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Abstract: In this paper, we suggested and studied the inverse length biased Max-
ell distribution (ILBMD) as a new continuous distribution of one parameter. The
ILBMD is obtained by considering the inverse transformation technique of the
Maxwell length biased distribution. Statistical characteristics of the ILBMD such
as the moments, moment generating function, mode, quantile function, the coeffi-
cient of variation, coefficient of skewness, Moors and Bowley measures of kurto-
sis and skewness , stochastic ordering, stress-strength reliability, and mean
deviations are obtained. In addition, the Bonferroni and Lorenz curves, Gini
index, the reliability function, the hazard rate function, the reverse hazard rate
function, the odds function, and the distributions of order statistics for the
ILBMD, are presented. The ILBMD parameter is estimated using the maximum
likelihood method, the method of moments, the maximum product of spacing
technique, the ordinary and weight least square procedures, and the Cramer-
Von-Mises methods. The Fishers information, as well as the Rényi and q-entropies,
are derived. To investigate the usefulness of the proposed lifetime distribution and
to illustrate the purpose of the study, a real dataset of the relief times of 20 patients
receiving an analgesic is used.

Keywords: Maxell distribution; inverse length biased Maxwell distribution;
Fisher’s information; methods of estimation; goodness of fit tests

1 Introduction

A random variable W follows a Maxwell distribution with scale parameter a, if its probability density
function (pdf) and cumulative distribution function (cdf), respectively, are given by

fMDðw; aÞ ¼
ffiffiffi
2

p

r
w2

a3
e�

w2

2a2 ; 0,w,1; a > 0; (1)

FMDðw; aÞ ¼ Erf
w

a
ffiffiffi
2

p
� �

w

a

ffiffiffi
2

p

r
e�

w2

2a2 ; (2)
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where Erf ðzÞ ¼ 2ffiffiffi
p

p
Zz
0

e� t2dt. In the literature of the probability distributions, uni-modal and skewed to the

right characteristics are very important to the distribution of interest. One of these distributions is the
Maxwell distribution, which is a well-known lifetime distribution in physics and statistical mechanics.
Reference Iriarte et al. [1] suggested a gamma-Maxwell distribution. The tail behavior of the generalized
Maxwell distribution is considered by Huang et al. [2]. Recently, Saghir et al. [3] suggested a length-
biased Maxwell distribution (LBMD) as a modification of the base Maxwell distribution based on the
weighted distribution suggested by Rao et al. [4], to obtain the probability density function given by:

fLBMDðw; aÞ ¼ w3

2a4
e�

w2

2a2 ; 0,w,1; a > 0; (3)

and a cumulative distribution function defined as

FLBMDðw; aÞ ¼ 1� w2

2a2
þ 1

� �
e�

w2

2a2 ; 0,w,1; a > 0: (4)

The mode and median of the LBMD are wM ¼ a
ffiffiffi
3

p
and EðW Þ ¼ 3a

4

ffiffiffi
2

p

r
, respectively. For more

information about the LBMD see [3]. Due to the large number of data in these times, a large number of
distributions are suggested based several philosophies, assuming that the suggested distributions are more
flexible in modeling data. For example, [5] introduced Marshall–Olkin length-biased Maxwell
distribution. Reference Singh et al. [6] suggested length-biased weighted Maxwell distribution and [7]
considered estimation of the inverse Maxwell distribution parameter. Reference Garaibah et al. [8]
suggested size-biased Ishita distribution and [9] introduced transmuted Ishita distribution. The Marshall-
Olkin length-biased exponential distribution is proposed by Shraa et al. [10]. A new mixture continuous
Darna distribution is suggested by Al-Omari et al. [11,12] proposed length-biased Suja distribution.
Reference Sharma et al. [13] studied the power size biased two-parameter Akash distribution with some
statistical properties and real data applications. Reference Al-Omar et al. [14] proposed length and area
biased Maxwell distributions. Reference Gharaibeh [15] suggested Top-Leone Mukherjee-Islam
distribution and [16] proposed transmuted Aradhana distribution.

The rest of this paper is organized as follows: In Section 2, we present the derivation of the suggested
distribution. Section 3 deals with the main statistical properties of the ILBMD. Different methods of
estimation for the distribution parameter are given in Section 4. In Section 5, a simulation study is
conducted to investigate the distribution. An application of real data is presented in Section 6 and the
paper is concluded in Section 7.

2 Derivation of the Suggested Model

If a random variable W has a LBMD with pdf given in (3), then the random variable X ¼ 1

W
is said to

follow the inverse LBMD. The pdf and cdf of the inverse length-biased Maxwell distribution (ILBMD),
respectively are given by

fILBMDðx; aÞ ¼ 1

2a4x5
e�

1
2a2x2 ; 0, x,1; a > 0; (5)
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and

FILBMDðx; aÞ ¼ 1þ 1

2a2x2

� �
e�

1
2a2x2 ; 0, x,1; a > 0: (6)

Plots of the pdf and cdf of the ILBMD are presented in Fig. 1 for various distribution parameter. Fig. 1,
revealed that the pdf of the suggested distribution is skewed to the right and be more flatting as a
values are increasing. Also, the pdf of the ILBMD can exhibit various behavior depending on the values
of the parameter.

