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Abstract: Limbal Stem Cell Deficiency (LSCD) is an eye disease that can cause
corneal opacity and vascularization. In its advanced stage it can lead to a degree of
visual impairment. It involves the changing in the semispherical shape of the cor-
nea to a drooping shape to downwards direction. LSCD is hard to be diagnosed at
early stages. The color and texture of the cornea surface can provide significant
information about the cornea affected by LSCD. Parameters such as shape and
texture are very crucial to differentiate normal from LSCD cornea. Although sev-
eral medical approaches exist, most of them requires complicated procedure and
medical devices. Therefore, in this paper, we pursued the development of a LSCD
detection technique (LDT) utilizing image processing methods. Early diagnosis of
LSCD is very crucial for physicians to arrange for effective treatment. In the pro-
posed technique, we developed a method for LSCD detection utilizing frontal eye
images. A dataset of 280 eye images of frontal and lateral LSCD and normal
patients were used in this research. First, the cornea region of both frontal and lat-
eral images is segmented, and the geometric features are extracted through the
automated active contour model and the spline curve. While the texture features
are extracted using the feature selection algorithm. The experimental results
exhibited that the combined features of the geometric and texture will exhibit
accuracy of 95.95%, sensitivity of 97.91% and specificity of 94.05% with the ran-
dom forest classifier of n = 40. As a result, this research developed a Limbal stem
cell deficiency detection system utilizing features’ fusion using image processing
techniques for frontal and lateral digital images of the eyes.

Keywords: Feature extraction; corneal opacity; geometric features; computerized
detection; image processing

1 Introduction

The corneal epithelium surface is always getting repopulated by limbal stem cells. If a deficiency in
these stem cells occur, visual impairment can happen. This deficiency is called Limbal Stem Cell
Deficiency (LSCD) [1]. Limbal stem cell deficiency is a medical condition that are caused by an
inadequate quantity of Limbal stem cells. LSCD diagnosis relies on medical methods that can identify the
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stages of LSCD. Diagnosis methods such as ocular imaging and molecular diagnostic techniques [2].
Changes from normal, mild to moderate to severe in pathological LSCD is depicted in Fig. 1. As it can
be seen, if the condition is diagnosed in the mild case, it would be a great path to treatment.

LSCD can be caused by various and multi factors such as environmental, genetic and as by-product of
medical condition (such as chemotherapy medications) factors [3].

LSCD is usually diagnosed by clinical manifestations. Signs of LSCD can be speckling fluorescein
staining, opacity of the epithelial layers. Signs of persistent fluorescein is also found. The most apparent
one that can be detected visually is the neovascularization of the cornea [4,5]. LSCD is reversible if
diagnosed in a timely manner, therefore timely diagnosis is very crucial [6,7].

Corneal topography is one of the classical most sensitive technique for the early diagnosis of LSCD.
Le et al. [6] presented the recently developed ocular imaging techniques as diagnostic techniques which
leads to establishment of LSCD quantitative criteria for its different stages. Scheimpflug image techniques
are also used in the diagnosis of LSCD [5]. The problem with these classical techniques is that they are
costly and requires high maintenance costs. These machines require highly trained optometrists and also
require specific clinical settings.

In this paper, we are proposing a method for diagnosing LSCD using image processing and machine
learning techniques. Therefore, in this research we will explore the development of automated devices
that utilize image processing technology with automated analysis and processing of digital image.
Automated diagnosis can be held with the aid of machine learning. We are presenting a smart mobile
application to aid in the diagnoses of LSCD ocular disease. In this paper we are proposing an image
processing-based method by investigating the visual features of the eye with LSCD. These features are
extracted from frontal segment eye images. Medical experts can conclude all important information from
the geometrical features of the frontal eye segment image of LSCD-infected eyes. In this paper, we are
concerned with geometric and color feature extraction to devise an automated system for LSCD
diagnosis. Such features are categorized according to their significance to differentiate between LSCD
and normal eyes, especially in early stages.

