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Abstract: Federated learning is an ideal solution to the limitation of not preser-
ving the users’ privacy information in edge computing. In federated learning,
the cloud aggregates local model updates from the devices to generate a global
model. To protect devices’ privacy, the cloud is designed to have no visibility into
how these updates are generated, making detecting and defending malicious
model updates a challenging task. Unlike existing works that struggle to tolerate
adversarial attacks, the paper manages to exclude malicious updates from the glo-
bal model’s aggregation. This paper focuses on Byzantine attack and backdoor
attack in the federated learning setting. We propose a federated learning frame-
work, which we call Federated Reconstruction Error Probability Distribution
(FREPD). FREPD uses a VAE model to compute updates’ reconstruction errors.
Updates with higher reconstruction errors than the average reconstruction error
are deemed as malicious updates and removed. Meanwhile, we apply the
Kolmogorov-Smirnov test to choose a proper probability distribution function
and tune its parameters to fit the distribution of reconstruction errors from observed
benign updates. We then use the distribution function to estimate the probability
that an unseen reconstruction error belongs to the benign reconstruction error
distribution. Based on the probability, we classify the model updates as benign or
malicious. Only benign updates are used to aggregate the global model. FREPD
is tested with extensive experiments on independent and identically distributed
(IID) and non-IID federated benchmarks, showing a competitive performance over
existing aggregation methods under Byzantine attack and backdoor attack.
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1 Introduction

Recently, numerous IoT applications, such as autonomous driving, smart healthcare and Industry
4.0 require low latency edge computing [1–4]. Traditional machine learning [5–7] that stores user data at
a data center raised a wide range of privacy concerns. Federated learning is a solution to the limitation of
not preserving the users’ privacy information. Federated learning is an attractive framework where
multiple devices collaboratively train a machine learning model without revealing their private data [8].
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In every round, the cloud distributes the global model to a random subset of devices. Each of them trains
locally and transfers the local model update to the cloud. The cloud then combines these local models
update to generate an aggregated model. To protect devices’ privacy, devices’ local data and training
process is designed to be invisible to the cloud.

The distributed nature of federated learning, mainly when using secure aggregation methods, makes
detecting and mitigating the adversarial attacks a particularly challenging task [9]. Meanwhile, federated
learning gives devices a direct influence on the aggregated model, enabling powerful attacks such as
backdoor attack. Therefore, federated learning is vulnerable to adversarial attacks, even when only one
device is malicious [10]. Adversarial attacks can be broadly categorized into two types based on the attack’s
goal: untargeted and targeted attack [9]. This paper focuses on Byzantine attack (untargeted attack) and
backdoor attack (targeted attack). Under Byzantine attack, malicious devices send arbitrary model updates
to the cloud to induce model performance deterioration or the failure of model training [10,11]. Under
backdoor attack, the adversary’s goal is to induce the aggregated model to misclassify a set of chosen inputs
[12]. For example, in image classification, backdoor attack may aim to enforce the model classify images
with the label ‘cat’ as the label ‘dog’ while ensuring other images are correctly classified.

Byzantine-robust distributed machine learning has gained significant interest in recent years. Most of the
existing aggregation methods [13–15] design Byzantine tolerant aggregation methods to defend against
Byzantine attack and assume that the data are independent and identically distributed (IID) on the
devices. Some of the methods are proved to have good performance in federated learning. However, there
are two challenges to be solved. On the one hand, these methods are not robust to the heterogeneous
datasets generated from heterogeneous computing units. On the other hand, these methods are mainly
designed for Byzantine attack and cannot defend backdoor attack.

There are also defense methods against backdoor attack. Li et al. [16] propose a robust federated learning
framework, which successfully defends both Byzantine attack and backdoor attack. The method adopts a
variational autoencoder (VAE) to generate the reconstruction errors of local model updates. It is proved
that the reconstruction errors of malicious updates are much larger than that of the benign ones and can
be used as anomaly score. Model updates with higher reconstruction errors than the average
reconstruction error are deemed as malicious updates. However, the naive classification threshold of
reconstruction errors may result in low classification accuracy. Besides, as proved in Li et al. [10], even
one misclassified model update may lead to the aggregated model’s bad performance. Therefore, there is
a need to improve the classification accuracy of malicious updates.