3 Statistical Properties

In this section, the main properties if the proposed model are presented.

3.1 Reliability Analysis

The reliability is a well-known in engineering where it gives the probability for surviving at least time t
of a product operate, while the hazard function shows the nature of failure rate related to the product.
Generally, the reliability and hazard functions are fundamental to study the characteristics of the time to
event data. Figs. 2 and 3 are the plots of the hazard, reliability reversed hazard, and the odds functions of
the ILBMD for a ¼ 0:1; 0:2; 0:3; 0:4; 0:5.

Figure 1: The ILBMD pdf and cdf plots for a ¼ 0:1; 0:2; 0:3; 0:4; 0:5

Figure 2: The hazard (A) and reliability (B) functions of the ILBMD plots for a ¼ 0:1; 0:2; 0:3; 0:4; 0:5
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� Hazard rate function: The hazard rate (HR) function is a very important property in characterizing
any lifetime distribution. The HR of the ILBMD is given by

HILBMDðx; aÞ ¼ fILBMDðx; aÞ
1� FILBMDðx; aÞ ¼

1

2a4x5
e�

1
2a2x2

1� 1þ 1

2a2x2

� �
e�

1
2a2x2

: (7)

To determine the shape of the HR function we followed the technique of [17] which is defined as

�ðx; aÞ ¼ � f =ðx; aÞ
f ðx; aÞ which only depends on the pdf of the distribution. He proved that if �=ðxÞ > 0 for

all x 2 0; x0ð Þ, while �= x0ð Þ ¼ 0, and �=ðxÞ < 0 for all x 2 x0;1ð Þ, the distribution has upside down

bathtub hazard rate (UBT). For the ILBMD we have �ðx; aÞ ¼ 5

x
� 1

x3a2
and �=ðx; aÞ ¼ 3

a2x4
� 5

x2
. Now,

it is found that �

ffiffiffiffiffiffiffiffi
3=5

p
a

; a

 !
¼ 0, that is x0 ¼

ffiffiffiffiffiffiffiffi
3=5

p
a

, and hence for the ILBMD we have that �ðx; aÞ is

increasing on the interval 0;

ffiffiffiffiffiffiffiffi
3=5

p
a

 !
and it is decreasing on the interval

ffiffiffiffiffiffiffiffi
3=5

p
a

;1
 !

as illustrated in

Fig. 2A. Therefore, the proposed ILBMD is useful in reliability data and medical fields due its skewness
to the right with UBT shape of hazard rate function.

� Reliability function: The reliability function of the ILBMD distribution is

RILBMDðx; aÞ ¼ 1� FILBMDðx; aÞ ¼ 1� 1þ 1

2a2x2

� �
e�

1
2a2x2 (8)

Fig. 2B shows that the reliability plots of the ILBMD intersect at the point f ðxÞ ¼ 1 for x ¼ 0, while as x
goes to infinity, the reliability function decreases and goes to zero.

� Reversed hazard function: The reversed hazard function of the ILBMD is defined as

RHILBMDðx; aÞ ¼ fILBMDðx; aÞ
FILBMDðx; aÞ ¼

1

2a2x2 þ 1
(9)

Figure 3: The reverse hazard (A) and odds (B) functions of the ILBMD plots for a ¼ 0:1; 0:2; 0:3; 0:4; 0:5
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� Odds function: The odds function of the ILBMD is given by

OILBMDðx; aÞ ¼ FILBMDðx; aÞ
1� FILBMDðx; aÞ ¼

2a2x2 þ 1

2a2x2e

1

2a2x2 � 2a2x2 � 1

: (10)

Based on Fig. 3 it can be noted that the reversed hazard decreases with negative J-shaped distribution,
while the odds function increases taking the J-shaped with more flatting for small amounts of the parameter a.

3.2 The Mode

In this section, the mode of the ILBMD is derived. Since the pdf fILBMDðx; aÞ of the model and its
logarithm are maximized at the same point, then for simple calculation, take the derivative of the
logarithm of the function fILBMDðx; aÞ as

�¼ ln fILBMDðx; aÞ ¼ � ln 2a4x5
� �� 1

2a2
1

x2
:

The derivative of � with respect to x yields
@�

@x
¼ � 5

x
þ 1

2a2
2

x3
: Equating the preceding derivative to

0 leads to � 5

x
þ 1

2a2
2

x3
¼ 0 and xMode ¼ � 1ffiffiffi

5
p

a
: But since a > 0, then the mode of the ILBMD is

xMode ¼ 1ffiffiffi
5

p
a
: It is clear that the distribution is a unimodal and the mode decreases with increases

values of α.

