
A Fire Escape Simulation System Based on the Dijkstra Algorithm

Haolong Yang1, Chunqiang Hu1, Guwei Li2,* and Jingchun Fan3

1ChongQing University, ChongQing, 400000, China
2Zhejiang Dongfang Polytechnic, WenZhou, 325000, China

3Compugen Ltd, Toronto, M2J 4A6, Canada
�Corresponding Author: Guwei Li. Email: 3168897@qq.com

Received: 31 December 2020; Accepted: 13 April 2021

Abstract: Despite the support of all kinds of fire prevention measures and high-
tech fire prevention equipment, fires still occur frequently because of both anthro-
pogenic factors and natural disasters. This issue has drawn the attention of
schools, all levels of government, and other organizations. Many types of organi-
zations carry out fire drills throughout the year. Because this kind of drill cannot
anticipate the specific circumstances of each fire, which are generally far more
complicated than drills, most people cannot correctly choose the optimal escape
route from real fires. Thus, a fire-scene virtual simulation system based on the
Dijkstra algorithm is here proposed to address such problems as casualties caused
by frequent fires and the inability of most people to correctly choose a fire escape
route. This virtual fire escape simulation system uses Maya to carry out 3D recon-
struction of the fire scene, the Unity engine to conduct interactive function design,
and the Dijkstra algorithm to calculate the best escape route. The results of the
example indicate that the simulation system solves the problems of the traditional
simulation system, such as stiffness, lack of intelligence, and poor simulation.

Keywords: Dijkstra algorithm; virtual fire escape simulation system; fire

1 Introduction

Fires occur frequently, and this has drawn the attention of schools, all levels of government, and many
other types of organizations [1]. Most organizations that work out of modern buildings hold on-site fire drills
[2–6], hoping to reduce casualties from fire through simulation exercises [7]. However, this kind of drill
cannot fully anticipate the specific circumstances of each fire. A real fire situation is complex, and
ordinary people often cannot choose the optimal escape route in the face of confusion. Traditional fire
simulation systems cannot provide an escape route selection function, meaning that the fire safety
simulation exercise cannot achieve its intended purpose.

A fire scene virtual simulation system [8,9] based on the Dijkstra algorithm [10] is here proposed to
solve these problems. This virtual [11] fire escape simulation system uses Maya to carry out a three-
dimensions (3D) reconstruction [12,13] of the fire scene, the Unity engine to conduct interactive function
design, and the Dijkstra algorithm to calculate the best escape route. The results of an example using the

This work is licensed under a Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

Computer Systems Science & Engineering
DOI:10.32604/csse.2021.016377

Article

echT PressScience

mailto:3168897@qq.com
http://dx.doi.org/10.32604/csse.2021.016377
http://dx.doi.org/10.32604/csse.2021.016377


Dijkstra algorithm indicate that the simulation system solves the problems of the traditional simulation
bsystem, such as rigidity, unintelligence, and poor imitation.

2 The Dijkstra Algorithm

The Dijkstra algorithm, a representative shortest route algorithm [14,15], is mainly used to determine the
shortest route between points (between nodes). The core feature is that one of the nodes is taken as the center
node and spreads out layer by layer until the target node is obtained as follows:

(1) Specify a node. For example, obtain the shortest route between node “A” and other nodes (Fig. 1).

(2) Create two collections (L, Y), where collection L is used to store the nodes that have obtained the
shortest route and collection Y is used to store nodes that have not obtained the shortest route.

(3) Initialize collections L and Y. At the beginning, the collection L contains: A->A=0, Y; the collection
Y contains: A->B=4, A->C=∞, A->D=2 and A->E=∞ (Fig. 2).

(4) Obtain the node with the shortest route in the collection Y and add it to collection L. For example,
A->D=2. If the distance from AD plus D to B, C, and E is less than the distance from A to B, C, and E,
collection Y will be updated. At this point, collection L contains: A->A=0, A->D=2; collection Y
contains: A->B=3, A->C=3, and A->E=9 (Fig. 3).

Figure 1: Node diagram

Figure 2: Select node A

Figure 3: First update of Y

366 CSSE, 2021, vol.39, no.3



(5) At this point, A->B and A->C are already the shortest route 3, so collection Y is updated. Collection
L contains: A->A=0, A->D=2, A->B=3 and A->C=3; and collection Y contains: A->E=9 (Fig. 4).

(6) Judge the distance from A to D to E and the distance from A to C to E. Take the shortest distance, and
then update collection Y. At this point, collection L contains: A->A=0, A->D=2, A->B=3, A->C=3, and
A->E=6. Collection Y contains: null (Fig. 5).