This paper develops an anomaly detection framework for robust federated learning systems based on
variational autoencoder (VAE). The proposed method has three main steps. First, we adopt VAE to
compute the reconstruction errors of model updates under no attack and then choose a proper probability
distribution function and tune its parameters to fit the distribution of reconstruction errors. Next, we use
VAE to compute the reconstruction errors of model updates under adversarial attacks. We use the best-
fitted distribution function to compute the probability that the reconstruction error belongs to benign
updates. The updates with higher probability than 90% of the updates are considered benign updates.
Finally, all benign updates are aggregated to generate a global model. We test our method under
Byzantine attack and backdoor attack when 10% or 30% of all the devices are adversarial attackers. The
proposed federated learning framework, named Federated Reconstruction Error Probability Distribution
(FREPD) framework, has three main advantages. First, FREPD uses VAE to detect and exclude malicious
updates from the aggregated models’ generation instead of tolerating adversarial attacks’ impact as the
existing methods do. This defense strategy makes it possible to eliminate the negative impacts of both
Byzantine attack and backdoor attack. Second, after excluding malicious model updates, the aggregation
method of FREPD can be changed on the goal of federated networks. Third, FREPD uses the probability
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distribution of reconstruction errors to detect malicious model updates, which has higher classification
accuracy than existing methods. In our experiments, we use multiple aggregation methods to aggregate
the remaining updates. The results show that our methods converge rapidly on both IID and non-IID
datasets. The rapid convergence ensures the communication efficiency of REPD. We use three
aggregation methods: federated averaging (FedAvg) [17], GeoMed [13] and FedProx [18]. The
contributions of this paper are summarized as follows:

� We propose a VAE based anomaly detection framework named FREPD, which uses the probability
distribution of reconstruction errors to detect benign local model updates.

� We evaluate the performance of FREPD on both IID and non-IID federated datasets with various
models under Byzantine attack and backdoor attack.

� We compare the convergence rate of FREPD and existing methods on datasets with different
statistical heterogeneity, and the results demonstrate the superiority of the proposed model.

2 Related Work

2.1 Byzantine-robust Distributed Machine Learning

Stochastic gradient descent (SGD) is widely used in distributed machine learning [19–21]. However, SGD
is vulnerable to Byzantine attack [10]. Byzantine devices can transmit arbitrary or malicious updates to the
cloud to bias the learning process. Byzantine attack aims to ensure the distributed SGD algorithm does not
converge or converge to an incorrect value, while the defenses aim to ensure convergence. To defend
against Byzantine attack, most of the existing Byzantine-robust machine learning algorithms extend SGD
with the IID assumption. Under this assumption, local model updates from benign devices are distributed
around the correct gradient, while those transmitted from malicious devices to the cloud could be arbitrary.
Instead of using the simple averaging aggregation method in Bottou [19], the existing algorithms focus on
incorporating robust aggregation methods with SGD [13–15]. Some of these algorithms, such as Krum [15]
and Medoid [22], select one of the local model updates to compute the global model update. Other
algorithms, such as GeoMed [13] and Bulyan [14], generate the global model update by estimating the
center of all the local model updates, which may not be one of the local model updates.

2.2 Byzantine-robust Federated Learning

The main disadvantage of these algorithms mentioned above comes from the IID assumption [10],
making them a poor fit in the non-IID datasets. However, non-IID datasets are commonplace in federated
learning. Aggregation methods based on IID assumption cannot be generalized to non-IID settings
straightforwardly. To defend against Byzantine attack in non-IID settings, Li et al. [10] propose a class of
robust stochastic methods abbreviated as RSA. RSA has several variants, each tailored for an lp-norm
regularized robustifying objective function. Wu et al. [11] combine SAGA’s variance reduction with
robust aggregation to deal with Byzantine attack in federated learning. Both approaches cannot defend
against backdoor attack.

