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Abstract: Wind speed prediction is of great importance because it affects the effi-
ciency and stability of power systems with a high proportion of wind power.
Temporal-spatial wind speed features contain rich information; however, their
use to predict wind speed remains one of the most challenging and less studied
areas. This paper investigates the problem of predicting wind speeds for multiple
sites using temporal and spatial features and proposes a novel two-layer attention-
based long short-term memory (LSTM), termed 2Attn-LSTM, a unified frame-
work of encoder and decoder mechanisms to handle temporal-spatial wind speed
data. To eliminate the unevenness of the original wind speed, we initially decom-
pose the preprocessing data into IMF components by variational mode decomposi-
tion (VMD). Then, it encodes the spatial features of IMF components at the bottom
of the model and decodes the temporal features to obtain each component's
predicted value on the second layer. Finally, we obtain the ultimate prediction value
after denormalization and superposition. We have performed extensive experiments
for short-term predictions on real-world data, demonstrating that 2Attn-LSTM
outperforms the four baseline methods. It is worth pointing out that the presented
2Atts-LSTM is a general model suitable for other spatial-temporal features.

Keywords: Wind speed prediction; temporal-spatial features; VMD; LSTM;
attention mechanism

1 Introduction

Due to its cleanliness, low cost, and sustainability, wind energy has become the mainstream new energy
source. According to the latest data released by the Global Wind Energy Council (GWEC), the world's
installed wind power capacity reached 651 GW in 2019 [1]. However, it poses significant challenges to
the power system's operation control with a high proportion of wind power because of the randomness,
volatility, and intermittency of wind farms [2]. Accurate wind speed prediction is the basis of operation
control [3]. Wind speed forecasts can be divided into short-term (minutes, hours, days), medium-term
(weeks, months), and long-term (years) forecasts according to different time intervals. Among them,
short-term forecasting is essential for the power system to make daily dispatch plans. It has a significant
impact on the economical and reliable operation of the power system.
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Wind speed prediction techniques fall into the following three categories: physical, statistical, and
artificial intelligence models. Physical modeling methods [4–6] mainly predict wind speed by establishing
formulas between wind speed and air pressure, air density, and air humidity. The modeling process
involves a large amount of calculation. Due to the complexity of wind speed and regional differences, it
is challenging to establish high-precision short-term forecasts for different regions using physical models.
Therefore, they are usually applied for long-term wind speed prediction in specific areas. Compared with
physical models, statistical models are simple, easy, and better, so they are widely adopted in short-term
wind speed prediction. Statistical models use historical wind speed data to establish a linear mapping
relationship between system input and output to make predictions, for example, the kriging interpolation
method [7] and the von Mises distribution [8]. There are still some commonly used methods, such as
autoregressive (AR) [9] and autoregressive moving average (ARMA) [10].

Machine learning technologies are the basis of artificial intelligence models. They describe the
complicated nonlinear relationship between system input and output based on a large amount of wind
speed temporal data. For example, [11] used the least squares support vector machine to predict wind
speed. With the vigorous development of machine learning technology, technologies in this field have
been rapidly applied to short-term wind speed prediction, such as CNN, RNN, GRU, LSTM, etc.
Combining the existing wind speed prediction technology and the hybrid neural network model has
obtained a promising prediction result [12–14]. However, the current short-term wind speed prediction
models only focus on time series data, and the wind speed data of the sites near the target wind farm also
contain rich information. Data analysis based on spatial-temporal correlation has become a research hot
spot [15,16]. In addition to temporal data, geographic spatial relationships are also considered to improve
prediction accuracy. Moreover, the attention mechanism (AM) has recently become a research hot spot
[17,18]. It builds an attention matrix to enable deep neural networks to focus on crucial features during
training to avoid the impact of insensitive features.

In this paper, we introduce two-layer attention-based LSTM (2Atts-LSTM) networks. Experiments on
real-world data show that they are superior to other baselines.

