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Abstract: The most common form of cancer for women is breast cancer. Recent
advances in medical imaging technologies increase the use of digital mammo-
grams to diagnose breast cancer. Thus, an automated computerized system with
high accuracy is needed. In this study, an efficient Deep Learning Architecture
(DLA) with a Support Vector Machine (SVM) is designed for breast cancer diag-
nosis. It combines the ideas from DLA with SVM. The state-of-the-art Visual
Geometric Group (VGG) architecture with 16 layers is employed in this study
as it uses the small size of 3 × 3 convolution filters that reduces system complex-
ity. The softmax layer in VGG assumes that the training samples belong to exactly
only one class, which is not valid in a real situation, such as in medical image
diagnosis. To overcome this situation, SVM is employed instead of the softmax
layer in VGG. Data augmentation is also employed as DLA usually requires a
large number of samples. VGG model with different SVM kernels is built to classify
the mammograms. Results show that the VGG-SVM model has good potential for
the classification of Mammographic Image Analysis Society (MIAS) database images
with an accuracy of 98.67%, sensitivity of 99.32%, and specificity of 98.34%.

Keywords: Deep learning architecture; support vector machine; breast cancer;
visual geometric group; data augmentation

1 Introduction

Breast cancer is the leading cause of death in India, accountable for 9% of non-communicable diseases
[1]. The incidence of breast cancer in metropolitan cities increases every year compared to cervical cancer,
which is on the decline. Thus, a multidisciplinary approach is required to diagnose breast cancer early, that
includes screening programs and awareness programs that reduce mortality. The best possible screening
method is mammography, which is inexpensive now and captures breast images quickly due to the digital
revolution in recent years.

The advances in computing technology laid the fundamental methodology for medical image analysis in
the medical domain, emphasizing cancer classification. There are two dominant designs; the class prediction
model [2–13] and the class discovery model [11,14]. Each design is used as a different study’s objective. The
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former model is also known as supervised learning based on the classification technique using training
samples associated with the training samples’ target output. The later model is also known as
unsupervised learning, based on observing the correlation between samples in similar clusters.

Different supervised learning algorithms are developed and used in breast cancer diagnoses such as
k-nearest neighbour [2], naive Bayes [3], support vector machine [4,5–7], Linear regression [8], artificial
neural network [9–10], decision tree [11–12] and extreme learning machine [13]. These algorithms
require a separate feature extraction module to extract dominant features from the training samples.
Features from time-domain; Shape [5–8], texture [4–6,8], Gray level [5] and moment invariants [9–10]
and frequency domain; Wavelet [3,13], Bandlet and Ripplet [2], Hough transform [6], and Surfacelet
transform [12] are employed. Feature reduction techniques such as principal component analysis [11,13]
and the Fisher score [9] are also employed to reduce the feature space if needed. The quality of any
classification system depends on the extracted features and the classifiers as well. A poor classifier may
waste the extracted powerful features.

Recent advances in DLA greatly help to design accurate classification systems in many research areas
such as image classification, text classification, speech recognition, natural language processing, and
mammogram image classification [15–16]. The state-of-the-art DLAs such as VGG [17], DenseNet [18],
AlexNet [19], and GoogleNet [20] have a great achievement in classifying thousands of natural objects.
These pre-trained models can be effectively analyzed for mammogram classification system using transfer
learning approach. This approach uses the pre-trained weights for the classification of the mammogram.
The number of layers in DenseNet, AlexNet, and GoogleNet are 201, 8, and 22. Among the models,
VGG only uses a small-sized (3 × 3) convolution filter and different layers such as 11, 16, and 19 from
input to output. Thus, VGG with 16 layers is employed in this study to extract deep features.

This study proposes a hybrid model based on DLA and SVM for diagnosing breast cancer. To extract the
highly dominant features for breast cancer classification, the VGG model is utilized, and then SVM is
incorporated at the output layer to improve the classification results. This article consists of four sections.
Section 2 describes the design of the VGG-SVM model to deliver high accuracy for breast cancer
diagnosis. The experimental studies that support the system, the original studies’ results, and the system’s
evaluation by comparative studies with four commonly used SVM kernels are described in Section 3.
The last section concludes the proposed work.