2.3 Federated Learning with Robustness to Backdoor Attack

Backdoor attack has a connection to Byzantine attack [12]. However, the adversarial goal of backdoor
attack is to induce misclassification. It is proved that backdoor attack is useful even with Byzantine-robust
aggregation methods [12]. To make federated learning robust to backdoor attack, Li et al. [16] propose a
framework that learns to detect malicious devices by the reconstruction error of devices’ updates, which
is the output of a trained VAE model. Model updates that have larger reconstruction errors than the mean
of reconstruction errors are seen as malicious updates. However, the naive classification threshold of
reconstruction errors may result in low classification accuracy. Besides, as proved in Li et al. [10], even
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one misclassified model update may lead to the aggregated model’s bad performance. In our paper, we first
choose a proper probability distribution function, tune its parameters to fit the distribution of observed benign
reconstruction errors, and then use the well-fitted function to compute the probability that the reconstruction
error is generated from benign updates. The updates that have a high probability are considered benign
updates and aggregate the global model.

3 FREPD for Robust Federated Learning

3.1 Preliminary: Federated Averaging and Variational Autoencoder

3.1.1 Federated Averaging
In federated learning, many devices learn on their local data and communicate with a cloud to achieve a

global update. We assume that there are K devices over which the data is partitioned with Pk , the set of indexes
of data points on the device k, with nk ¼ Pkj j and n ¼PK

k¼1 nk . A typical implementation of FedAvg with a
fixed learning rate g has each device k compute wt � gr‘ wt; bð Þ. The average gradient on its local data at the
model on the round t is wt. The cloud aggregates these gradients and applies the update

wtþ1  
XK
k¼1

nk
n
wk
tþ1 (1)

Each device locally takes one step of gradient descent on the current model using its local data, and the
cloud then takes a weighted average of the updates from devices to update the global model [17]. This
algorithm selects C-fraction of devices on each round and computes the gradient of the loss over all the
selected devices’ data. For each round, C is the fraction of devices that perform computation. We present
Federated Averaging (FedAvg) in Algorithm 1.

3.1.2 Variational Autoencoder
Avariational autoencoder (VAE) [23] is a directed graphical model with certain types of latent variables,

such as Gaussian latent variables [24]. As shown in Fig. 1, a VAE has an encoder and a decoder. The highest

Algorithm 1: FedAvg

Cloud:

1: Input: w0, g

2: for each round t = 1,2,…, do

3: St = (random set of max(C.K,1) devices);

4: for each device k 2 St in parallel do

5: Broadcast the current global model update wt-1 to the device k;

6: Receive the local model update wk
t from the device k;

7: Update the global model update wt via (1)

Device k:

1: for each round t = 1,2,…, do

2: Receive the cloud’s global model update wt-1

3: Use the global model update to train the local model and compute the local model update wk
t

4: Send the current local model wk
t to the cloud
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layer of the decoder module is the start of the generative process and z is the latent variable generated from
the prior distribution phðzÞ. gðzÞ is the process of data generation and the result is x. The data x is generated by
the generative distribution phðxjzÞ conditioned on z : z � phðzÞ; x � phðxjzÞ. In the Stochastic Gradient
Variational Bayes [23] framework, the variational lower bound of log-likelihood is used as a surrogate
objective function [24]. The variational lower bound is written as:

log ph xð Þ � �DKL qf zjxð ÞjjphðzÞ
� �þ Eqf zjxð Þ log phðxjzÞ½ � (2)

In this framework, qf zjxð Þ is the approximate posterior and phðzÞ is the prior distribution of the latent
variable z. phðxjzÞ is the likelihood of the data x given the latent variable z. The first term of the right-
hand side of Eq. (2) is the KL divergence between qf zjxð Þ and phðzÞ. The second term of the right-hand
side of Eq. (2) can be approximated by drawing samples zðlÞðl ¼ 1; . . . ; LÞ by the approximate posterior
qf zjxð Þ. The variational lower bound can be rewritten as follows:

log phðxÞ � �DKL qfðzjxÞ k phðzÞ
� �þ 1

L

XL
l¼1

logph xjzðlÞ
� �

(3)

where zðlÞ ¼ gf x; eðlÞ
� �

; eðlÞ � N ð0; IÞ. The approximate posterior is reparameterized with a deterministic,
differentiable function gfð�; �Þ, whose arguments are data x and the noise variable E. In our paper, we first
train a VAE model on benign model updates and then use the trained model to compute model updates’
reconstruction errors.