The main contributions of this article can be summarized as follows:

(1) 2Atts-LSTM, a novel deep architecture for short-term wind speed prediction, is proposed, which
integrates the attention mechanism and LSTM into a unified framework. This model achieves spatial
feature and temporal dependency extraction automatically.

(2) VMD technology is combined with 2Attn-LSTM to obtain a relatively stable subsequence. It can
eliminate the uncertainty of the actual wind speed.

The rest of the paper is organized as follows: Section 2 gives relevant background theories, including VMD
and LSTM networks; Section 3 illustrates the algorithm proposed in the article; Section 4 presents the
experimental results, compared with the baselines; Section 5 concludes this paper and provides further work.

2 Background Theories

2.1 VMD

Based on empirical mode decomposition (EMD), the variational mode decomposition (VMD) proposed
by Dragomirestskiy et al. [19] is a new type of complicated signal decomposition method. It decomposes the
signal into limited bandwidths with different center frequencies according to the preset number of modes.

Using VMD, the original wind speed sequence with strong nonlinearity and randomness can be
decomposed into a series of stable mode components. Fig. 1 shows the flowchart of the VMD algorithm.
Suppose the wind speed data after preprocessing are ~X ðtÞl. The process is as follows:
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(1) Assuming that each mode has a limited bandwidth with a center frequency, we now look for modes
so that the sum of each mode's estimated bandwidth is the lowest, expressed as

min
ukj j: xkj j
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(2) Solving the above model, introduce the penalty factor a and Lagrangian penalty operator �ðtÞ,
transform the constraint problem into the nonconstraint problem, and obtain the augmented Lagrangian
expression.
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(3) Update parameters uk , xk and �k iteratively by the alternating direction method of multipliers, which
is defined as

Figure 1: The flowchart of VMD algorithm
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where f̂ ðxÞ, ûiðxÞ, �̂ðxÞ and ûnþ1
k ðxÞ represent the Fourier transforms of f ðxÞ, uiðxÞ, �ðxÞand unþ1
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and n is the number of iterations.
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ûnþ1
k � ûnk
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return to

(5) Finally, we can get K decomposed Ft;l
k .

Fig. 2 shows the wind speed subsequences, IMF, with different frequencies but stronger regularity
by VMD.

2.2 LSTM

LSTM [20], a variant of the recurrent neural network (RNN), shows superior performance in processing
sequential data. It overcomes the problem of “long-term dependencies” [21]. Due to its tremendous learning
capacity, LSTM has been widely used in various kinds of tasks, such as speech recognition [22], software-
defined network (SDN) [23], and some prediction cases, i.e., trajectory [24], oil price [25], and even the
number of confirmed COVID-19 cases [26]. In the usual applications, the stacked LSTM network is the
most basic and simplest structure with high performance. In this paper, the proposed 2Attn-LSTM falls
into this category.

Each LSTM cell unit consists of an internal memory cell ct and three gates, i.e., forget gate ft, input gate
it, and output gate ot. ht is the final state determined by ct and ot. The memory cell will store the previous data

Figure 2: Wind speed is decomposed by VMD
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for a long time controlled by the input and output gates. At the same time, the information stored in the
memory cell can be cleared by the forget gate. The formulations in the LSTM are given by Eqs. (5)–(9).

it ¼ sigmoidðWhiht�1 þWxiF
t;l
k þ biÞ (5)

ft ¼ sigmoidðWhf ht�1 þWxf F
t;l
k þ bf Þ (6)

ot ¼ sigmoidðWhoht�1 þWhxF
t;l
k þ wcoctÞ (7)

ct ¼ ft � ct�1 þ it � ðtanhðWhcht�1 þWxcF
t;l
k þ bcÞÞ (8)

ht ¼ ot � tanhðctÞ (9)

where whi, wxi, bi, whf , wxf , bf , whc, wxc, bc, who, whx, wco are learnable parameters of input gate, forget gate,
memory cell, output gate and final state, respectively.