(7) The shortest route between A and each other node is finally obtained.

3 Fire Escape Simulation System Based on the Dijkstra Algorithm

The fire escape simulation system based on the Dijkstra algorithm uses Maya to perform 3D
reconstruction of the fire scene, the Unity engine to conduct interactive function design, and the Dijkstra
algorithm to calculate the best escape route, in cooperation with technology such as the Visual Effect
Graph and Shader Graph, to carry out special effect simulations of many fire scenarios. The system will
be released on several platforms, principally the Virtual Reality (VR) platform and the mobile platform.
Students can use VR headsets and mobile phones to experience realistic fire simulations in an interactive
manner, which can give a more grounded sense of then experience while maintaining the safety of a fire drill.

3.1 Fire Escape Simulation System Development Process

The methods used to develop the fire escape simulation system based on the Dijkstra algorithm and the
overall process of the proposed method are shown in Fig. 6.

The escape function module based on the Dijkstra algorithm was developed in the Unity engine. At the
same time, intersection of ball detection technology with the addition of explosion point technology was used
so that fire and explosion effects could be added for each explosion point. An eye-catching user interface (UI)
was designed to provide the users with a clear sense of experience. Finally, the system generated was
published to HTC VIVE.

Figure 4: Second update of Y

Figure 5: Third update of Y

CSSE, 2021, vol.39, no.3 367



3.2 Maya Technology

Produced by Autodesk, Maya [16–18] is a powerful 3D animation software that is often applied to 3D
modeling, film and television animation, and film and television special effects. The most commonly used
modeling method is polygon modeling, where developers can create clay figures to precisely control each
point of the model. The operation mode of modeling is novel, and the Unique Visitor (UV) module in the
new version of the software has been upgraded, which is convenient and suitable for VR application. For
this reason, Maya was chosen in the study for modeling, UV processing, and map production of the
dormitory scene.

3.3 Unity Technology

This fire escape simulation system has very high criteria for the authenticity of 3D scenes, which
requires an engine capable of producing 3A level images. Many interactive functions and the production
of UI should be added, and the implementation of these functions and effects can be achieved only by Unity.

Unity [19–21] is an engine for developing 3D games, especially in the mobile game market. The
development language is C sharp (C#), which is based on module-oriented development and is
compatible with all platforms. Unity is used to achieve the special effects display and interactive
functions in the system.

Unity development involves all module-oriented development, and the Visual Effect Graph [22] module
is mainly used in the system. The powerful effect and control power of this module were key to our
realization of vivid special effects. However, the Shader Graph module was also necessary for us to
realize physical rendering.

4 Visual Effect Graph Technology

There are many explosion and flame effects in the fire simulation system, but these effects, especially
photographic-level effects, are difficult to achieve using traditional computer graphics (CG) technology
[23,24]. Moreover, operation efficiency should be considered. The use of the latest Visual Effect Graph
technology of Unity ensures smooth operation of the system and helps to achieve photographic-level effects.

Visual Effect Graph is a new technology that was released after Unity 2018.3, which is a new special
effects tool. It is similar to the original particle system, but its most intuitive feature is a visual node that
supports programming and runs beyond the Graphics Processing Unit (GPU) [25,26]. These features
enable it to support a larger graphic computation burden and provide a more flexible development space
for developers and creators. Therefore, it can be used to create many special effects in AAA games.

The methods of using Visual Effect Graph technology in Unity are shown as follows.

Figure 6: Development of the overall process of the fire escape simulation system

368 CSSE, 2021, vol.39, no.3



1) Installation and configuration

Visual Effect Graph needs to be installed by the Package Manager. It currently only supports the High-
Definition Render Pipeline (HDRP), so HDRP needs to be installed. After installation, the HDRP
configuration file should be created in the create menu of the project window.

2) Creation and editing of VFX Graph

First, a Visual Special Effects (VFX) Graph asset must be created. After dragging it into the scene, a
game object is generated automatically. A Visual Effect module will be automatically added to Unity.
Refer to the VFX Graph asset created before, which can be edited after being opened (Fig. 7).

System: The collection of several contexts enclosed by dashed lines is called the System. One System
contains Initialize, Update, and Output. One VFX Graph can contain more than one System.

Spawn: This context defines the quantity and time of particles that are generated.

Initialize: The context, similar to the start method of writing a script, is used to initialize the particles and
should be started with the Capacity and Bounds.

Capacity defines the maximum quantity of particles that can exist at one time. This value is important
because it determines how much memory is allocated initially. The value should be set according to the
quantity of particles produced. It can commonly be calculated by the formula: Rate × Max
Lifetime = Capacity.

Bounds: Defines the simulation region of the particles.