3.2 Attack Model

Our paper considers three types of Byzantine attack: sign-flipping attack, additive noise attack, and
same-value attack. We also consider one type of backdoor attack: model replacement.

3.2.1 Byzantine Attack
Under Byzantine attack, malicious devices can send arbitrary model updates to the cloud. In these cases,

the adversarial goal is to ensure the aggregated model converges to ‘sub-optimal to utterly ineffective
models’ while defenses aim to ensure convergence [12]. We consider the following attack types:

� Sign-flipping attack. Under sign-flipping attack, malicious devices flip the signs of their local model
updates and transfer the sign-flipped updates to the cloud [10]. The updates from device k is flipped as
wk ¼ rŵk . Here ŵk is the real value and r is a constant, which we set as �4.

� Additive noise attack. Under additive noise attack, the malicious device k adds Gaussian noise to the
local model update and set the update as wk ¼ ŵk þ e. Here ŵk is the real value and e is vector drawn
from a Gaussian distribution with mean zero and standard deviation 20.

Figure 1: Encoder and decoder of a VAE (a) Encoder (b) Decoder

CSSE, 2021, vol.39, no.3 311



� Same-value attack. Under same-value attack, the malicious device k sets its local model update as
wk ¼ c1. Here 1 2 Rd is an all-one vector and c is a constant, which we set as 100.

3.2.2 Backdoor Attack
Under backdoor attack, the adversary aims to cause the aggregated model to misclassify a set of chosen

inputs [5]. For example, in text classification task, the adversary may aim to suggest a particular restaurant’s
name after observing the phrase “my favorite restaurant is” [9]. As proved in Bhagoji et al. [12], backdoor
attack is effective even with Byzantine-robust aggregation methods. Backdoor attack is a typical type of
backdoor attack and has two main categories: naive approach and model replacement.

� Naive approach: The naive approach can simply train its model on backdoored inputs [25]. The
training dataset includes a mix of correctly labeled inputs and backdoored inputs to induce
misclassification. Although the naive approach can easily break distributed learning, it does not
work against federated learning. The aggregation methods in federated learning cancel out most of
the backdoored data’s contribution, and the aggregated model can quickly recover from the naive
approach. As proved [25], most of the devices in federated networks should be attackers, and the
poisoning process is prolonged when using the naive approach.

� Model replacement: When only device k� is the selected attacker in round t, the attacker attempts to
substitute the whole model with a malicious model w� by sending

Dwk�
t ¼ b w� � wtð Þ (4)

where b ¼ ðPk2St nkÞ
.
gnk is a boost factor. Then the global update Dwtþ1 will be

Dwtþ1 ¼ w� þ g

P
k2St ;k 6¼1

nkDwk
t

P
k2St

nk
(5)

If we assume the model has sufficiently converged, the updates from benign devices will be small. Dwtþ1
will thus be a close neighbor of w�. In our paper, we use model replacement to backdoor devices.

3.3 Defense Assumption and Goals

We make assumptions about our defense mechanism against Byzantine attacks and backdoor attacks as
follows:

� The cloud is fully trusted. The cloud plays a vital role in detecting and excluding malicious local
model updates from devices. If the cloud is compromised, the aggregated model will be vulnerable
to adversarial attacks.

� No malicious devices in the beginning. Devices may be vulnerable but are not compromised when
they first participate in the federated network. It takes some time for adversaries to compromise
devices, leaving sufficient time to learn the probability distribution of observed benign model
updates’ reconstruction errors.

� Sufficient computing resources. The cloud has sufficient computing resources to detect and exclude
malicious model updates. The devices can handle the computing consumption of training local
models and performing adversarial attacks.