3 Methodology

The proposed 2Attn-LSTM method, illustrated in Fig. 3, consists of data preprocessing, decomposition
of VMD, LSTM encoder with Attention1 and LSTM decoder with Attention2. Then, it gets each IMF’s
prediction value. After denormalization and superposition, we can obtain the final wind speed prediction.
The preprocessing stage contains data cleaning and normalization. Then, it decomposes the preprocessed
data into components, Ft;l

k , by VMD. The model training phase contains an encoder and decoder; that is,
the first layer handles the spatial features, and the second layer manages the temporal features. Here, we
adopt an attention mechanism into the architecture, which has been widely applied recently.

Get temporal-spatial data of original wind 
speed

Data cleaning and normalization 

VMD 

... 

Attention1 + LSTM encoder (Spatial features) 

Prediction value 1 Prediction value k-1 Prediction value 2 Prediction value k ...... 

Denormalization 

Superposition 

Wind speed prediction value 

Attention2 + LSTM decoder (Temporal features) 

Figure 3: Framework of the presented approach

CSSE, 2021, vol.39, no.2 201



3.1 Data Processing

Obtain the original space-time wind speed sequence of the target site X ðtÞl. For missing data, repeated
data, and jump data, replace with the average wind speed near the value. After normalization, we obtain
~X ðtÞl, where t 2 RT , l 2 RL, T is the time lag, and L is the number of neighboring sites of the target site.
The normalization formula is

~X ðtÞl ¼
X ðtÞl � XminðtÞl

XmaxðtÞl � XminðtÞl
(10)

where XmaxðtÞl is the maximum temporal wind speed of site l, and XminðtÞl is the minimum temporal wind
speed of site l. X ðtÞl is the value before normalization, and ~X ðtÞl is the value after normalization of site l.

After the handling of the 2-layer LSTM network, we need denormalization and superposition. The
denormalization formula is given as follows:

Y ðtÞl ¼ ~Y ðtÞlðIMFmaxðtÞl � IMFminðtÞlÞ þ IMFminðtÞl (11)

where IMFmaxðtÞl and IMFminðtÞl are the maximum and minimum IMF components of site l, respectively.
~Y ðtÞl is the normalization value, and Y ðtÞl is the denormalized result.

3.2 Temporal-Spatial Feature Model

In the proposed 2Attn-LSTM framework, we process the temporal-spatial data. Except for the general
sequential features, the spatial data do have plenty of information helpful for wind speed prediction. Zhu
et al. [15] proposed a deep architecture, termed PSTN, integrating CNN and LSTM, to learn temporal
and spatial correlations jointly for short-term wind speed prediction.

However, Zhu et al. [15] embedded the temporal-spatial features into a 2D matrix, named SWSM. The
item in SWSM is defined by xði; jÞt 2 RM�N, where M � N is the spatial square of the target site. Instead of
SWSM, we specify one IMF time series as the target series for making predictions, while other IMF series are
used as features. Furthermore, we separated the spatiotemporal features into spatial data, served as the input
of the encoder of 2Attn-LSTM, and temporal data, served as the input of the decoder of 2Attn_LSTM. The
scheme is superior to PSTN in both space requirements and time complexity. Suppose the time window
length is T , the number of neighboring sites is L, and the number of IMF components is K. We use
Ft;l
k ¼ ðf 1;lk ; f 2;lk ;…; f T ;lk Þ 2 RT to denote the temporal features and Ft;l

k ¼ ðf t;1k ; f t;2k ;…; f t;Lk Þ 2 RL to
describe the spatial features.

As illustrated in Fig. 4, we decompose the original wind speed into K IMF components, denoted by IMFt;l
k .

The features along the x-direction are temporal features, i.e., IMFt;l
k ¼ ðIMF1;l

k ; IMF2;l
k ;…; IMFT ;l

k Þ 2 RT .