3.3 Moments and Quantile Function

In this section, we derived the various moments of the suggested ILBMD as

� Let X � fILBMDðx; aÞ, then the rth moment of X is

E X r
ILBMD

� � ¼ � 2� r

2

� �

2

r

2ar

; a > 0; r ¼ 1; 2; 3;… (11)

� If X � fILBMDðx; aÞ, then the moment generating function of X is

MILBMDðtÞ ¼
t4 log e½ �4MeijerG fg; fgf g; �2;� 3

2
; 0

	 

; fg

	 

;
t2 log e½ �2

8a2

" #

64
ffiffiffi
p

p
a4

; a > 0; (12)

where MeijerG
a1 . . . an
anþ1 . . . ap

� �
;

b1 . . . bm
bmþ1 . . . bq

� �
; z

� �
is the Meijer G function

Gm n
p q z

a1 . . . ap
b1 . . . bq

����
� �

.

From Eq. (11), the first and second moments of the ILBMD, respectively, are given as

E X 1
ILBMD

� � ¼ 1

2a

ffiffiffi
p
2

r
and E X 2

ILBMD

� � ¼ 1

2a2
.
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� The variance of the ILBMD is

VarðXILBMDÞ ¼ E X 2
ILBMD

� �� E X 1
ILBMD

� �� �2 ¼ 1

2a2
� 1

2a

ffiffiffi
p
2

r� �2

¼ 4� p
8a2

: (13)

� The degree of long-tail is measured by skewness (Sk) and for the ILBMD it is given by

SkILBMD ¼ 2ðp� 2Þ ffiffiffi
p

p � 1

p� 4

� �3=2

¼ 5:08834: (14)

� The coefficient of variation of the ILBMD is

CvILBMD¼
2

ffiffiffi
2

p

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2a2
� p
8a2

r
a4

a2ð Þ3=2
¼

ffiffiffiffiffiffiffiffiffiffiffi
4

p
� 1

r
¼ 0:522723; (15)

which is a very small value.

� Let X � fILBMDðx; aÞ, then the rth order inverse moment about the origin of X is

E
1

X r
ILBMD

� �
¼ 2

r

2ar � 2þ r

2

� �
; r ¼ 1; 2; 3;… (16)

Based on Eq. (6), the harmonic mean of the ILBMD distribution can be obtained for r ¼ 1 as
given by

E
1

XILBMD

� �
¼ 3

2

ffiffiffi
p
2

r
a: (17)

If QðkÞ is the quantile function of order k of the ILBM random variable, then it can be the solution
of the equation

ln k þ 1

2a2Q2ðkÞ ¼ ln 1þ 1

2a2Q2ðkÞ
� �

: (18)

The Moors and Bowley measures of kurtosis and skewness, respectively, are given by

Mk ¼
Q

7

8

� �
� Q

5

8

� �
þ Q

3

8

� �
� Q

1

8

� �

Q
6

8

� �
� Q

2

8

� � andBsk ¼
Q

3

4

� �
� 2Q

1

2

� �
þ Q

1

4

� �

Q
3

4

� �
� Q

1

4

� � : (19)

3.4 Fishers Information

Theorem: Let X � fILBMDðx; aÞ, then the Fisher’s information of a is FIILBMDðaÞ ¼ 8

a2
:

Proof: To find the Fisher’s information of the ILBMD, we have

ln fILBMDðx; aÞ ¼ �5 log x½ � þ log
1

2a4

� 

� 1

2a2x2
:
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The first derivative of this function with respect to ayields

@2 ln fILBMDðx; aÞ
@a

¼ 2e

1

2x2a2x5
e
�

1

2x2a2

2x7a7
� 2e

�
1

2x2a2

x5a5

0
BB@

1
CCAa4:

Again differentiate the last equation with respect to a to get

@2 ln fILBMDðx; aÞ
@a2

¼ 8a3x5e

1

2a2x2
e
�

1

2a2x2

2a7x7
� 2e

�
1

2a2x2

a5x5

0
BB@

1
CCA� 2ax3e

1

2a2x2
e
�

1

2a2x2

2a7x7
� 2e

�
1

2a2x2

a5x5

0
BB@

1
CCA

þ2e

1

2x2a2x5
e
�

1

2x2a2

2x9a10
� 11e

�
1

2x2a2

2x7a8
þ 10e

�
1

2x2a2

x5a6

0
BB@

1
CCAa4:

Now, take the expectation of
@2 ln fILBMDðx; aÞ

@a2
as

�E
@2 ln fILBMDðx; aÞ

@a2

� �
¼ �

Z1
0

@2 ln fILBMDðx; aÞ
@a2

1

2a4x5
e
�

1

2a2x2dx ¼ 8

a2
:

This information is very helpful in determining the variance of estimator or lower bound of an estimator.