The proposed defense mechanism aims to detect malicious model updates and to mitigate the impacts of
adversarial attacks. We first make a precise determination of whether a certain model update is malicious and
then remove malicious updates from the global model’s aggregating process.
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3.4 Malicious Model Update Detection

It is proved that the most effective way of eliminating the impact of malicious model updates is to detect
and exclude these malicious updates before model aggregation [9]. Based on variational autoencoder (VAE),
a state-of-the-art malicious model update detection algorithm, Spectral [9], significantly outperforms all
traditional algorithms. This method trains a VAE to compute the reconstruction errors of model updates
and then use the reconstruction errors to determine whether a local model update is malicious. If a model
update’s reconstruction error is larger than the average reconstruction error, the update will be seen as a
malicious update. However, as mentioned above, the naive classification threshold of reconstruction
errors may result in low classification accuracy. Besides, as proved in Li et al. [10], federated learning is
vulnerable to even one malicious device. Therefore, the misclassified model update may lead to the bad
performance of the aggregated model. To improve the classification accuracy of model updates, we use
the probability distribution of reconstruction errors to determine whether the updates are malicious. We
assume that all the updates are benign during the first five communication rounds. FREPD first chooses a
proper probability distribution function and tune its parameters to fit the distribution of observed benign
reconstruction errors and then use the well-fitted function to compute the probability that the
reconstruction error is generated from benign updates. The updates with higher probability than 90% of
updates are considered benign updates and aggregate the global model. To prevent misclassifying
malicious updates as benign updates, we also use the mean of reconstruction errors as a dynamic
threshold to detect and exclude malicious updates. The process is shown in Fig. 2. The distributions that
we use in FREPD include Normal, Exponentiated Weibull, Minimum Weibull, Generalized Extreme
value, Beta, Gamma, Rayleigh, and Log-Normal. We apply the Kolmogorov-Smirnov (KS) test to choose
the most appropriate distribution.

Based on our assumption that it takes some time for adversaries to compromise devices, local model
updates are deemed benign updates in the first five communication rounds. We thus use benign updates
to train a VAE model. After the first five communication rounds, the devices send local model updates to
the cloud in each round. To avoid the curse of dimensionality, as [9] does, we employ a surrogate vector
generated by randomly sampling the model update vector. As shown in the Experimental Evaluation
section, random sampling is highly efficient. The cloud generates the surrogate vectors of local model

Figure 2: Proposed defense framework using VAE
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updates and then uses testing trained VAE model to compute all the surrogate vectors’ reconstruction errors.
As Veeramachaneni et al. [26] has done, we set the detection threshold as the mean value of all the
reconstruction errors, which leads to dynamic thresholding. The updates with reconstruction errors larger
than the threshold are considered malicious updates and excluded from model aggregation. We apply the
KS test to choose a proper probability distribution function and tune its parameters to fit the distribution
of observed benign updates’ reconstruction errors. We then use the well-fitted function to compute the
probability distribution of reconstruction errors to select benign updates from the remaining updates. The
updates with higher probability than 90% of updates are considered benign updates. All the benign
updates are aggregated to generate the global model update which will be sent to all the devices in the
next communication round. We use the existing aggregation methods like FedAvg [17] after excluding
the malicious updates. Therefore, our method’s convergence property is the same as the aggregation
methods that we use. We present the proposed method in Algorithm 2, which detects and excludes
malicious model updates before model aggregation.

4 Performance Evaluation

This section evaluates and analyzes the performance of the proposed VAE-based methods. We use
GeoMed as the aggregation method in our framework and evaluate the robustness of the proposed
methods to Byzantine attack and backdoor attack in IID and non-IID federated datasets.

Algorithm 2: FREPD

Cloud:

1. Input: w0, g

2. Use observed benign model updates to train the VAE model before adversarial attacks;

3. Apply the KS test to choose a proper probability distribution function and tune its parameters to fit the
distribution of reconstruction errors of observed benign updates;

4. for each round t ¼ 1; 2; . . . do

5. St ¼ (random set of maxðC � K; 1Þ devices);
6. for each device k 2 St in parallel do

7. Broadcast the current global model update wt�1 to the device k;

8. Receive the local model update wk
t from the device k;

9. Randomly sample the local model update to generate a low-dimensional surrogate vector;

10. Use the trained VAE model to compute the reconstruction errors of all the surrogate vectors;

11. Exclude all the updates with higher reconstruction errors than the mean of all the reconstruction errors;

12. Select updates with higher probability of belonging to benign reconstruction error distribution as
benign updates;

13 Generate the global model update wt by using aggregation methods.

Device k:

1. for each round t ¼ 1; 2; . . . do

2. Receive the cloud’s global model update wt�1;
3. Use the global model update to train the local model and compute the local model update wk

t ;

4. Send the current local model wk
t to the cloud.
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4.1 Datasets and Models

We explore a suite of IID and non-IID federated datasets using both convex and non-convex models in
our experiment. IID federated datasets include Vehicle, while non-IID datasets include MNIST and
FEMINIST.