The y-direction features are IMFt;l
k ¼ ðIMFt;l

1 ; IMFt;l
2 ;…; IMFt;l

K Þ 2 RK , and they denote the K IMF

components. The z-direction features are spatial features, i.e., IMFt;l
k ¼ ðIMFt;1

k ; IMFt;2
k ;…; IMFt;L

k Þ 2 RL.

3.3 Network Architecture

Fig. 5 depicts the hierarchy of 2Attn-LSTM, which follows the encoder-decoder architecture. We adopt
two separate LSTMs. One is to encode the spatial features, and the other decodes the temporal features. The
encoder captures the temporal correlations of IMF components at each time by referring to the previous
hidden state of the encoder, previous values of sensors and the spatial information. In the decoder, we use
temporal attention to adaptively select the relevant previous time intervals for making predictions.
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In the encoder part, we calculate Attention1 as follows:

alt ¼
expðð1� �Þglt þ �Ii;jÞPK
j¼1 expðð1� �Þgjt þ �Ii;jÞ

(12)

where glt is the weight attention of i and j sites, which is calculated as follows:

glt ¼ vTg tanhðWg½ht�1; ct�1� þ UgF
t;j
k þW 0

gF
t;i
k ug þ bgÞ (13)

Here, vg, ug, bg,Wg andUg are learnable parameters, and [;] is the connection computation. ht�1 and ct�1

are the hidden state and memory unit cell at time t�1 of the LSTM encoder, respectively. Ii;j is the mutual
information of i, j sets. It is computed as follows:

Ii;j ¼ HðFt;i
k Þ þ HðFt;j

k Þ � HðFt;i
k ;F

t;j
k Þ (14)

HðFt;i
k Þ ¼ �

X
f 2Ft;i

k

PFt;i
k
ðf Þ logðPFt;i

k
ðf ÞÞ (15)

Figure 4: Model of spatial-temporal feature

Figure 5: 2Attn-LSTM hierarchy
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HðFt;i
k ;F

t;j
k Þ ¼ �

X
f 2Ft;i

k ;f 02Ft;i
k

PFt;i
k Ft;i

k
ðf ; f 0Þ logðPFt;i

k Ft;i
k
ðf ; f 0ÞÞ (16)

whereHðFt;i
k Þis the entropy of Ft;i

k , HðFt;i
k ;F

t;j
k Þis the union entropy of Ft;i

k and F
t;j
k , and Pð�Þ is the probability

density function.

In the encoder, the following formula is used to update the hidden state at time t:

ht ¼ feðht�1; a
l
tÞ (17)

where fe is the LSTM cell of the encoder, and ht�1 is the hidden state at time t�1.

In the decoder, we use the following equation to update the hidden state at time t0:

h0t0 ¼ fdðh0t0�1; ½f̂ it0�1; at0 �Þ (18)

where fd is the LSTM cell of the decoder, and f̂ it0�1 is the prediction component at time t0�1. Attention2 is
calculated as follows:

uot0 ¼ vTd tanhðW 0
d½h0t0�1; c

0
t0�1� þWdho þ bdÞ (19)

cot0 ¼
expðuot0 ÞPT
j¼1 expðujt0 Þ

(20)

ât0 ¼
XT

o¼1
cot0ho (21)

whereWd,W 0
d, vd and bd are learnable parameters. h0t0�1 and c

0
t0�1 are the hidden state and memory cell of the

decoder in LSTM at time t0�1, respectively.

The final prediction component is

f̂ it0 ¼ vTy ðWm½at0 ; ht0 � þ bmÞ þ by (22)

where Wm, bm, vy and by are parameters.

4 Experiments

4.1 Settings

We perform our experiments over the Wind Integration National Data set (WIND), provided by the
National Renewable Energy Laboratory (NREL). It contains wind speed data for more than 126,000 sites
in the United States for the years 2007–2013. We consider 6 different datasets based on WIND, as
depicted in Tab. 1. They belong to Wyming and Texas states. In each state, we choose 5, 3, and 1 wind
farms with different time intervals (i.e., 1 hour, 30 minutes, 15 minutes) and time spans (i.e., 1 year, six
months, three months) to guarantee plenty of instances. For example, 5 wind farms of 286 sites in
Wyoming state are conducted in the experiment. The D1 dataset has 2,514,120 instances with a 1-hour
time interval during 2012.