The rest of the paper is divided as follows. In Section 2, we are presenting a literature review of the
recent methods for eye disease diagnosis through machine learning. In Section 3, we present the proposed
feature extraction algorithm. In Section 4, the feature extraction algorithm and the ranked features are
tested to classify the images into LSCD or normal groups. The experiments setting and the simulation
results are depicted in Section 5. In Section 6, the conclusions are presented.

Figure 1: Changes from normal to mild to moderate to severe LSCD
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2 Limbal Stem Cell Deficiency Detection (LSCD) Methodologies

LSCD diagnosis is usually performed in a medical setting through diagnostic tools such as corneal
topography medical devices [8]. These studies were conducted utilizing images from corneal topography
imaging tools, which in turn are processed utilizing the topographic map through deep learning and
image processing [9,10].

Fabijańska et al. [11] presented a new technique for automated corneal segmentation of endothelium
images. The proposed technique utilizes a neural network with post-processing of the boundary map.
Morphological reconstruction of the cornea can aid in the diagnosis of many corneal surface diseases
using image processing. Nurzynska et al. [12], utilized image processing for analyzing the endothelial
layer of the cornea by exploiting shape features utilizing spatial and topological properties. Their
technique discovered and excluded high correlation features. They detailed their experiments and named
few groups of shape and texture parameters to automatically classify LSCD and other corneal diseases,
but one representative can always be selected. Daniel et al. [13] utilized the measurement of corneal
endothelial density as an important metric in corneal diseases automated diagnosis. The medical
measuring is usually done manually, which is a lengthy process that can lead to errors. They utilized
U-Net image segmentation CNN medical image segmentation to differentiate between healthy and sick
corneas. They measure their technique performance in CEC images with different corneal diseases. Sierra
[14] performed cell segmentation from specular images of both healthy and LSCD corneas. Cell
segmentation is processed through supervised segmentation of digital images. Fabijańska [15] utilized
health status information of the endothelium extracted from the shape of the endothelial cornea cells in
digital imagery. They utilized U-Net CNN for image skeletonized segmentation. While, Liang et al. [16]
utilized central and limbal epithelium thickness of the cornea from digital AS-OCT images of both
normal and LSCD affected eyes. Binotti et al. [17] investigated biomarkers of corneal diseases to obtain
an automated diagnosis for LSCD and neurotrophic keratitis.

Twa et al. [18] classified topographical map images from Pentacam using ANNs, SVMs and decision
trees to determine whether an eye was normal or exhibited LSCD. Islam et al. [19] implemented an SVM
classifier for identifying LSCD in eyes using a combination of topographical map images from corneal
topography and data from a Scheimpflug camera.

Smartphones were used to produce an eye image and utilize image processing techniques to capture
many corneal abnormalities. Jiao et al. [20] captured frontal eye images using a smartphone. They had a
success of 93% accuracy of identifying keratosis in 6 cases out of 20 cases, the other thirteen were
normal with one patient with mild abnormality diagnosis as false negative. The method started by a
preprocessing step where the cornea is cropped from the eye image, and then the corneal curve is
detected utilizing edge detection method. The preprocessing step was followed by a classification step by
computing the corneal curvature slope.

In our research, we conducted a successful methodology to diagnose LSCD through digital images from
a smartphone camera. We compare our findings to those methods using topographic map imaging. Our
research utilized color and texture extraction from the digital images to identify LSCD eyes from normal
eyes. Our results were validated by comparing them to images for the same cases using corneal
topography and have manual diagnosis by medical experts.

3 The Proposed Limbal Stem Cell Deficiency (LSCD) Detection Algorithm

In this section, we will describe the methodology used and the dataset. The proposed algorithm
comprises of three major steps. The first step is the preprocessing of the acquired images of the frontal
and lateral views for cases with different stages of LSCD including cornea segmentation, the second step
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is the processing of the digital images to obtain features relevant to the disease (learning process). The third
step is the classification of new cases according to the output of the learning process, as shown in Fig. 2.