3.5 Order Statistics

Let Xð1:nÞ;Xð2:nÞ;…;Xðn:nÞ be the order statistics of the random sample X1;X2;…;Xn selected from a pdf
and cdf fILBMDðx; aÞ and FILBMDðx; aÞ, respectively. The pdf of the ith order statistics say Xði:nÞ, is

fði:nÞðxÞ ¼ n!

ði� 1Þ!ðn� iÞ! ½FðxÞ�
i�1½1� FðxÞ�n�if ðxÞ

¼ n!

ði� 1Þ!ðn� iÞ!
Xn�i

k¼0

ð�1Þk n� i

k

� �
1

2a4x5
1þ 1

2a2x2

� �kþi�1

e
�

1

2a2x2

0
@

1
A

kþi

;

(20)

and the corresponding cdf is defined as

Fði:nÞðxÞ ¼
Xn
j¼t

n
j

� �
FðxÞ�j½1� FðxÞ�n�j ¼

Xn
j¼t

Xn�i

k¼0

ð�1Þk n
j

� �
n� i
k

� �
1þ 1

2a2x2

� �
e
�

1

2a2x2

2
4

3
5
jþk

:(21)

3.6 Stochastic Ordering

The stochastic ordering can be considered to compare the behavior of two random variables. Let X and Y
be two random variables, then X is said to be smaller than in

1) Mean residual life order X �
mrl

Y

� �
if mX ðxÞ � mY ðxÞ for all x;
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2) Likelihood ratio order X �
lr
Y

� �
if
fX ðxÞ
fY ðxÞ decreases in x;

3) Hazard rate order X �
hr
Y

� �
if hX ðxÞ 	 hY ðxÞ for all x;

4) Stochastic order X �
st
Y

� �
if FX ðxÞ 	 FY ðxÞ for all x.

Based on these relations, we have X �
lr
Y

� �
) X �

hr
Y

� �
+ X �

st
Y

� �
) X �

mrl
Y

� �
.

Theorem 2: Let XILBMD � fX ðx; aÞ and YILBMD � fY ðx; hÞ. If h < a, then X �
lr
Y

� �
, and hence

X �
hr
Y

� �
, X �

mrl
Y

� �
and X �

st
Y

� �
.

Proof: Based on the concept of the likelihood ratio order, we have

fX ðx; aÞ
fY ðx; hÞ ¼

1

2a4x5
e
�

1

2a2x2

1

2h4x5
e
�

1

2h2x2

¼ 2h4x5

2a4x5
e
�

1

2a2x2
� 1

2h2x2

� �
¼ h4

a4
e
�

1

2x2
1

a2
� 1

h2

� �
,

where its logarithm is

ln
fX ðx; aÞ
fY ðx; hÞ ¼ ln

h4

a4
e
�

1

2x2
1

a2
� 1

h2

� �2
64

3
75 ¼ ln

h4

a4

� �
� 1

2x2
1

a2
� 1

h2

� �
.

The first derivative of this equation with respect to x is

@

@x
ln
fX ðx; aÞ
fY ðx; hÞ ¼

1

x3
1

a2
� 1

h2

� �
¼ 1

x3
h2 � a2

a2h2

� �
¼ 1

x3
h� að Þ hþ að Þ

a2h2

� �
.

Now, if h < a, then
@

@x
ln

fX ðx; aÞ
fY ðx; hÞ
� �

< 0, and hence X �
lr
Y

� �
, and the other relations are holds, i.e.,

X �
hr
Y

� �
, X �

mrl
Y

� �
and X �

st
Y

� �
.

3.7 Mean and Median Deviations

This section, introduced the mean and median deviations of the ILBMD, �l and �M , respectively. It is a
measure of the scatter in the population the mean deviation about the mean and the mean deviation about the
median, where

�l ¼ 2lFðlÞ � 2
Rl
0
xf ðxÞdx and �M ¼ l� 2

RM
0
xf ðxÞdx,

where l and M are the population mean and median, respectively.

Theorem: Let X � fILBMDðx; aÞ;the mean and median deviations about the mean and median,
respectively, are
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�l ¼ e�4=pffiffiffiffiffiffi
2p

p
a

p� e4=ppErfc
2ffiffiffi
p

p
� 
� �

¼ 0:212229

a
; (22)

where Erfc is the complementary function of the error function erfc, and

�M ¼

ffiffiffiffiffiffi
2p

p
a2M � 2 2ae

�
1

2M2a2 þM
ffiffiffiffiffiffi
2p

p
a2Erfc

1ffiffiffi
2

p
Ma

� 
0
@

1
A

4a3M
: (23)

Since the median of the ILBMD is M ¼ 0:545813

a
, then �M ¼ 0:200744

a
.