Update: The context, similar to the Update method of writing a script, is used to set how the particle
changes over time. Forces such as collision and force fields can be used by it.

Output: Used to render particles. It determines the type, texture, color, and orientation of the generated
particles. A System can contain more than one Output.

3) Operational test

By setting the appropriate parameter values, the effect shown in Fig. 8 can be obtained.

Figure 7: VFX graph editing interface

CSSE, 2021, vol.39, no.3 369



5 Shader Graph Technology

1) Creation and setting

To use the Shader Graph, we installed the Shader Graph package and the Universal RP package (the
previous name of Unity 2019.3 is Light Weight RP). Create and configure the programmable rendering
pipeline (SRP), and then create a new Physically Based Rendering (PBR) Graph. By opening the PBR
Graph file, you can start to set the material effect based on physical rendering.

2) PBR rendering effect test

Through the connection of various nodes and debugging parameters, the edge luminous effect shown in
Fig. 9 can be obtained.

Figure 8: Simple flame effect test

Figure 9: Explosion effect test

370 CSSE, 2021, vol.39, no.3



6 Overall Design of the System

The escape route module was improved and added to the existing VR reproduction system owing to its
functional modules and shortcomings.

The function modules are as follows:

1) Scene module: Create fire scene models, add special effects in the process of various fires, and add a
real-time updated UI.

2) VR core module: The Dijkstra algorithm, the VFX Graph technology, and the Shader Graph
technology.

3) Real-time simulation: Triggering events and real-time display of interactive effects.

7 Case Study

The Fire and Mars effects were added to the scene by the Visual Effect Graph technology, and all
material rendering was realized based on the Shader Graph technology. A real-time UI for real-time
interaction and escape route function module based on the Dijkstra algorithm was added to select the
optimal route. According to the research, this system enabled users to use VR to control the scene and UI
interaction, and truly restored various effects of the fire scene.

8 Conclusion

A fire-scene virtual simulation system based on the Dijkstra algorithm was developed to solve the
problems of traditional simulation systems, such as casualties caused by frequent fires and the inability of
most people to correctly choose a fire escape route. This paper discusses the overall design, development
process, and technical solution plan of the fire escape simulation system. The key technologies such as
the Dijkstra algorithm, Visual Effect Graph, and Shader Graph and explain how various explosions and
flame special effects simulations are realized and how the fire escape simulation prototype system was
developed. The results of the case study indicate that this method can reproduce visual effects of the fire
scene, solving the problems of the traditional fire simulation system, which include the lack of any
optimal escape route module, lack of intelligence, and low level of realism.

Acknowledgement: We would like to thank LetPub (www.letpub.com) for providing linguistic assistance
during the preparation of this manuscript.

Funding Statement: The authors received no specific funding for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest regarding the present study.

References
[1] K. Chang, T. Chen, Y. Lee, Y. Lin and T. Nguyen, “Study of the high-tech process mechanical integrity and

electrical safety,” in 2019 14th Int. Microsystems, Packaging, Assembly and Circuits Technology Conf.
(IMPACT), Taipei, Taiwan, pp. 162–165, 2019.

[2] W. Fang, F. Zhang, Y. Ding and J. Sheng, “A new sequential image prediction method based on lstm and dcgan,”
Computers, Materials & Continua, vol. 64, no. 1, pp. 217–231, 2020.

[3] W. Fang, L. Pang and W. N. Yi, “Survey on the application of deep reinforcement learning in image processing,”
Journal on Artificial Intelligence, vol. 2, no. 1, pp. 39–58, 2020.

[4] A. Elbir, H. O. Ilhan and N. Aydin, “The implementation of optimization methods for contrast enhancement,”
Computer Systems Science and Engineering, vol. 34, no. 2, pp. 101–107, 2019.

CSSE, 2021, vol.39, no.3 371



[5] R. Zhang and X. Zhao, “The application of folk art with virtual reality technology in visual communication,”
Intelligent Automation & Soft Computing, vol. 26, no. 4, pp. 783–793, 2020.

[6] L. Li, Y. Wei, L. Zhang and X. Wang, “Efficient virtual resource allocation in mobile edge networks based on
machine learning,” Journal of Cyber Security, vol. 2, no. 3, pp. 141–150, 2020.

[7] J. Wu, J. Guo and G. Liu, “The planning method of fire-using scheme based on ordinal optimization theory,” in
2015 Chinese Automation Congress (CAC). Wuhan, China, 216–219, 2015.

[8] A. Altalbe, “Performance impact of simulation-based virtual laboratory on engineering students: A case study of
Australia virtual system,” IEEE Access, vol. 7, pp. 177387–177396, 2019.