3.1 Dataset

The development of the database is attained from images in the dataset in Bengio [21] (used by
permission), total of 228 images, 34 out of them are normal cases. All the images are frontal and lateral
view images of the eye. 20 of them are certified patients with severe cases of LSCD. Another 50 of the
frontal and lateral images pair are of infected eyes with medium infection. The rest of 120 patients are
mild infected eyes with LSCD. All the acquired images (both LSCD infected and healthy eyes) were of
cases that were examined by ophthalmologists. All the eye images were captured from the frontal and
lateral eye views using digital camera.

The dataset contains images of resolution 2048 × 1836 for each eye. The 228 images were 102 from
female populations and 126 of male populations. The age range is from 22 to 45 years old.

3.2 The Proposed Algorithm

The proposed algorithm comprises of three phases involving the frontal images of the eye. The
preprocessing of the images followed by segmentation and ends with feature extraction.

3.2.1 The Preprocessing Phase
Preprocessing has an important task to improve images quality. The block diagram of the preprocessing

algorithm is presented in Fig. 3. It encompasses three steps: the first step is to convert RGB images to
normalized RGB images [22]. RGB encoding of colors is usually used as part of human perception. It
utilizes chrominance components of reduced bandwidth. The normalized RGB masks errors and
compression artifacts in a more efficient way than RGB encoding direct scheme [23–27]. The second step
is the edge enhancement step because it is very crucial for image enhancement for the purpose of medical
image analysis and recognition. Imaging usage in medical fields is getting high attention in automated
diagnosis. Edge enhancement is employed to enhance unclear borders in noisy images [27]. We are
presenting edge enhancement through image enhancement methods. The third step is image smoothing,
requesting robust image filtering techniques to smooth medical images while preserving salient feature [28].
These steps are important for the preparation of the RGB images of eyes with LSCD for image

Figure 2: Block diagram of proposed automated diagnosis system of LSCD

808 CSSE, 2022, vol.40, no.2



segmentation. Eye lashes and part of skin should be taken out from the image and only keep the edges of the
cornea for color and texture features extraction while keeping the contour of the Iris for geometric features.

The eyes RGB images are converted into normalized RGB encoding. We chose the RGB color space
because of its ability to differentiate the color and intensity information [29]. Normalized RGB has the
ability to decrease the distortions due to shadows and lights in an image.

Normalized RGB is calculated as depicted in Eqs. (1)–(3).

Normalized R ¼ R

Rþ Gþ B
(1)

Normalized G ¼ G

Rþ Gþ B
(2)

Normalized B ¼ B

Rþ Gþ B
(3)

Also, we converted the normalized RGB images into HUV, where the V component is used is utilized in
the preprocessing step to extract the cornea from the eye images because the V component gives better
contrast between the cornea and the sclera, and can extract the cornea edges better.

We utilize the Gaussian filter of σ = 0.015 V (x, y) to yield the image symbolized by Intensity
(x, y). Smoothing procedure is followed utilizing the diffusion anisotropic function (DAF) defined by
Cho et al. [30]. This depicts the DAF convolution (CON) methodology to identify the cornea edges. The
function CON was extracted from the research done by Xu et al. [31]. Fig. 4 shows the results of the
preprocessing technique.

3.2.2 Corneal Segmentation
The cornea images undergo segmentation process to extract color and texture as well as geometric

features. The features can thus be converted into quantitative measures. The segmentation process of

Figure 3: The 3-step preprocessing algorithm

Figure 4: Example of the preprocessing procedure
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cornea is depicted in Fig. 5. The corneal curvature is automatically extracted by edge augmentation utilizing
the V component of the HUV encoding color space of the digital eye image.