2 Methods and Materials

A mammogram learning system is a pattern recognition system that makes decisions based on previous
experiences, i.e., with known class labels in training samples. In general, the classification process assigns the
given input to one class or another. The input to the classification process may include readings from the
sensors, features of any objects to be classified, such as signals and images. The learning system classifies
the testing samples correctly by adapting a general classifier model based on the inputs. In this study,
mammogram images are fed to the system to classify them into either normal or abnormal. The proposed
breast cancer diagnostic system operates under two modes: Local Classification Mode (LCM) and Global
Classification Mode (GCM). Though the system classifies the input mammograms into two classes, the
former uses the Region of Interest (ROI) images, and then later uses the whole mammograms as inputs.

2.1 Preprocessing

Generally, preprocessing is employed in medical images to remove undesirable information to ensure
data integrity and improve classification performance. In this stage, the patient information in the digital
X-ray is removed, and the contrast of mammograms is enhanced. Simple morphological operations are
employed to remove the information embedded in the X-ray image. The previous studies in [2,4,9,11,12],
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Contrast Limited Adaptive Histogram Equalization (CLAHE), are chosen as a contrast enhancement
technique. The over enhancement by AHE is removed by CLAHE as the enhancement is applied on a
local intensity histogram. The window size used for making a local intensity histogram is 8 × 8 with a
0.01 contrast limit.

Fig. 1 shows the contrast-enhanced image by CLAHE. These images are utilized by the GCM of the
proposed system for breast cancer diagnosis. The ground truth data [21–22], available in the MIAS
database, is used to extract the ROI. In the ground truth, seven detailed information such as reference
number, type of background tissue, type of abnormality, abnormal severity, abnormality center, and the
abnormality size are given. Based on the center of the abnormality, the ROI of size 256 × 256 pixels is
extracted. These images are utilized by the LCM of the proposed system for breast cancer diagnosis,
whereas GCM uses the whole mammogram of 1024 × 1024 pixels. Based on the abnormality in the
ground truth data, the images are split into two groups; normal and abnormal for classification. Fig. 2
shows the extracted ROI from the original mammograms shown in Fig. 1.

Figure 1: Mammograms (a) Acquired image (b) Contrast-enhanced

Figure 2: Extracted ROI of images of Fig. 1 (b)
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2.2 VGG-DLA System

The DLA allows a single model for feature extraction as well as classification of the input data. Features
are extracted by a sequence of convolution layers of two or more, followed by pooling layers to reduce the
feature map’s size. A Fully Connected Layer (FCL) interprets the features and the output layer with an
activation function for predications. A simple DLA is shown in Fig. 3.

DLA has become more popular in the last decade in the pattern recognition and computer vision research
area. Many DLAs are developed, such as the Visual Geometric Group (VGG), Alex Net, GoogleNet. Among
these DLAs, VGG is employed in this study due to its simplicity. Fig. 4 shows the VGG-DLAwith 16 layers
where C-(SxS)-N represents convolution operation C of filter size of S with N filters, and MPL represents
Max Pooling Layer. The main advantage of the VGG model with 16 layers is the use of smaller-sized
(3 × 3) convolution filters throughout the architecture that reduces the computational complexity.

A stack of convolution filters in 5 blocks is employed for feature extraction, followed by three FCLs. In
each block, the number of channels is increased from 64 to 512 by a multiplication factor of 2. Fig. 5 shows
the obtained feature map at the first block of filters for the extracted ROI image shown in Fig. 1 (b). The
activation function named Rectified Linear Units (ReLU) is used in the hidden layers to overcome the
vanishing gradient problem. This function’s output is a linear function that returns the positive inputs
only, a desirable property for the backpropagation neural network. The softmax layer is defined as

Figure 3: Simple DLA for a two-class problem
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Figure 4: VGG-DLA with 16 layers
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softmaxðyiÞ ¼ eyi
,Pn

o¼1
eyo (1)

where yi is the obtained value from the ith input layer for the corresponding output layer o.

