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Abstract: In this paper, a deterministic and stochastic fractional order model for
lesser date moth (LDM) using mating disruption and natural enemies is proposed
and analysed. The interaction between LDM larvae, fertilized LDM female, unfer-
tilized LDM female, LDM male and the natural enemy is investigated. In order to
clarify the characteristics of the proposed deterministic fractional order model, the
analysis of existence, uniqueness, non-negativity and boundedness of the solu-
tions of the proposed fractional-order model are examined. In addition, some suf-
ficient conditions are obtained to ensure the local and global stability of
equilibrium points. The occurrence of local bifurcation near the equilibrium points
is investigated with the help of Sotomayor’s theorem. Numerical simulations are
conducted to illustrate the properties of the proposed fractional order model with
respect to the intrinsic growth rate of the LDM larvae, natural enemy’s mortality
rate, predation rate, sex pheromone trap parameter, fractional order and environ-
mental noise. The impact of mating disruption on lesser date moth is demon-
strated. Also, a numerical approximation method is developed for the proposed
stochastic fractional-order model.

Keywords: Lesser date moth; stochastic; stability; natural enemies; Sotomayor’s
theorem; mating disruption

1 Introduction

The palm tree is considered one of the oldest major and basic crops in Southwest Asia, North Africa and
many other places of the world. Palm trees are affected by many agricultural pests that cause significant
losses to the palm trees and their fruits, as well as affecting the age and growth of the palm tree if it is
left without control [1]. The LDM is one of the most dangerous pests of young palm trees and immature
palm fruits. The damage is mainly due to the way in which the LDM larvae feed, as soon as they leave
the egg until the date of their entry the virgin dwelling develops feeding and causing tunnels in the
affected part of the palm in all directions and depths without any early signs showing the infection [2–5].
One of the most promising strategies for controlling LDM is the use of a mating disruption using the sex
pheromone traps [5]. Natural enemies’ use to stop pest infestation has long been recommended as a clean
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and environmentally friendly way to protect crops. The main natural enemies that are used in agricultural pest
control are larval predators. Goniozus swirskiana can be considered as one of the most important natural
enemies that can attack the LDM [6,7]. In the real world, plant diseases models are always affected by
the environmental noise. Thus, the stochastic models may be a more appropriate way of modelling
agricultural pests in many circumstances [8]. Recently, fractional calculus has been applied to describe
different mathematical models, and it has been shown to be more accurate in some cases compared to the
classical models [9]. The main objective of this paper is to propose and analyse a deterministic and
stochastic fractional order LDM model with mating disruption and sex pheromone traps taking into
consideration the effect of the natural enemy on LDM.

The paper is arranged as follows: In Section 2, the deterministic mathematical model is described as well as
the existence, uniqueness, non-negativity, and boundedness of the solutions of LDM system are verified. The
local and global stability of equilibrium points of the LDM system is analyzed in Section 3. Using Sotomayor’s
theorem, the local bifurcation conditions are derived in Section 4. In Section 5, we extend the deterministic
fractional-order LDM model to the stochastic case and a numerical approximation method developed for
the proposed stochastic fractional-order case. Some numerical examples are given in Section 6 to illustrate
the theoretical findings. Finally, the discussion and conclusion are given in Section 7.

2 Dynamic of the Deterministic Fractional Order Model

Following [10–14], the model of lesser date moth with mating disruption and sex pheromone

trap is describing by the following system

caDax ¼ rx 1� x

k

� �
� a1x� bxz

aþ x
� l1x;

caDay ¼ e a1x� a2yþ df � l2y;
caDaf ¼ a2y� df � l3f ;

caDam ¼ 1� eð Þa1x� c pm
yþ p

� l4m;

caDaz ¼ ebxz
aþ x

� l5z;

(1)

where CaDa is the Caputo fractional derivative of order a and 0, a, 1. The detailed explanation of the
variables and parameters for system (1) are listed in Tab. 1.

Table 1: Biological description of parameters used in system (1)

Variables & parameters Description

x population density of LDM larvae

y population density of unfertilized LDM female

f population density of fertilized LDM female

m population density of LDM male

z population density of natural enemy

r the LDM larvae intrinsic growth rate

k the carrying capacity

a1 transfer rate from larvae to unfertilized LDM females

a2 transfer rate from unfertilized to fertilized LDM females
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Table 1 (continued).

Variables & parameters Description

b predation intensity between larvae and natural enemy

a half saturation constant

l1 mortality rate of LDM larvae

l2 mortality rate of unfertilized LDM female

l3 mortality rate of fertilized LDM female

l4 mortality rate of LDM male

l5 mortality rate of natural enemy

e proportion of larvae that emerge to unfertilized females

d multiple mating rate of fertilized LDM female

p the maximal death rate by sex-pheromone trap

c the capture rate for male by sex pheromone trap

e conversion coefficient for predation between LDM larvae and natural enemy.