Vehicle: We use the same Vehicle Sensor (Vehicle) dataset as Smith et al. [27]. The dataset contains
acoustic, seismic, and infrared sensor data collected from a distributed network of 23 sensors [18]. Each
sample has 50 acoustic and 50 seismic features and a binary label. Each sensor is a device. We train a
linear SVM for the prediction between AAV-type and DW-type vehicles. The hyperparameters are tuned
to the best configuration in the experiment. In each communication round, we select 10 devices from all
the devices to aggregate the global model.

MNIST: The MNIST [24] dataset contains handwritten digits 0–9. Following [18], we distribute the
data among 1000 devices. In our experiments, MNIST is a non-IID partition of the data, as each device
has samples of only two digits. Thus, we explore whether our method will break on highly non-IID data
by training models on MNIST. The number of samples per device follows a power law. The model takes
a flattened 784-dimensional (28	 28) image as input and outputs a class label between 0 and 9. In each
communication round, we select 50 devices from all the devices to aggregate the global model.

FEMNIST: The Federated Extended MNIST (FEMNIST) dataset serves a similar benchmark to the
popular MNIST [28,29] dataset. Following [18], we subsample 10 lower case characters (‘a’–‘j’) from
EMIST [30] and distribute the data among 200 devices. Each device has only 5 classes. The model of
FEMNIST is the same as that of MNIST. In each communication round, we select 50 devices from all the
devices to aggregate the global model.

4.2 Benchmark Algorithms and Experimental Metric

FedAvg [17]. FedAvg algorithm takes a weighted average of the resulting model from the devices.
FedAvg is proved robust to unbalanced and non-IID data distributions and has good performance on non-
convex models. We also evaluate the performance of FedAvg under no attack.

GeoMed [13]. The geometric median (GeoMed) of local model updates is used in this algorithm to
generate a global model update. The geometric median of wk : k 2 ½K�� �

is denoted by:

GeoMed wkf gð Þ ¼ argmin
w2Rd

XK
k¼1

w� wk
�� ��

2
(6)

The generated global model update may not be one of the local model updates [13].

Krum [15]. Rather than taking the local model updates’ geometric median, Krum uses one of the local
updates to generate a global model update. The chosen local update minimizes the sum of distances to its
nearest neighbors. The local update is chosen by:

Krum wk
� �� � ¼ wk� ; k� ¼ argmin

i;j2K

X
i!j

wi � wj
�� ��2 (7)

where i! jði 6¼ jÞ selects the indexes j of the K � q� 2 nearest neighbors of wi in wk : k 2 ½K�� �
, measured

by Euclidean distances. q is the number of malicious devices, which must be known in advance.

Bulyan [14]. Bulyan uses Krum [15] to obtain a subset of the local model update from the devices. The
cloud generates a global model update by taking the component-wise average to the refined subset of local
model updates.
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Spectral [16]. An unsupervised VAE model is used in this algorithm to output the reconstruction error
of local model updates. Malicious updates are proved to have larger reconstruction errors than benign ones
[16]. Thus, model updates with larger reconstruction errors are excluded from the aggregation method.
After excluding malicious updates, this algorithm uses the FedAvg algorithm to aggregate the
remaining model updates.

To measure the effectiveness of our defense mechanism, we use two parameters as follows.

� Testing Accuracy. It indicates how good a model is in its normal task. For example, it is the fraction
of samples labeled ‘cat’ classified correctly as ‘cat’ to the total samples.

� Backdoor Accuracy. It refers to how good a poisoned model is in the backdoor task. For example, it
is the fraction of samples labeled ‘cat’ misclassified as ‘dog’ to the total samples.

4.3 Robustness to Byzantine attack

We consider three types of Byzantine attacks in our experiment, including same-value attack, additive
noise attack, and sign-flipping attack. We evaluate our method’s robustness to Byzantine attack in two
scenarios where 10% and 30% of selected devices are malicious, respectively. In the experiments, our
proposed method uses the FREPD framework and use GeoMed as the aggregation method.