This process gives n output values, and the output layer with high value is considered the predicted class.
The main drawback of the softmax layer is that the probabilistic-based approach assumes that the training
samples belong to exactly only one class, i.e., features are independent of each other, and all are having
equal importance to predict the outcomes. However, the above assumption is not valid in a real-time
situation, such as in medical image diagnosis. In this study, the abnormal images containing different
abnormalities such as masses of different types and micro-calcifications, and thus VGG-SVM is designed
for breast cancer diagnosis.

2.3 VGG-SVM System

Let us assume that the obtained features fi from the FCL for ith samples in the training set with m
samples. i.e., the computed finite feature space (T) is fi; cif gmi¼1 where the class ci 2 �1; 1f g. The SVM
separates the feature space into two classes by constructing a hyperplane in the form of

Figure 5: Feature map at the first block of VGG architecture
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w � xi þ b; i ¼ 1;…::;m: (2)

For the linear case, the aim is to determine a weight vector w and scalar constant b that satisfy the
constraints

w � xi þ b � þ1; for yi ¼ þ1 (3)

w � xi þ b � �1; for yi ¼ �1 (4)

And for the non-linear case, the constraints are

w � xi þ b � þ1; for yi ¼ þ1� ni (5)

w � xi þ b � �1; for yi ¼ �1þ ni (6)

where ni are a measure of the classification error which is greater than zero for all i. Though many
hyperplanes can be constructed, a maximum margin hyperplane should be chosen, which has the
maximum distance between the hyperplane and the nearest data point of each class and is given by,

min
w;b

1

2
wk k2 þ C

Xn
i¼1

ni

subject to ci ðwT t þ bÞ � 1� ni; and ni � 0; i ¼ 1; 2;…:n:

(7)

whereC is the controlling factor that controls the trade-off between model complexity and empirical risk. The
formulation in Eq. (2) can be rewritten for the non-linear case as

XNs

i¼1

ciaiKðt; siÞ þ b (8)

where si; i ¼ 1; 2;…::Ns are support vectors computed via structural risk minimization that consist of a
subset of T. Fig. 6 shows the proposed VGG-SVM system. The SVM classifier replaces the softmax layer
in the conventional VGG model.

Four different kernels are used in this study, and their performances are computed. They are
summarized in Tab. 1.
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Figure 6: VGG-SVM with 16 layers
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The RBF-SVM parameters such as C in Eq. 7 and r (standard deviation of RBF kernel) are tuned to
obtain better performance. A grid search algorithm obtains the optimal values of the parameters
mentioned above’ with ten different values of C and r. Thus the system performance is evaluated for
each pair of (C, r). Among the r values ½23; 22; 21;…:2�6� and C values ½24; 23; 22;…:2�5�, the best
performance obtained from the pair (23,21) is discussed in the next section. For P-SVM, a polynomial
degree of three is used for performance evaluation.

3 Results and Discussions

The prototype of the VGG-SVM system for mammogram classification is explained in the previous
section. It extracts deep features and classifies them using SVM with different kernels at the output layer.
This section presents the experimental setup, performance metrics, and findings of the prototype with
discussions of the experimental results.

3.1 Experimental Setup

The proposed VGG-SVM breast cancer diagnostic system is analyzed using the MIAS database
[21–22]. It has 322 mammograms that include 207 normal images and 105 abnormal mammograms of
different classes such as masses and micro-calcifications. Sample mammograms are shown in Fig. 1. It is
well known that DLA usually requires a large number of samples to provide better classification. Data
augmentation [23] is employed to increase the samples in the MIAS database. The samples are increased
to seven times using flipping and rotating the samples by an angle of 900, 1800, and 2700. Data
augmentation increases the normal samples from 207 to 1449 and abnormal samples from 105 to 735.
The standard parameter settings for VGG architecture are shown in Tab. 2. The same settings are used for
VGG-SVM architectures, and to validate the DLAs, k-fold (10-fold) cross-validation is employed.

