive, which varies with the size of the convolutional kernel, in line with our needs for
sequence-to-sequence text image recognition tasks and speech recognition tasks. Therefore, this paper
replaces the original recurrent neural network model with a convolutional neural network and shows that
densely connected convolutional neural networks perform modeling of feature classification.

DenseNet's [26] model architecture connects all layers directly to each other to ensure maximum
information flow between the network layers. To maintain the feedforward feature, each layer will get
additional input from all previous layers and pass its feature map to all the subsequent layers. Because of
the densely connected nature, this network structure obtains shallow image morphological features by
accepting additional input from the preceding network layer without learning redundant feature maps. In
this paper, the densely connected convolutional network structure is used to solve the feature learning
redundancy problem of the VGG16 model, and also to solve the problem that the shallow features are not
well represented in the residual neural network due to the direct summation of the features.

The dimensionality of the input features can be very high since the input of each layer in a dense
convolutional block contains the output of each preceding layer. To be able to downscale the input
features, the network adopts a structure similar to the bottleneck layer in a residual network. The
bottleneck layer is implemented as a 1 × 1 convolution of the input features, which greatly reduces the
number of parameters in the model structure.

Figure 7: Early text line sequence recognition models
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4 Experiments

In order to verify the feasibility and validity of our proposed model, we have made the following
experiments.

4.1 Setup

Our experimental environment and configuration are shown in Tab. 2.

Input

Feature M
ap

Feature M
ap

Feature M
ap

Feature M
ap

conv conv conv conv

Feature M
ap

Figure 8: Densely Connected Convolutional Network

Table 1: Parameters of Commonly Used Densely Connected Network

Structure name Dimensions
of feature map

Network architecture

DenseNet-121 DenseNet-169 DenseNet-201 DenseNet-264

Convolution 32*280 Conv2D, kernel 7*7

Pooling 16*140 Max Pooling, kernel 2*2, stride 2

Dense Block 16*140 3*3*6 3*3*6 3*3*6 3*3*6

Transition Layer 16*140 Conv2D ,1*1

8*140 Average Pooling, kernel 2*2, stride 2

Dense Block 8*140 3*3*12 3*3*12 3*3*12 3*3*12

Transition Layer 8*140 Conv2D ,1*1

4*70 Average Pooling, kernel 2*2, stride 2

Dense Block 4*70 3*3*24 3*3*32 3*3*48 3*3*64

Transition Layer 4*70 Conv2D ,1*1

Table 2: Experimental Environment Configuration

Name Configuration

CPU Intel(R) Xeon(R) E5-2630 v3 @ 2.40GHz

Memory
GPU

64.0 GB
Nvidia Tesla K40c

OS Windows 10

Programming
IDE
Frame

Python 3.6
Pycharm
Keras
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4.2 Dataset

Existing multimodal datasets for text recognition are typically video-audio modal datasets, which are
currently audio-image modal datasets still does not exist, so we have designed a production flow for the
audio-image modal dataset. And the experimental datasets required for this chapter were generated based
on this production flow.

The Fig. 9 shows a flowchart for the production of an audio-image modal dataset, with the two sides of
the dotted line representing the two methods of producing the two datasets. The left side of the dashed line is
plotted by plotting the corresponding textual truth values of the audio into the natural scene image. The right
side of the dashed line is used to distinguish the time frame positions of the corresponding subtitles in the
video by detecting the cut of the audio endpoints and using the OCR tool extracts and identifies the
subtitles, and then merges them with the corresponding audio to generate a training data set.

In the first method of creating a dataset, we use the audio counterpart's textual content as a dataset by
plotting it in a natural scene image. We selected AISHELL-ASR0009-OS1, a Chinese Mandarin open-
source speech database by Hill Shell. The dataset contains 400 speakers from different accent regions in
China who participated in the recording. In the caption recognition experiment, we plotted the captions
on the COCO dataset to generate a new video caption dataset. The COCO dataset is a realistic, publicly
available dataset from Microsoft for tasks such as target detection, semantic segmentation, and image
classification. The scene image dataset, which contains a total of 82,783 images, and annotations for
target detection and semantic segmentation Results.

The text’s true values corresponding to the audio are plotted anywhere in the image of the complex scene
image dataset COCO, and the obtained text lines are cut to obtain the text line image data for complex scenes.
Besides, in order to ensure that the image and audio branches do not conflict with each other in terms of
missing obscure characters, we unify the two sides' font size. Since the text in the resulting text line
image is still a standard text image, to be able to test the generality of the model, we Further
transformations such as zooming, panning, rotating, and distorting text lines are performed by affine
transformations. Additional operations to add noise, smudge, and blocking to the image are also applied
to our dataset. A partial sample of the final generated dataset is shown in Fig. 10.

Audio Video

Subtitle 
detection

VAD speech 
separation

OCR subtitle
Recognition

Traning Data

Image
Audio

Draw Subtitle

Audio DatasetAudio Dataset

GT

Traning Data

Figure 9: Audio-image Modal Video Subtitle Dataset
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Figure 10: Video caption dataset

4.3 Cyclic Autoencoder

To demonstrate that cyclic autoencoder is capable of low-loss, non-equally proportional compression of
images, we use 3 × 3 sized convolutional kernels (16 in total), perform convolution on the subtitle images,
and then input the resulting features to the encoding structure in the cyclic autoencoder. Due to an inherent
flaw in the Keras, stitching the convolutional layers of each round of encoders into a new convolutional layer
is difficult, and we can achieve the same result by concatenating the convolution results from different rounds
in the channel dimension. To be able to illustrate in detail how the feature size varies in the model, we assume
that the model is only trained for 2 rounds, and the detailed parameters of the coding structure in the model
are presented in Tab. 3.