[9] W. Zhang, X. Chen and J. Jiang, “A multi-objective optimization method of initial virtual machine fault-tolerant
placement for star topological data centers of cloud systems,” Tsinghua Science and Technology, vol. 26, no. 1, pp.
95–111, 2021.

[10] N. Jasika, N. Alispahic, A. Elma, K. Ilvana, L. Elma et al., “Dijkstra’s shortest path algorithm serial and parallel
execution performance analysis,” in 2012 Proc. of the 35th Int. Convention MIPRO, Opatija, pp. 1811–1815, 2012.

[11] C. Zhao, T. Wang and A. Yang, “A heterogeneous virtual machines resource allocation scheme in slices
architecture of 5g edge datacenter,” Computers, Materials & Continua, vol. 61, no. 1, pp. 423–437, 2019.

[12] Y. Ma, Y. Wang, X. Mei, C. Liu, X. Dai et al., “Visible/infrared combined 3D reconstruction scheme based on
nonrigid registration of multi-modality images with mixed features,” IEEE Access, vol. 7, pp. 19199–19211, 2019.

[13] Y. Altmann, S. McLaughlin and M. E. Davies, “Fast online 3D oeconstruction of dynamic scenes from individual
single-photon detection events,” IEEE Transactions on Image Processing, vol. 29, pp. 2666–2675, 2020.

[14] Y. Gao, “An improved shortest route algorithm in vehicle navigation system,” in 2010 3rd Int. Conf. on Advanced
Computer Theory and Engineering (ICACTE), Chengdu, China, pp. 363–366, 2010.

[15] ChangWook Ahn and R. S. Ramakrishna, “A genetic algorithm for shortest path routing problem and the sizing of
populations,” IEEE Transactions on Evolutionary Computation, vol. 6, no. 6, pp. 566–579, 2002.

[16] S. Xia, “Application of Maya in film 3D animation design,” in 2011 3rd Int. Conf. on Computer Research and
Development, Shanghai, China, pp. 357–360, 2011.

[17] G. Can, J. Odobez and D. Gatica-Perez, “Maya codical glyph segmentation: A crowdsourcing approach,” IEEE
Transactions on Multimedia, vol. 20, no. 3, pp. 711–725, 2018.

[18] J. Kinsman and D. Asher, “Orbital dynamics of highly probable but rare Orionid outbursts possibly observed by
the ancient Maya,” Monthly Notices of the Royal Astronomical Society, vol. 493, no. 1, pp. 551–558, 2020.

[19] S. Pei and K. Chang, “Odd ramanujan sums of complex roots of unity,” IEEE Signal Processing Letters, vol. 14,
no. 1, pp. 20–23, 2007.

[20] D. Jakelić and A. A. de Moura, “Tensor products, characters, and blocks of finite-dimensional representations of
quantum affine algebras at roots of unity,” International Mathematics Research Notices, vol. 2011, no. 18, pp.
4147–4199, 2011.

[21] M. Zhu, “Regular representations of quantum groups at roots of unity,” International Mathematics Research
Notices, vol. 2010, no. 15, pp. 3039–3065, 2010.

[22] B. Schroeder, S. Tripathi and H. Tang, “Triplet-aware scene graph embeddings,” in 2019 IEEE/CVF Int. Conf. on
Computer Vision Workshop (ICCVW), Seoul, Korea (South), pp. 1783–1787, 2019.

[23] F. Peng, L. Yin, L. Zhang and M. Long, “CGR-GAN: CG facial image regeneration for antiforensics based on
generative adversarial network,” IEEE Transactions on Multimedia, vol. 22, no. 10, pp. 2511–2525, 2020.

[24] W. Lee and S. Hong, “28 GHz RF front-end structure using CG LNA as a switch,” IEEE Microwave and Wireless
Components Letters, vol. 30, no. 1, pp. 94–97, 2020.

[25] G. Vigueras and J. M. Orduña, “On the use of GPU for accelerating communication-aware mapping techniques,”
Computer Journal, vol. 59, no. 6, pp. 836–847, 2016.

[26] S. Keskin and T. Kocak, “GPU-based gigabit LDPC decoder,” IEEE Communications Letters, vol. 21, no. 8, pp.
1703–1706, 2017.

372 CSSE, 2021, vol.39, no.3


	A Fire Escape Simulation System Based on the Dijkstra Algorithm
	Introduction
	The Dijkstra Algorithm
	Fire Escape Simulation System Based on the Dijkstra Algorithm
	Visual Effect Graph Technology
	Shader Graph Technology
	Overall Design of the System
	Case Study
	Conclusion
	flink9
	References