3.2 Performance Metrics

The performance of the VGG-SVM system is analyzed in terms of sensitivity, specificity and accuracy.
The definitions are as follows:

� Sensitivity: It gives the correct classification rate of abnormal mammograms and is given below:

Sensitivity ¼ TP

TP þ FN
(9)

where True Positive (TP) and False Negative (FN) are the correct and misclassified abnormal mammograms.

Table 1: SVM kernels used in this study

Kernel function Kernel Equation

Linear (L-SVM) kðx; yÞ ¼ xT :yþ c

Polynomial (P-SVM) kðx; yÞ ¼ ðaxT :yþ cÞd where d is the polynomial degree.

Radial Basis Function (RBF-SVM)
kðx; yÞ ¼ exp

x� yk k2
2r2

 !
where r is the standard deviation

Quadratic (Q-SVM)
kðx; yÞ ¼ 1� x� yk k2

x� yk k2 þ C
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� Specificity: It gives the correct classification rate of normal mammograms and is given below:

Specificity ¼ TN

TN þ FP
(10)

where True Negative (TN) and False Positive (FP) are the correct and misclassified normal mammograms.

� Accuracy: It gives the overall classification rate of the system and is given below:

Accuracy ¼ TP þ TN

TP þ FN þ TN þ FP
(11)

To show the trade-off between sensitivity and specificity, a plot called Receiver Operating
Characteristics (ROC) is drawn in which the x-axis represents the true positive ratio (sensitivity), and the
y-axis represents the false positive ratio (1-specificity). It can be used to visualize the system
performances with ease.

3.3 Performance Analysis

The performances of the VGG-SVM architectures and the VGG-DLA are analyzed with the preprocessing
stage and without preprocessing stage to demonstrate the effects of preprocessing on the mammograms. Tab. 3
shows the performances of GCM for different architecture without preprocessing stage.

Table 3: Performances of GCM for different architecture without preprocessing

Architecture Normal vs. Abnormal

Sensitivity Specificity Accuracy

VGG-16 65.31 65.56 65.48

VGG-L-SVM 76.87 75.16 75.73

VGG-P-SVM 74.69 73.71 74.04

VGG-RBF-SVM 81.63 81.09 81.27

VGG-Q-SVM 71.84 70.53 70.97

Table 2: Parameter settings for the DLAs

Parameters VGG-DLA VGG-SVM

Optimization Mini-batch gradient
descent algorithm

Mini-batch gradient
descent algorithm

Batch size 256 256

Dropout ratio
(First two FCL)

0.5 0.5

Momentum 0.9 0.9

Initial learning rate 10−2 10−2

Input layer ReLU ReLU

Output layer Softmax L-SVM, P-SVM, RBF-SVM and Q-SVM
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It is observed from Tab. 3 that VGG-RBF-SVM architecture provides an accuracy of 81.27%, the
highest among other VGG-SVM architectures. The VGG-16 model provides only 65.48% accuracy. The
use of SVM in the output layer instead of using the softmax layer in VGG architecture increases the
accuracy of mammogram classification by ~15%. Since there is no preprocessing, the performance of all
architectures is less than 82% only. CLAHE enhances the micro-calcifications, masses, and other tissues
in the mammograms, and their performances are evaluated again using the same set of images. Tab. 4
shows the performances of GCM for different architecture with the preprocessing stage.

It is evident from Tabs. 3 and 4 that the application of preprocessing on mammograms improves the
classification accuracies of a minimum of 5% approximately on all architectures. The classification
accuracy of VGG architecture is increased from 65.48% to 72.21%, while the performance of VGG-RBF-
SVM is increased to 86.77%. After preprocessing the whole mammogram, a maximum sensitivity of
87.76% and specificity of 86.27% are achieved by VGG-RBF-SVM. The GCM provides only 86.77%
accuracy, and the complexity is also high as it uses the whole image. To further increase the accuracy of
mammogram classification, LCM is developed. Tab. 5 shows the performances of LCM for different
architecture without preprocessing stage.