We trained the cyclic autoencoder for a total of 450 iterations over 20 rounds using the above
experimental setup, and the training and validation results recorded during the training process are shown
in Fig. 11 below.

As shown in Fig. 11, four distinct spans in the variation of the curve, which is because the fact that every
five iterations, a new encoder structure is added to the cyclic autoencoder. Since the emerging structure has
not yet been trained, the loss value initially rises, but then quickly drops and does not have an impact.

From Fig. 12, we can see that even if the image size is compressed to 1/6th of the original size, we can
still achieve nearly 60% accuracy after reduction to the original size, and as the number of compressed
feature channel dimensions increases, the trend of increasing accuracy gradually slows down, indicating
that our cyclic autoencoder has already learned most of the features of the pattern in the image at the
early stage, and subsequent learning is learning deeper features that were not learned previously.

5 Results and Analysis

We need to reproduce the current best performing method and test it on our dataset, this research method
is more time consuming but has the advantage of being able to compare on the same computer hardware
environment.
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The evaluation criteria used in the text recognition task in this paper are sentence accuracy and soft
accuracy. There is no difference between the calculation method of the two indicators and the ordinary
accuracy calculation method. The difference between the two is that the positive sample judgment for
sentence accuracy is based on whether all characters in a text line are correctly classified, while the
positive sample judgment for word accuracy is based on whether all characters are correctly classified.

Table 3: Parameters of Network Model Structure in the Second Round of Training

Part Structure name Parameters Number of parameters Input source

Preprocess Conv2d_1 3*3*6 432 Input

BatchNormalization2d_1 64 Conv2d_1

Act_1 ReLU 0 BatchNormalization2d_1

Encoder_1 Conv2d_2 3*3*3 290 Act_1

Concatenate_1 0 Conv2d_1
Conv2d_2

BatchNormalization2d_2 72 Concatenate_1

Act_2 ReLU 0 BatchNormalization2d_2

Conv2d_3 326 Act_2

Concatenate_2 0 Conv2d_1
Conv2d_2
Conv2d_3

BatchNormalization2d_3 72 Concatenate_2

Act_3 ReLU 0 BatchNormalization2d_3

Conv2d_4 3*3*8
Stride=(1,2)

72 Act_3

Encoder_2 Conv2d_5 290 Act_1

Concatenate_3 0 Conv2d_1
Conv2d_5

BatchNormalization2d_4 72 Concatenate_3

Act_4 ReLU 0 BatchNormalization2d_4

Conv2d_6 256 Act_2

Concatenate_4 Conv2d_1
Conv2d_5
Conv2d_6

BatchNormalization2d_5 72 Concatenate_4

Act_5 ReLU 0 BatchNormalization2d_5

Conv2d_7 3*3*8
Stride=(1,2)

72 Act_3

Encoder_all Concatenate_5 0 Conv2d_4
Conv2d_7
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In Fig. 13, red markers indicate that the text was not recognized, blue markers indicate that the text
recognition result does not exist in the true value, and green markers indicate misrecognition.

Tab. 4 shows the best performance of each method on our custom datasets. We have finally selected
15 methods for our model performance comparison experiments.

Figure 12: Accuracy at different compression ratios of the cycle autoencoder

Figure 13: Identification results of different methods on test data samples

Figure 11: Training process of cyclic autoencoder
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As can be seen from Fig. 14, the accuracy rate at the level of text lines does not open up a big gap between
each method, but our method still has some advantages over the other methods. Besides, to prove that using
multi-modal data for text line recognition can achieve the performance that cannot be achieved by using the
two modal data alone. The results show that the performance achieved by using the image data alone is at
most on par with the best available method, while the audio data alone is far below our expected
performance index. Therefore, the fusion of audio and image data can indeed bring richer features to the
model, and can also effectively improve the model's recognition performance for textual line sequences.

Table 4: Performance comparison results

Model BackBone Accuracy Soft_accuracy Recall

Wang et al. [27] None 0.700 0.712 0.362

Goel et al. [28] k-NN 0.773 0.765 0.462

Alsharif and Pineau [29] HMM 0.743 0.773 0.367

Bai et al. [30] SVM 0.759 0.795 0.430

Rodrguez-Serrano et al. [31] SVM 0.700 0.763 0.515

Jaderberg et al. [32] LeNet-5 0.861 0.869 0.586

Su and Lu [33] HOG+RNN 0.830 0.851 0.610

CRNN VGG + RNN 0.873 0.914 0.672

VGG + LSTM 0.893 0.925 0.713

CNN + CTC VGG 0.863 0.887 0.689

DenseNet 0.893 0.901 0.727

RAEMF DenseNet 0.891 0.924 0.741

RAEMF + attention(audio only) DenseNet 0.705 0.756 0.685

RAEMF + attention(image only) DenseNet 0.893 0.938 0.734

RAEMF + attention DenseNet 0.896 0.961 0.783

Figure 14: Visualization of model experiment comparison results
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6 Conclusion

In this paper, we propose a novel fully convolutional network for video subtitle recognition, which
addresses the existing problem that the dimensional sizes of image data and audio data do not match at
all. Cyclic autoencoder based on a convolutional neural network is introduced, which enables the model
to compress the image size without losing any feature information while ensuring that the compressed
features still have temporal features. By inputting the features of the image and audio modal data
outputted from the feature extraction layer to the cyclic autoencoder respectively, the features of equal
length are obtained, and then the two features are concatenated in the channel dimension and then each
column of the sequence is inputted to the full connection layer for identification. The final sequence
identification is obtained using the CTC (Connectionist Temporal Classification) as the final loss function.
Our method can deal with video caption recognition in complex scenarios. The extensive experimental
results on the custom datasets demonstrate the superiority of our approach compared with the state-of-the-art.
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