We use general criteria to evaluate the proposed 2Attn-LSTM model, that is, the mean absolute error
(MAE) and root mean squared error (RMSE), which are widely adopted as the evaluation indices in the
task of wind speed prediction. They are given by the following:
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EMAE ¼ 1

N

XN
i¼1

Yi � Ŷ i

�� �� (23)

ERMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

ðYi � Ŷ iÞ2
vuut (24)

where N is the number of predictions, and i is the sequence number of the forecast point. Yi and Ŷi denote the
ground truth and predicted wind speeds, respectively.

4.2 Baselines

We compare our model with 4 baselines. They are BP, ARIMA [27], LSTM and PSTN [15]. The back
propagation (BP) neural network algorithm is a multilayer feedforward network trained according to the error
back propagation algorithm and is one of the most widely applied neural network models. Autoregressive
Integrated Moving Average (ARIMA) is actually a class of models that explains a given time series based
on its own past values, that is, its own lags and the lagged forecast errors, so that equation can be used to
forecast future values. It is a well-known model for forecasting future values in a time series. As a variant
of RNN, LSTM shows superior performance in processing sequential data.

The three methods mentioned above are classical models in short-term wind speed prediction. The
PSTN was recently proposed to leverage both temporal and spatial correlations. It integrates CNN and
LSTM to form a unified framework. To evaluate the presented 2Attn-LSTM with PSTN, we choose the
same configuration in Zhu et al. [15], as shown in Tab. 2.

Table 1: Dataset details

Dataset State Time Spans Time Intervals Wind farms Sites Instances

D1 Wyoming 1/1/2012–31/12/2012 60 minutes 5 287 2,514,120

D2 1/1/2012–30/6/2012 30 minutes 3 185 1,607,280

D3 1/7/2012–30/9/2012 15 minutes 1 80 706,560

D4 Texas 1/1/2009–31/12/2009 60 minutes 5 305 2,671,800

D5 1/7/2008–31/12/2008 30 minutes 3 147 1,298,304

D6 1/1/2009–31/3/2009 15 minutes 1 75 640,800

Table 2: PSTN configuration

Index Type Configurations

– Input data block size 10� 10

1 Convolution layer kernels: 20; kernel size: 3� 3; stride: 1� 1

2 Max-Pooling layer pooling size: 2� 2; stride: 2� 2

3 Convolution layer kernels: 50; kernel size: 3� 3; stride:1� 1

4 Convolution layer kernels: 200; kernel size: 2� 2; stride:1� 1

5 Fully connected layer units: 200; activation function: none

6 LSTM layer hidden unites:{100, 200, 300, 400, 500}

7 LSTM layer hidden unites: 100
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4.3 Implementation Details

The determination of the optimal hyperparameters is still an open issue. Specifically, we divided the
dataset into three subsets, i.e., training set, validation set and testing set at a ratio of 6:1:3. The training
set serves for model training, including searching for optimal hyperparameters, and the validation set is
used for model selection and overfitting prevention. We use testing data to test the model performance.
All the baselines are determined in this way as well.

In the presented 2Attn-LSTM, there are many hyperparameter settings during the training phase. We set
the batch size to 256 and the learning rate to 0.01. We set s ¼ 6 to make short-term predictions. The trade-off
parameter � is empirically fixed from 0.1 to 0.5. For the length of window size T , we set
T 2 f6; 12; 24; 36; 48g. For simplicity, we use the same hidden dimensionality at the encoder and the
decoder and conduct a grid search over {32, 64, 128, 256}. Moreover, we use stacked LSTMs (the
number of layers is denoted as q) as the units of the encoder and decoder to enhance our performance.
The setting is in which q ¼ 2, m ¼ n ¼ 64 and � ¼ 0:2 outperform the others in the validation set.