Tab. 5 shows that the LCM achieves significant improvement over GCM without preprocessing. When
operated under LCM, the performance of VGG-RBF-SVM architecture has an improvement of 13.5% over
GCM. This is because the whole image does not only have the breast tissues but also have pectoral muscle
too. Thus, the LCM, which uses only the abnormalities’ ROI, can classify more accurately than GCM. Tab. 6
shows the performances of LCM for different architecture with a preprocessing stage.

Table 4: Performances of GCM for different architecture with preprocessing

Architecture Normal vs. Abnormal

Sensitivity Specificity Accuracy

VGG-16 72.38 72.12 72.21

VGG-L-SVM 83.95 82.82 83.20

VGG-P-SVM 81.77 80.40 80.86

VGG-RBF-SVM 87.76 86.27 86.77

VGG-Q-SVM 77.28 75.91 76.37

Table 5: Performances of LCM for different architecture without preprocessing

Architecture Normal vs. Abnormal

Sensitivity Specificity Accuracy

VGG-16 78.23 77.64 77.84

VGG-L-SVM 91.16 90.75 90.89

VGG-P-SVM 88.30 88.27 88.28

VGG-RBF-SVM 94.56 94.89 94.78

VGG-Q-SVM 83.67 82.82 83.10
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It is noted from Tab. 6 that best performance is obtained with an accuracy of 98.67%, sensitivity of
99.32%, and specificity of 98.34% when the mammograms are classified using LCM with preprocessing
approach. The performances of architectures are in the order of VGG-RBF-SVM > VGG-L-SVM >
VGG-P-SVM > VGG-Q-SVM > VGG-16. The performance of the RBF kernel is better than others
because it projects the feature space into infinite features space. Also, it is invariant to translation and
isotropic. A comparative analysis makes further analysis of the system with existing systems in the
literature. Tab. 7 illustrates the comparative analysis.

It is noted from Tab. 7 that the VGG-RBF-SVM provides better performance than existing approaches in
the literature. To visualize the performance, ROC curves of two modes, GCM and LCM are drawn and
shown in Fig. 7.

It can be seen from the ROCs in Fig. 7 that how the performance of the different architectures improved
from GCM to LCM and with a preprocessing step. The ROCs are gradually moved toward the y-axis, which
indicates better performance of the system. The ROC curve of VGG-RBF-SVM architecture under LCM
with preprocessing of mammograms occupies more area under the curve as it is very close to the y-axis
and the top border of the graph.

Table 7: Performance analysis with existing systems

Systems Sensitivity Specificity Accuracy

Extreme Learning Machine [7] 96.29 94.32 96.02

Zernike + wavelet neural network [10] 83.58 93.43 89.38

Wavelet + naive Bayes [3] 100 65.4 76.6

Hough transform + SVM [6] – – 94

Shape + Texture + Artificial neural network [9] 98 94 96

Deep convolution neural network [16] – – 98.23

VGG-RBF-SVM 99.32 98.34 98.67

Table 6: Performances of LCM for different architecture with preprocessing

Architecture Normal vs. Abnormal

Sensitivity Specificity Accuracy

VGG-16 81.63 82.95 82.51

VGG-L-SVM 95.10 94.89 94.96

VGG-P-SVM 91.56 91.65 91.62

VGG-RBF-SVM 99.32 98.34 98.67

VGG-Q-SVM 88.30 86.13 86.86
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4 Conclusions

This paper presents an intelligent mammogram learning system via DLA and SVM for breast cancer
diagnosis. Deep features are extracted from mammograms using the standard parameter settings in VGG
with 16 layers. A series of preprocessing steps is applied before extracting deep features. The VGG-SVM
system utilizes the SVM classifier in the output layer instead of using the softmax layer. The VGG-SVM
system operates under two modes; LCM and GCM. Several VGG-SVM with different SVM kernels is

Figure 7: ROCs (a) GCM without preprocessing (b) GCM with preprocessing (c) LCM without
preprocessing (d) LCM with preprocessing
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trained using the deep features for performance evaluation. Among the four kernels, the RBF kernel in VGG-
SVM is the most effective kernel to obtain the highest performance. Results show that the combination of
DLA and SVM works efficiently for breast cancer diagnosis.
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