We performed image normalization process to enhance the colors features in the cornea image due to
degradation resultant from non-uniform illuminations. Image normalization was done utilizing Multi
Scale Retinex [22]. This step will aid in enhancing the color contrast for images taken under great
illumination variance and produce more consistent color space. This normalization will produce robust
discrimination of the key features from the cornea segment against the background. Enhancement of
contrast component of the colors in the image will minimize the noise interference. The cornea segment
is detected where points are created as shown in Fig. 6, where the center of the cornea is localized and
the edges surrounding the cornea are computed.

The following features: Horizontal and vertical Visible Iris Diameter, curvature radius, spherical
aberration and solidity are measured using our segmentation method and compared to other methods in
the literature. Solidity is an important unique feature of corneal surface [14]. These features characterize
corneal surface structure where the Horizontal Visible Iris Diameter is longer than the vertical Visible Iris
Diameter for a healthy cornea.

The results of the segmentation procedure of the four methods are tabulated in Tab. 1. The four methods
are our proposed method, the circular Hough transform [23,24], Chanvese and the Daugman procedures. The
comparison utilizes the Dice similarity index [25–27]. Also, two doctors performed the segmentation
procedure manually to inaugurate the ground truth. From the table, the proposed procedure achieved
0.87 Dice, while the circular Hough transform achieved lower Dice index of 0.5633, Chanvese has a
Dice index of 0.5376, the Daugman procedures [25] achieves better dice similarity but lower than the

Figure 5: A block diagram of the proposed cornea extraction process

Figure 6: The detection of the cornea segment
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proposed method the Daugman procedures achieved 0.7616. The manual segmentation by the two doctors is
in agreement with the result of our proposed method. The Index for the Segmentation Results utilizing Dice
Similarity is depicted in Tab. 1.

3.2.3 Corneal Feature Extraction
The shape, texture and color features represent the changes that can occur in the cornea due to LSCD.

These features include the vertical and horizontal iris diameters. Also, Color eccentricity, cornea sphere
completion shape and Cornea texture are important features. Color eccentricity is a very important feature
that illustrates the course and color change of the cornea [32]. Eccentricity V is computed as a function
of the shape factor, S, and the diameters of the iris (Eqs. (4) and (5)).

€ ¼
ffiffiffiffiffiffiffiffiffiffiffi
1� s

p
(4)

s ¼ b2

/2
(5)

where, b and a represent the vertical and horizontal iris diameters, respectively. The variable S has values
between zero and one, where one represents a flawless spherical shape.

The sphere completion shape of the front cornea exterior shows that the cornea form differs from a
normal cornea versus a LSCD infected cornea.

4 Image Processing of Smartphone Captured Cornea

A frontally captured image utilizing a smartphone is used in this research. The procedure consists of two
stages: preprocessing stage that utilize image contrast correction, second stage of feature extraction. The
LSCD cornea can be clinically detected because the cornea would be bulged slightly outward in a
downward trend, which leads to a conclusion that the corneal drooping can be detected, and the
differentiation can be measured in a quantitative method.

4.1 Image Contrast Correction Method

In most LSCD ailment eyes, a frail contrast is found between the cornea and sclera especially that the
sclera tends to be more yellowish. Therefore, an image contrast correction method namely gamma correction
will be utilized on the captured RGB converted to RGB image [33]. The correction method will correct the
captured image brightness. This stage is essential to extract the curvature precisely. The gamma correction is
computed as in Eq. (6).

Image0 ¼ 255� Image=255ð Þ1=c (6)

In Eq. (6), γ represents gamma factor and Image’ is the output with a corrected factor. The image
brightness is enhanced with gamma factor equal or greater than 1 (γ ≥ 1) and decreases gradually with γ

Table 1: Dice similarity results

Method First doctor Second doctor Third doctor Average dice similarity index

The proposed method 0.868 0.867 0.872 0.87

Circular Hough transform 0.622 0.51 0.523 0.56

Chanvese procedure 0.523 0.55 0.515 0.53

Daugman procedure 0.76 0.754 0.77 0.762
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getting smaller than 1. In this research, the gamma value is chosen by a trial method based on brightness
correction with respect to γ.