The qth quantile xq of the ILBMD can be found by solving the equation q ¼ FILBMD xq; a
� �

, that is

q ¼ 1þ 1

2a2x2q

 !
e
� 1

2a2x2q and the quantile is the solution of the lnðqÞ ¼ ln 1þ 1

2a2x2q

 !
� 1

2a2x2q
.

3.8 Gini Index and Some Curves

Let X be a non-negative random variable with a continuous twice differentiable cumulative distribution
function FðxÞ. In this section, we want to obtain the Gini index, Bonferroni and Lorenz curves for the
ILBMD. The Gini coefficient is developed by the Italian statistician Gin in (1912). The Gini index
measures the inequality among values of a frequency distribution, for example levels of total income. The
Gini index value running from zero to one. A Gini index of zero value indicates perfect equality (that is
all values are the same, a group has the same monthly income), while most unequal group where a single
person receives Gini index of 1 of the total.

The Gini index for the ILBMD is given by

GðxÞ ¼ 1� 1

l

Z1
0

1� FILBMD x; að Þð Þ2dx ¼ 0:237437: (24)

It is clear that the Gini index value is small and it is about 0.24. The Bonferroni curve for the ILBMD is
defined as

BðpÞ ¼ 1

pl

Zq
0

xfILBMD x; að Þdx ¼
e
� 1

2q2a2

ffiffiffi
2

p

r
þ qaErfc

1ffiffiffi
2

p
qa

� 

pqa

; p > 0; q > 0; a > 0; (25)

q ¼ F�1ðpÞ and p 2 ð0; 1�.
The Lorenz curve for the ILBMD is defined as

LðxÞ ¼ 1

l

Zq
0

xfILBMD x; að Þdx ¼
e
� 1

2q2a2

ffiffiffi
2

p

r
þ qaErfc

1ffiffiffi
2

p
qa

� 

qa

: (26)

3.9 Stress-Strength Reliability

Let X and Y be independent random variables observed from the pdf f ðxÞ. The stress-strength reliability
clarify the life of a component that has a random strength Y which is subjected to a random stress X, where
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R ¼ P Y ,Xð Þ ¼
Z1
0

P Y ,X jX ¼ xð Þf ðxÞdx ¼
Z1
0

f ðx; aÞFðx; dÞdx: (27)

Theorem: Let the random variables X and Y be independent selected from the ILBMD. The stress-
strength reliability is given by

RILBMDða;xÞ ¼ x4 3a2 þ x2ð Þ
a2 þ x2ð Þ3 ;

1

a2
þ 1

x2
> 0: (28)

3.10 Entropies

The Rényi entropy is defined as

REðgÞ ¼ 1

1� g
log

Z1
0

f ðxÞgdx
0
@

1
A; where g > 0 and g 6¼ 1.

� Let X � fILBMDðx; aÞ, then the and Rényi entropy of X is defined as

REðgÞ ¼ 1

1� g
log

1ffiffiffi
8

p
a

� � 1�gð Þ
g

1

2
1� 5gð Þ

�
5g
2
� 1

2

� 
2
4

3
5; g

a2
> 0; g >

1

5
: (29)

� The q-entropy, say QEðqÞ is given by QEðqÞ ¼ 1

q� 1
log 1�

Z1
�1

f ðxÞqdx
0
@

1
A; q > 0; q 6¼ 1. For the

ILBMD we have

QEðqÞ ¼ 1

q� 1
log 1� 1ffiffiffi

8
p

a

� � 1�qð Þ
q

1

2
1� 5qð Þ

�
5q

2
� 1

2

� 
8<
:

9=
;: (30)

4 Different Methods of Estimation

In this section, we discuss different estimation procedures for estimating the unknown suggested model
parameter.

4.1 Maximum Likelihood Method

Let X1;X2;…;Xn be a random sample of size n selected from the ILBMD with parameter a > 0. The
maximum likelihood estimator for the ILBMD parameter can be derived based on the likelihood function as:

LILBMDðaÞ ¼
Qn
i¼1

f xi; að Þ ¼ Qn
i¼1

1

2a4x5i
e
�

1

2a2x2i ¼ 1

2a4

� �n Qn
i¼1

1

x5i

Qn
i¼1

e
�

1

2a2x2i .
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The log likelihood function is given by

� ¼ lnL hð Þ ¼ ln
1

2a4

� �nYn
i¼1

1

x5i

Yn
i¼1

e

�
1

2a2
Pn
i¼1

x2i

0
BBBBB@

1
CCCCCA ¼ �nln 2a4

� �þ ln
Yn
i¼1

1

x5i

 !
þ 1

2a2
Pn
i¼1

x2i

:

The derivative of � with respect to a is �0 ¼ � 4n

a
þ
Pn
i¼1

1

x2i
a3

: Setting the last equation to zero to get the

MLE of a is âMLE ¼ �

ffiffiffiffiffiffiffiffiffiffiPn
i¼1

1

x2i

s

2
ffiffiffi
n

p , and since x > 0, thenâMLE ¼

ffiffiffiffiffiffiffiffiffiffiPn
i¼1

1

x2i

s

2
ffiffiffi
n

p .