The TensorFlow deep learning framework based on the Python platform builds our model as well as the
baselines. All the methods are carried out on a 64-bit PC with an Intel Core i5-7600 CPU/32.00 GB RAM.
We test different hyperparameters to find the best setting for each.

4.4 Short-term Wind Speed Prediction

To evaluate the prediction performance of the presented model, we conduct experiments with a
prediction horizon ranging from 10 minutes to 1 hour. The prediction performance of all models is
evaluated on 6 testing sets by MAE and RMSE indices.

The results shown in Tab. 3 illustrate that the proposed 2Attn-LSTM model holds the dominant position
over the other models, while BP produces the worst prediction results. BP performs fairly poor with longer
prediction horizons. For example, BP is 3.0% lower than the ARIMA 15-minute ahead prediction, while it
increases to 10% when performing the 1-hour ahead prediction in terms of MAE. Although ARIMA
outperforms BP, it is still inferior to LSTM, which implies that LSTM is more efficient in capturing
temporal information. This mainly benefits from the working mechanism, i.e., the gates and the memory
cell update information and prevent the model from vanishing the gradient. Specifically, PSTN improves
the average MAE and RMSE by 14% and 3%, respectively, compared to LSTM. Integrating spatial and
temporal features in the PSTN contributes to the best performance. The proposed 2Attn-LSTM method
outperformed the PSTN in MAE by 8% in the 15-min horizon and 27.5% in the 1-hour ahead prediction
task. The reasons for this may lie in the following two aspects. (1) The 2Attn-LSTM model handles the
VMD first, which decomposes the original wind speed sequence with strong nonlinearity, and
randomness can be decomposed into a series of stable modes. It plays a more critical role when the
prediction horizon increases. (2) It considers both spatial and temporal features, such as PSTN, which is
helpful for prediction.

Figs. 6 and 7 show the comparison of these five methods in the Wyoming dataset by RMSE and in the
Texas dataset by MAE. Fig. 6 implies that for the same method, the shorter the time interval is, the higher the
prediction performance. Fig. 7 lists the comparison among 5 models byMAE. It can be concluded that 2Attn-
LSTM achieves the best performance.
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Table 3: Performance comparison among different methods

Method Wyoming Texas

D1 D2 D3 D4 D5 D6

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

BP 1.054 1.382 0.993 1.124 0.928 0.948 1.012 1.279 0.948 1.058 0.905 0.976

ARIMA 0.948 1.253 0.927 1.108 0.899 1.002 0.982 1.163 0.957 1.028 0.895 0.962

LSTM 0.870 1.161 0.764 0.997 0.731 0.723 0.844 1.094 0.824 0.923 0.744 0.851

PSTN 0.813 1.067 0.658 0.916 0.603 0.642 0.709 0.947 0.736 0.810 0.670 0.693

2Attn-
LSTM

0.746 1.043 0.609 0.870 0.519 0.549 0.658 0.832 0.683 0.749 0.589 0.528

Figure 6: RMSE in the Wyoming dataset

Figure 7: MAE in the Texas dataset
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5 Conclusion and Future Work

We propose a deep 2Atts-LSTM architecture for short-term wind prediction, which integrates spatial-
temporal features into a unified framework. In the first layer, an encoder of LSTM with mutual-
information-based attention is adopted to extract the spatial features from the IMF components by VMD
of wind speed. In the second layer, we employ temporal attention to select the relevant time step to make
predictions adaptively. Experiments on real-world data illustrate the superior performance against
4 baselines in terms of MAE and RMSE simultaneously.

It is worth pointing out that the presented 2Atts-LSTM is a general model suitable for other spatial-
temporal features. Furthermore, we will investigate how to integrate more sensor data into the model,
such as atmospheric pressure and temperature. We think it is feasible to combine more variables;
although, it is challenging to achieve the input selection and train the more complicated framework.
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