4.2 Corneal Shape Extraction and Curvature Computation

The shape identification of the frontal eye is done by computing texture differentiation and then the
curvature is computed. The curvature is computed using an automated process which depends on third
degree spline interpolation [34].

The proposed method probes the image in horizontally and can detect edges by the intensity differences
in texture. The system changes from the Cartesian plane (x, y) to (Θ, Φ) which is polar coordinates. The
origin can be detected easily which transform the edge detection problem to be straightforward. The
problem is converted to an image processing one dimensional job.

The gray level intensities from 0 to 255 are converted to polar angles ranging from 0° to 360°. Therefore,
curves with low to high gray levels can be obtained. The high levels are related to bright parts of the cornea
texture, and low levels are related to more opaque parts of the cornea which is affected by the LCSD.

The curves should be smoothed and decrease the noise levels. In the second step we calculate the first
derivative to the slopes at each point. The derivative will produce a curve with peaks characterizing the edge
between dark and bright texture levels.

Color and texture analysis are used to extract iris features. Iris color palette is utilized to describe an
illustration of all possible colors of the iris surface. Therefore, we defined Iris color palette to make a
similar illustration of the colors on the iris surface. The iris color was used as a locus to extract color and
texture features of the iris. The colors show that the iris surface can be represented by the color gamut
which are not opaque in texture as opposite to iris that is affected by LSCD which is opaque in texture.

The method is based on the sensitivity of the iris texture extraction which convey important evidence
that can differentiate between normal and LSCD eyes.

5 Methodology

5.1 Local Binary Pattern

Texture portrayal operator utilizes Local binary pattern (LB) for classification [35]. LB portrayal
operator is computed in a 3 × 3 zone, it includes the following steps:

a. The setting of the threshold

b. Encoding.

Threshold setting

c. In the first iteration, the pixels group of 3 × 3-pixel zone is usually set as the initial threshold value.

d. The other pixels are compared to the initial threshold value

e. Each pixel value will take a 0 or 1 binary value. If the value of the pixel is superior to the initial
threshold, it will take a value of 1, otherwise, it will take the value of 0.

f. The eight pixels with values 1 or 0 will be arranged in a clockwise order not including the central pixel.
The calculated value is depicted as the Local binary pattern code of the pixel at the center.

Local binary pattern is depicted in the example given in Fig. 7.

The Local binary pattern code is a texture feature. The Local binary pattern code is characterized by its
statistical histogram which is considered as the final texture feature vector that is computed from the original
Local binary pattern code image.
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As a summary of the preprocessing step, the image is transformed into binary image of 0 and 1 according
to the threshold. The Local binary pattern code of every pixel is computed and the output would be texture
feature image and the Local binary pattern histogram is depicted as the feature vector of the cornea image.

5.2 Support Vector Machine Classification

Support vector machine is an influential classification solution to many problems. The key advantages of
support vector machines are the generalization capability and the strong learning method. Support vector
machine usually leads to identifying global minimum.

The Support vector machine is a linear high-dimensional feature space machine [36]. This is done by the
representing the input vector in a nonlinear fashion to a K-dimensional space of the extracted features
through a mapping function φ(x).

The hyperplane is depicted in Eq. (7) as follows:

g xð Þ ¼ xT / xð Þ þ b ¼ 0 (7)

where, / (x) = [/1(x), /2(x),…, /k(x)] T

/ is a number of nonlinear mappings,x = [x 1,x 2,… x k] T is the vector of weights, and b represents
the bias.

The Support vector machine’s learning process is the classification to the maximum of the margin
between any two classes for separation.