4.2 Method of Moments

The mean of the ILBMD random variable is E X 1
ILBMD

� � ¼ 1

2a

ffiffiffi
p
2

r
and �X ¼

Pn
i¼1

Xi

n
:Let E X 1

ILBMD

� � ¼ �X

to get the MOM estimator of a is âMOM ¼ 1

2a

ffiffiffi
p
2

r
.

4.3 Cramèr–von-Mises Estimation

Let x1; x2;…; xn be the observed values of a random sample of size n selected from a the fILBMDðx; aÞ, and
let xð1:nÞ; xð2:nÞ;…; xðn:nÞ be the order statistics of the sample. The Cramèr-von Mises estimation method (Cv)
is suggested by Swain et al. [18]. The Cvmethod is based on the minimum difference between the cumulative
and empirical distribution functions. The Cv estimator of the parameter can be calculated by minimizing

Cv að Þ ¼ 1

12n
þ
Xn
i¼1

F xði:nÞ; a
� �� 2i� 1

2n

� �2

:

For the proposed ILBMD, the Cv estimator, âCv of a, can be obtained by minimizing the equation

Cv að Þ ¼ 1

12n
þ
Xn
i¼1

1þ 1

2a2x2ði:nÞ

 !
e
� 1

2a2x2ði:nÞ � 2i� 1

2n

" #2
; (31)

with respect to a.

4.4 Ordinary and Weighted Least Squares Methods

Let Xð1:nÞ;Xð2:nÞ;…;Xðn:nÞ be the order statistics of the random sample X1;X2;…;Xn selected from a the
fILBMDðx; aÞ. The least square estimator (LSE) [19] can be obtained by minimizing the residual sum of the
square, which is defined as the differences of theoretical cdf and empirical cdf as

LS að Þ ¼
Xn
i¼1

F xði:nÞ; a
� �� i

nþ 1

� �2

:

CSSE, 2021, vol.39, no.1 157



For the ILBMD, the LS estimator, âLS of a can be obtained by minimizing the equation

LS að Þ ¼
Xn
i¼1

1þ 1

2a2x2ði:nÞ

 !
e
� 1

2a2x2ði:nÞ � i

nþ 1

" #2
; (32)

with respect to a. Similarly, the weighted least squares (WLS) estimate of a denoted by âWLS can be
obtained by minimizing the function

WLS að Þ ¼
Xn
i¼1

ðnþ 2Þðnþ 1Þ2
iðn� iþ 1Þ F xði:nÞ; a

� �� i

nþ 1

� �2

;

with respect to a. For the ILBMD we have

WLS að Þ ¼
Xn
i¼1

ðnþ 2Þðnþ 1Þ2
iðn� iþ 1Þ 1þ 1

2a2x2ði:nÞ

 !
e
� 1

2a2x2ði:nÞ � i

nþ 1

" #2
; (33)

with respect to a.

4.5 Method of Maximum Product of Spacing

The maximum product of spacing (MPS) method as suggested by Cheng et al. [20,21] is a powerful
alternative to the MLE method for estimating the parameters of continuous distributions. Reference
Shanker et al. [22] showed that the MPS method possess similar properties as the MLE method.

Let uniform spacing’s of a random sample of size n uniform spacing’s is given as be

DiðaÞ ¼ F xði:nÞja
� �� F xði�1:nÞja

� �
; i ¼ 1; 2;…; n;

where F xð0:nÞja
� � ¼ 0, F xðnþ1:nÞja

� � ¼ 1 and
Pnþ1

i¼1
DiðaÞ ¼ 1: The MPS can be calculated by maximizing the

geometric mean (GM) of the spacing’s defined as

GMðaÞ ¼ Qnþ1

i¼1
DiðaÞ

� � 1

nþ 1
,

Or, equivalently, by maximizing the function SðaÞ ¼ 1

nþ 1

Xnþ1

i¼1

logDiðaÞ, with respect to a.