As shown in Figs. 3–5, the proposed method (Ours) can mitigate the impact of Byzantine attack in both
IID and non-IID datasets. Our method achieves the best performance in the Vehicle dataset and the MNIST
dataset. In the FEMNIST dataset, our method achieves the best performance under sign-flipping attack.
Under same-value attack and additive noise attack, our method achieves the second-best performance
behind GeoMed. Meanwhile, our method converges faster than other baselines in all settings. As shown
in the last two columns of Figs. 3–5, the performance of Krum and Bulyan remains the same regardless
of the number of attackers. Krum and Bulyan select the most appropriate update from all the local model
updates generated by the devices in federated networks. Since the MNIST dataset and the FEMNIST
dataset in our experiment is biased, the selected update cannot apply to all the devices. As shown in
Figs. 5(a) and 5(b), GeoMed is not robust to sign-flipping attack. GeoMed computes the geometric center
of all the local model updates and uses it as the global update. Since sign-flipping attack makes
malicious updates far away from the normal updates, the global update generated by GeoMed deviates
from normal updates.

4.4 Robustness to Backdoor attack

We evaluate our method’s robustness to backdoor attacks in two scenarios where only one device is
malicious and 30% of selected devices are malicious, respectively. In the experiments, our proposed
method uses the FREPD framework and use GeoMed as the aggregation method.

As shown in Fig. 6(a), the proposed method (Ours) achieves the best performance on the MNIST dataset
under the impact of single backdoor attacker. The testing accuracy of FREPD is the highest, while its
backdoor accuracy is the lowest. Krum and Bulyan have low backdoor accuracy and have low testing
accuracy because they are not suitable for non-IID datasets such as the MNIST dataset. Spectral and
GeoMed have the second-best performance behind FREPD. GeoMed has high testing accuracy and low
backdoor accuracy under backdoor attack because all the model updates’ geometric median is close to the
normal ones. FedAvg, without any defense, has bad performance under backdoor attack.
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Figure 3: Testing accuracy under additive noise attack (a) Additive noise (10%) (b) Additive noise (30%)

Figure 4: Testing accuracy under same-value attack (a) Same-value (10%) (b) Same-value (30%)
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Figure 6: Testing accuracy and backdoor accuracy under backdoor attack (a) Single backdoor attacker (b)
Multiple backdoor attackers (30%)

Figure 5: Testing accuracy under sign-flipping attack (a) Sign-flipping (10%) (b) Sign-flipping (30%)
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As shown in Fig. 6(b), the proposed method (Ours) achieves the best performance on the MNIST dataset
under the impact of multiple backdoor attacks, where 30% of selected devices are attackers. The testing
accuracy of FREPD is the highest, while its backdoor accuracy is the lowest. The performance of Krum
and Bulyan is volatile at the beginning, which may because the selected local model update is malicious
in some rounds and is benign in the other rounds. GeoMed has high testing accuracy and high backdoor
accuracy under backdoor attack because the geometric median of all the model updates deviates from the
normal ones. Spectral also has high testing accuracy and high backdoor accuracy because some malicious
updates are misclassified as benign ones. FedAvg has high testing accuracy and high backdoor accuracy
because it cannot defend backdoor attack.

5 Conclusion

Our paper proposes a VAE based anomaly detection framework named FREPD. To prevent
misclassifying malicious updates as benign ones, FREPD uses the probability distribution of
reconstruction errors to detect benign updates after using the average reconstruction error to exclude
malicious updates. During the first five communication rounds, we apply the Kolmogorov-Smirnov test to
choose a proper probability distribution function and tune its parameters to fit the distribution of
reconstruction errors of observed benign updates. We use the distribution function to compute the
probability that the reconstruction error is generated from benign updates. If the update’s probability is
higher than that of 90% of all the local updates, the update will be seen as a benign update. Only benign
updates are used to generate the aggregated model. We conduct experiments on IID and non-IID datasets.
The results show that FREPD has competitive performance compared to existing aggregation methods
under Byzantine attack and backdoor attack.
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