It can be depicted as a procedure to minimize the cost function as defined in Eq. (8).

min / x; jð Þ ¼ 1x =2 xTx þ
X X

i¼1to p

ji (8)

Subject to:

di Tx / xð Þ þ bð Þ � 1� ji; ji � 0 for i ¼ 1; 2; . . . ; p:

C > 0 is the identified constant calculated by the user depicting the coefficient,

ξi ≥ 0 is a representation of the slack variable,

p is the count of the learning pairs xi, di.

The optimization problem is solved by the Lagrangian function [37]. This depicts the quadratic
programming that utilizes Lagrange multipliers. The learning and testing operations utilize the kernel
function, ensuring that the Mercer conditions are satisfied. The kernel is the inner product of the two
vector φ (xi) and φ(x) (Ker (xi, x) = φ T(xi) φ(x)). Kernel functions usually utilize the Gaussian basis and

Figure 7: Local binary code
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the sigmoid functions. The learning problem of the Support vector machine is defined as the solution of the
dual problem, as shown in Eq. (9).

max Q ɣð Þ ¼
Xp

i¼1
ɣi�

Xp

i¼1

Xp
j¼1

ɣiɣjdidjK xi; xjð Þ (9)

Subject to
Pp

i¼1 ɣidi ¼ 0; 0 � ai � ɣ

In this research, the training of the Support vector machine’s classifier utilizes the extracted features from
training set.

In the following subsections, we present two algorithms to compute the curvature and characterize the
ratio features of the horizontal and vertical diameter of the iris as the change in Cornea curvature will increase
these measures. We utilize ratio computation and the numerical integration computation method [38].

For ratio computation, the initialization process is first normalized by extracting the farthest point of the
cornea curve followed by calculating the reference ratio, R. the reference ratio is defined as the ratio of the
width, w, to the width of the image, Imw, as shown in Eq. (10). Also, Imn is the computed value of the corneal
curvature utilizing w, as shown in Eq. (11). The ratio is calculated in Eq. (12).

R ¼ w

Imw
(10)

Imn ¼ R� Imw (11)

The required ratio is computed as follows:

Ratio ¼ Imn

w
(12)

The ratio “Ratio” is a characteristic of the droopiness of the cornea downwards and is based on the fact
that the smaller the ratio is, the more is the dropping of the eye cornea downwards as shown in the following
Fig. 8. This is in agreement with the clinical observation that the dropping of a LSCD cornea downwards
increases as the severity of the LSCD increases [39].

We computed the ratio of the length to the width of the curve for a normal eye on the left and for an
LSCD eye where the cornea is more dropped on the right.

5.3 Feature Selection

The features from the curve extraction, are fused to select the most preeminent features. The selection
methodology in the suggested system aids the evaluation of the impact of the implemented corneal feature
selection based on the ranking of the features method. The adopted corneal features are sphericity,
eccentricity, horizontal and vertical diameters. The adopted features are measured from the cornea
utilizing the ratio calculation, and the numerical integration technique.

The features are selected to attain stability, scalability and minimize feature variability for classification
purposes. The data size is the main reason for the instability or stability of the feature selection. Data size
which is small with a high dimensionality can induce feature instability. Therefore, we select and rank the
features accordingly. The most challenging problem is choosing the optimal features to form the feature
model. In this research, Rclassify, latent feature selection algorithm methods will be utilized to define the
impertinence of the features.

The proposed classification algorithm: Rclassify, which is an extension to the Relief algorithm. The
major drawback of Relief algorithm is its limitation to binary classification and also its jeopardizing of
losing data [40], our proposed method Rclassify is more robust against incomplete data. Rclassify is
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characterized by its filtering technique that can analyze intrinsic data features regardless of the classifier type.
Rclassify is a similarity-based classifier and is capable of detecting the interactions of features. Since,
Rclassify is not able to handle redundancy and have a tendency of reiterating through highly correlated
features, other filters, such as latent feature selection algorithm, are combined to induce an overall
probabilistic framework that can handle feature redundancy. The feature selection method is carefully
chosen to be founded on the appropriateness of the data size.