Now, the MPS estimate of the ILBMD parameter a denoted by âMPS can be obtained by maximizing the
equation

GMðaÞ ¼
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e
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2a2x2ði�1:nÞ

 !
e
�

1

2a2x2ði�1:nÞ

2
664

3
775nþ1

vuuuuut : (34)

5 Simulation Study

In this section, we compared the various suggested estimators of the model parameters. We selected
the values of the parameters a ¼ 1;2,3 with samples sizes n ¼ 10;20,40,60, 80, 100 and 200. The results
are presented in Tabs. 1 and 2 foe the parameter estimates (Es) and the corresponding mean squared
errors (MSE).
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Table 1: Estimates and MSEs with MLE, CV, and MOM methods for the ILBMD with a ¼ 1;2,3 and
n ¼ 10;20,40, 60, 80, 100, 200, 400

MLE CV

n a Es MSE Es MSE Es MSE

10 1 0.995924 0.011847 0.991184 0.012989 0.980571 0.013476

↑ 2 1.981047 0.046646 1.971264 0.051318 1.973994 0.053759

↑ 3 2.977570 0.103597 2.954931 0.134482 2.954117 0.124594

20 1 0.997368 0.005989 0.989289 0.007110 0.991652 0.005833

↑ 2 1.998237 0.025302 1.982299 0.025994 1.978287 0.027209

↑ 3 3.001566 0.054498 2.963013 0.064315 2.970309 0.059139

40 1 0.999047 0.003172 0.991716 0.003276 0.991394 0.003234

↑ 2 1.998907 0.012212 1.993159 0.013333 1.983139 0.012917

↑ 3 2.992754 0.026943 2.971542 0.032232 2.982549 0.030891

60 1 0.997824 0.002377 0.994213 0.002429 0.996004 0.002219

↑ 2 2.002695 0.008112 1.991705 0.009028 1.985409 0.008619

↑ 3 2.990985 0.018646 2.982247 0.020553 2.980146 0.019963

80 1 0.999361 0.001616 0.997906 0.001802 0.996385 0.001648

↑ 2 1.997114 0.006034 1.994376 0.006188 1.993271 0.006873

↑ 3 2.997377 0.013123 2.994897 0.014442 2.986911 0.014781

100 1 1.000008 0.001280 0.997574 0.001243 0.997230 0.001419

↑ 2 1.995360 0.004856 1.998231 0.005106 1.993223 0.005391

↑ 3 2.998770 0.010524 2.985528 0.012388 2.988051 0.010962

200 1 0.998602 0.000652 0.996814 0.000705 0.998669 0.000628

↑ 2 2.002684 0.002847 1.995579 0.002652 1.996316 0.002650

↑ 3 2.996923 0.005726 2.993280 0.006111 2.995057 0.006072

400 1 0.999881 0.000312 0.999214 0.000362 0.999735 0.000308

↑ 2 1.999506 0.001259 1.997887 0.001297 1.999012 0.001315

↑ 3 3.001122 0.002856 2.997404 0.003018 2.997452 0.003068

Table 2: Estimates and MSEs with LS, WLS, and MPS methods for the ILBMD with a ¼ 1;2,3 and
n ¼ 10;20,40, 60, 80, 100, 200, 400

LS WLE MPS

n a Es MSE Es MSE Es MSE

10 1 1.007925 0.015105 1.006955 0.014096 1.130497 0.033357

↑ 2 2.012742 0.060097 2.005761 0.056658 2.247161 0.124619

↑ 3 3.016037 0.143091 3.038500 0.133337 3.411764 0.314966

20 1 0.999859 0.007603 1.005104 0.006716 1.066338 0.011475

↑ 2 2.006540 0.030309 2.006146 0.027890 2.137371 0.046024
(Continued)
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The bias of the suggested estimators is very small and goes to zero for all cases considered in this study.
Also, as the samples sizes increase the MSE of all proposed estimators decreases.

6 Real Data Application

In this section, we use lifetime data set to compare the fit of the suggested ILBMD distribution with four
competitors distributions: Rani, length-biased Maxwell distribution, Rama, and exponential defined as

1) Rani distribution (Rn) suggested by Shanker et al. [23] with pdf given by

f ðx; aÞ ¼ a5

a5 þ 24
aþ x4
� �

e� a x; a > 0; x > 0.

2) Length-biased Maxwell distribution (LBM), f ðx; aÞ ¼ 1

2a4
x3e

�
x2

2a2 ; a > 0; x > 0:

3) Rama distribution (Rm) suggested by Gross et al. [24] with pdf given by

fRDðx; aÞ ¼ a4

a3 þ 6
x3 þ 1
� �

e�ax x > 0; a > 0:

4) Exponential distribution (Exp), f ðx; aÞ ¼ a e� ax; x > 0; a > 0:

Table 2 (continued).