Classification methodology represents the class-predicting procedure for the data in question. In this
research, the classification of LSCD eyes versus normal eyes are based on extracted and ranked features.
The classification utilizes the feature selection methods. How well the classification performs is the actual
representation of the performance of the whole system. It also characterizes the appropriateness of the
data type and size. In this research, the classification study takes account of SVM classifier including
linear, quadratic, and radial basis function as shown in Tab. 2. Where Random Forest utilizes n = 10, 34,
200 and 400, the experiments are designed to find the optimum number of trees, see Tab. 3. The
experiments also tested k-NN models with the appropriate numbers of k. We also included experiments
for Chebychev and Euclidean kernels, see Tab. 4. The experiments are designed to simulate the models to
get the best features for the classifier. The number of features of the classifier has to be appropriate to the
size of the data. We based our experiments ion on the holdout cross-validation test. The training set was
represented by 70% holding of the whole data. The experiments utilized 30% for the test data set. Also,
k-fold cross validation is utilized to train the classifier. Top ranked features were used for the experiments.

Figure 8: The ratio method using the length and width
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The ranked features are: <L5, L7, L6, L1, L4, L9, L8, A6, A7, A4, A1,A2, L3, A5, L2, A3> and are
utilized to optimize the parameters for each classifier. The performance comparison among the algorithms
are the accuracy, sensitivity, specificity, and error.

The experimental results in Tab. 2: SVM machine with the Radial Basis Function shows 95.24%
accuracy. This method constantly outperforms the other kernels for data with nonlinear distribution. The
experimental results of the random forest in Tab. 3, show that using n = 10 trees got the highest accuracy
of 94.05%. Tab. 4 shows also that the sensitivity is higher with n = 40 trees. Thus, random forest with
n = 40 will be utilized in the next round. In these experiments, sensitivity is more significant than the

Table 2: Experimental results for SVM kernels

Average results for SVM kernels

Kernel type Accuracy % Sensitivity % Specificity % Error rate

Linear 91.2 87.9 96.1 0.096

Quadratic 85.1 80.22 90.1 0.1433

Cubic 83.6 79.1 87.9 0.1678

Radial Basis Function 95.43 91.9 96.99 0.0483

Table 3: Experimental results for the random forest classifier

Average results for number of trees for the random forest classifier

Number of the trees in the forest Accuracy % Sensitivity % Specificity % Error rate

10 95.2 88.9 99.7 0.056

40 91.4 90.22 95.1 0.0733

200 91.6 89.1 95.9 0.088

400 91.4 90.22 95.1 0.0733

Table 4: Experimental results for distance function

Average results for distance function

Function K = 5 K = 7 K = 9

Euclidian Accuracy % 89.9 89.7 97.7

Sensitivity % 70.22 75.1 92.1

Specificity % 99.9 99.9 99.9

Error rate 11.22 10.1 3.51

Chebychev Accuracy % 89.9 93.7 91.7

Sensitivity % 78.12 71.3 85.5

Specificity % 100 100 100

Error Rate 10.22 14.1 7.321
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accuracy and specificity because LSCD patients cannot be classified as false negative. Tab. 4 indicates that
the best nearest neighbors with the best kernel is the Chebychev model.

6 Experiment Design

6.1 Simulation Results for Computing Ratio Computation (RC) of The Droopiness of the Cornea

The simulation results, of the Computing Ratio that indicate the diagnosis of infected eyes with LSCD,
are presented in this subsection. The experiments are designed such that the correlation between the RC of
the LSCD infected eyes and the Actual Ratio from an actual physician diagnosis, are extracted.

Simulation results presented in Fig. 9, depict the correlation between the Actual Ratio of LSCD in
patients from an actual physician diagnosis from topographic images of the cornea, and the Computation
Ratio of LSCD extracted from our proposed computing ratio algorithms from lateral images of the eye
using a smartphone.

The Bland-Altman Plot, of the actual Ratio of LSCD in patients from an actual medical expert diagnosis
versus the Computation Ratio of LSCD computed using our proposed algorithm, is depicted in Fig. 10.

Figure 9: The correlation between the Actual Ratio of LSCD in patients from an actual physician diagnosis
from topographic images of the cornea, and the Computation Ratio of LSCD extracted from our proposed
computing ratio algorithms from lateral images of the eye using a smartphone

Figure 10: The Bland-Altman Plot, of the Actual Ratio of LSCD in patients from an actual medical expert
diagnosis versus the Computation Ratio of LSCD computed using our proposed algorithm
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The correlation between the Actual Ratio and the computation Ratio, as plotted in Fig. 9, indicates the
positive correlation between the Actual Ratio of LSCD in patients from an actual medical expert diagnosis
versus the Computation Ratio of LSCD computed using our proposed algorithm.

The simulation results depict resilient strong linear relationship between the physician Actual Ratio and
the predicted Computation Ratio diagnosis.

Positive correlation is indicated using Pearson’s r formula as presented in Eq. (13), where r is always is
greater than 0 and always approaching 1.

r ¼ 1

n� 1

Xn
i¼1

xi � �x

SDx

� �
yi � �y

SDy

� �
(13)

“r” was calculated to be equal 0.925, which denotes high correlation between the Actual Ratio of LSCD
in patients from an actual medical expert diagnosis versus the Computation Ratio of LSCD computed by our
algorithm (utilizing the data presented in Fig. 9).

Bland-Altman metric usually denotes the positive correlation of two quantities. Bland-Altman plot is used
constantly in correlating the predicted medical diagnosis (P) with actual diagnosis (D). The presented Bland-
Altman between A and D in our case found that the values of the two tests are of highly similar.

6.2 The Classification Process Accuracy and Error

Results: We compared the diagnosis done by a medical expert for 228 cases. Their medical evaluation
was found fully in the dataset:

Comparison of the experimental results of actual medical diagnosis with our proposed method as shown
in Tab. 5. The proposed classification process proved the prediction ability to correctly diagnose the 4 stages
of LSCD with high accuracy especially for moderate to severe cases. The four stages are normal, mild,
moderate, and severe LSCD cases, the accuracies are published as follows: 73.6%, 80%, 92%, and 100%
for normal, mild, moderate, and severe cases respectively. Most the false negative in the mild and normal
cases are in pale blue and green eyes.

7 Conclusion and Future Works

We presented the development of an automated LSCD detection technique (LDT) approach using frontal
and lateral eye image views captured by smartphones. Very few studies of LSCD automated diagnosis are
found in the literature. Our study is one of the initial an automated LSCD detection techniques that utilize
image processing techniques. A 3-step preprocessing and the cornea region segmentation algorithms were
proposed. We developed a feature extraction algorithm from the training data set.

Table 5: LSCD detection accuracies

Predicted cases by our proposed classifier Total True
positive

False
negative

Mild Moderate Severe Normal

Actual Cases
diagnosed

Mild 96 2 0 22 120 80% 20%

Moderate 0 46 2 2 50 92% 0%

Severe 0 0 20 0 20 100% 0%

Normal 8 2 0 28 38 73% 21%
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We developed a method for LSCD detection technique utilizing frontal eye images. A dataset of 280 eye
images of frontal and lateral LSCD and normal patients were used in this research. First, the cornea region of
both frontal and lateral images is segmented and the texture features are extracted using the feature selection
algorithm. The experimental results exhibited that the combined features of the geometric and texture will
exhibit accuracy of 95.95%, sensitivity of 97.91% and specificity of 94.05% with the random forest
classifier of n = 40. As a result, this research developed a Limbal Stem Cell Deficiency detection system
utilizing features’ fusion using image processing techniques for frontal and lateral digital images of the eyes.
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