LS WLE MPS

↑ 3 3.011123 0.062426 2.997492 0.059193 3.195782 0.104628

40 1 1.005808 0.003683 1.001200 0.003192 1.038072 0.004547

↑ 2 2.001974 0.014647 1.995240 0.012789 2.075144 0.019910

↑ 3 3.001535 0.033451 2.987103 0.030327 3.118552 0.046022

60 1 1.002426 0.002372 0.997947 0.002258 1.024475 0.002672

↑ 2 2.000718 0.009925 1.998646 0.008446 2.047890 0.010844

↑ 3 2.997560 0.022334 3.002908 0.020097 3.080202 0.024972

80 1 0.999352 0.001885 1.001006 0.001669 1.019037 0.001871

↑ 2 1.998633 0.007305 1.995840 0.007117 2.037926 0.007875

↑ 3 3.005454 0.017804 2.998899 0.015568 3.056238 0.018755

100 1 1.000232 0.001459 0.998625 0.001338 1.015747 0.001519

↑ 2 2.001972 0.005673 2.002987 0.004788 2.030212 0.006199

↑ 3 3.003503 0.014207 2.999699 0.011628 3.044901 0.013372

200 1 0.998634 0.000707 1.000297 0.000622 1.009054 0.000715

↑ 2 2.001705 0.002883 1.996734 0.002457 2.014366 0.002870

↑ 3 2.994524 0.006424 3.001192 0.005964 3.028472 0.006385

400 1 1.007925 0.015105 0.999890 0.000336 1.130497 0.033357

↑ 2 2.012742 0.060097 2.000354 0.001277 2.247161 0.124619

↑ 3 3.016037 0.143091 3.000917 0.002992 3.411764 0.314966

160 CSSE, 2021, vol.39, no.1



The data set given in this section represents the relief times of 20 patients receiving an analgesic. This
data set was taken from [25] and it is: 1.1, 1.4, 1.3, 1.7, 1.9, 1.8, 1.6, 2.2, 1.7, 2.7, 4.1, 1.8 ,1.5, 1.2, 1.4, 3.0,
1.7, 2.3, 1.6, 2.0.

In order to compare the two models, we consider the Akaike Information Criterion (AIC), Consistent
Akaike Information Criterion (CAIC), Hannan-Quinn Information Criterion (HQIC), and Bayesian
Information Criterion (BIC). The generic formulas for finding AIC, CAIC, HQIC, and BIC are

respectively, given as AIC ¼ �2 log Lþ 2m; CAIC ¼ �2 logLþ 2mn

n� m� 1
; BIC ¼ �2 logLþ j logðnÞ;

HQIC ¼ 2 log logðnÞ½m� 2 logL�f g, where -2logL is the negative maximized log-likelihood values. The
Kolmogorov-Smirnov (K-S) test statistic where these measures are defined as KS ¼ Supn FnðxÞ � FðxÞ�� ��,
where FnðxÞ ¼ 1

n

Xn
i¼1

Ixi�x and m is the number of parameters and n is the sample size. Also, the

Kolmogorov-Smirnov (KS) test is empirical distribution function and FðxÞis cumulative distribution
function. The best distribution corresponds to lower values of -2lnL, AIC, AICC, BIC, HIQC and KS
statistic. The results are displayed in Tab. 3.

Hence, we can deduce that the inverse length biased Maxwell distribution leads to a better fit than the
Rama, Rani, length biased Maxwell and exponential distribution. The Kolmogorov Smirnov p-value
suggests that inverse length biased Maxwell distribution fits statistically better than other distributions
considered in this example to the 20 patients data set. Plots of the fitted densities and the histogram are
given in Fig. 4.

Table 3: Model comparison using AIC, CAIC, BIC, HQIC, -2logL, and the KS test criterion for the 20
patients data

ILBM Rm Exp Rn LBM

MLE 0.30091 1.52130 0.52617 1.71928 1.01012

Error 0.02379 0.15231 0.11766 0.12778 0.07986

AIC 35.43390 61.70660 67.67416 67.30852 40.61917

CAIC 35.65611 61.92882 67.89638 67.53074 40.84139

BIC 36.42962 62.70233 68.66989 68.30425 41.61490

HQIC 35.62827 61.90097 67.86853 67.50290 40.81354

-2LogL 16.71695 29.85330 32.83708 32.65426 19.30958

KS 0.15809 0.35667 0.43942 0.35355 0.17891

P-value 0.69950 0.01233 0.00088 0.01348 0.54400
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7 Conclusions

In this article, we introduced and studied the ILBMD. Some statistical properties of the ILBMD are
derived and discussed. The reliability and hazard functions of the distribution are analyzed. Also, the
distribution of order statistics, mode, harmonic mean, Fisher's information, the stochastic ordering and the
mean deviations about the mean and median are presented. The distribution parameter is estimated using
different estimation methods includes the maximum likelihood estimation, method of moments,
maximum product of spacing, ordinary and weight least square procedures, and the Cramer-Von-Mises
methods. The q and Rényi entropies are derived as well as the stress strength reliability is obtained. A
real data sets is considered to support the paper objectives. It is revealed that the ILBMD is more power
than its competitors used in this study. As a future works the distribution parameter can be estimated
based on ranked set sampling method, see [26–32].
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