2.1 Existence and Uniqueness

In this section, we investigate the existence and uniqueness of the solutions of the fractional order system
(1) in the region �� 0; Tð � where
� ¼ x; y; f ;m; zð Þ 2 R5

þ:max xj j; yj j; fj j; mj j; zj jð Þ � ’
� �

;

Theorem 1. For each X0 ¼ x0; y0; f0;m0; z0ð Þ 2 �, there exists a unique solution X tð Þ 2 � of the
fractional order system (1), which is defined for all t � 0.

Proof. Define a mapping F Xð Þ ¼ F1 Xð Þ;F2 Xð Þ;F3 Xð Þ;F4 Xð Þ;F5 Xð Þð Þ, in which

F1 Xð Þ ¼ rx 1� x

k

� �
� a1x� bxz

aþ x
� l1x;

F2 Xð Þ ¼ e a1x� a2yþ df � l2y;

F3 Xð Þ ¼ a2y� df � l3f ;

F4 Xð Þ ¼ 1� eð Þa1x� cpm
yþ p

� l4m;

F5 Xð Þ ¼ ebxz
aþ x

� l5z:

(2)

For any X ; �X 2 �; it follows from (2) that

kF Xð Þ � F X
� �k¼ F1 Xð Þ � F1 X

� ��� ��þ F2 Xð Þ � F2 X
� ��� ��þ F3 Xð Þ � F3 X

� ��� ��þ F4 Xð Þ � F4 X
� ��� ��

� r þ 2a1 þ l1 þ
2r’

k
þ 2b’

a

	 

jx� xj þ l2 þ 2a2 þ c’

p

	 

jy� yj þ l3 þ 2dð Þjf � f j

þ cþ l4ð Þjm� mj þ ’þ l5 þ
b’
a

þ ebþ 1

	 

jz� zj

� M1kX � X k;
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where

M1 ¼ max r þ 2a1 þ l1 þ
2r’

k
þ 2b’

a
; l2 þ 2a2 þ c’

p
;l3 þ 2d; cþ l4; ’þ l5 þ

b’
a

þ ebþ 1

	 �
:

�

Hence, F Xð Þ satisfies the Lipschitz condition with respect to X . According to Cresson et al. [15], as
F Xð Þ locally Lipschitz. Then there exists unique local solution to the fractional order system (1).

2.2 Non-Negativity and Boundedness

The following results show the non-negativity of the solutions of the fractional order system (1).
According to Cresson et al. [15], a model of the form dX

dt ¼ F Xð Þ satisfies the positivity property if and
only if for all i ¼ 1; . . . :; 5, Fi Xð Þ � 0 for all X 2 R5

þ such that Xi ¼ 0. Thus, the solution of the integer-
order model (1), with nonnegative initial conditions remains nonnegative. Also, the solution satisfies the
Lipschitz condition, as stated in Theorem 1. By Theorem 5 and Theorem 6 in Cresson et al. [15], the
solution of the fractional-order model (1) also satisfies the non-negativity. The boundedness of the
solutions of model (1) are given in the following theorem.

Theorem 2. All the solutions of the fractional-order LDM Model (1) starting in R5
þ are uniformly

bounded.

Proof. The approach of [16,17] is utilized. Let x tð Þ; y tð Þ; f tð Þ;m tð Þ; z tð Þð Þ to be any solution of the
system (1) with non-negative initial conditions. Let M tð Þ ¼ x tð Þ þ y tð Þ þ f tð Þ þ m tð Þ þ z tð Þ; then
caDaM tð Þ � rx 1� x

k

� �
� l1x� l2y� l3f � l4m� l5z�

cpm
yþ p

� �r

k
x� k

2

	 
2
þ rk

4
� mM ;

where, m, min l1; l2;l3; l4;l5f g, thus, caDaM tð Þ þ mM � rk
4 . In accordance with Lemma 9 in Choi et al.

[18], it follows that, 0 � M tð Þ � M 0ð ÞEa �mtað Þ þ rk
4m t

aEa;aþ1 �mtað Þ;
where Ea is the Mittag-Leffler function. According to Lemma 5 and Corollary 6 in Choi et al. [18], it
follows

0 � M tð Þ � rk

4m
; as t ! 1:

Hence all the solutions of fractional-order LDM model (1) that start in R5
þ are uniformly bounded in the

region, H ¼ x; y; f ;m; zð Þ 2 R5
þ:M tð Þ � rk

4m þ n; for any n. 0
� �

.

3 Equilibria and Stability

The LDM model (1) has the following three equilibrium points:

1) E0 ¼ 0; 0; 0; 0; 0ð Þ, which always exists.

2) The free natural enemy equilibrium point E1 ¼ x1; y1; f1;m1; 0ð Þ, where

x1 ¼ k 1� 1

R0

	 

; y1 ¼

e dþ l3ð Þ 1� 1
R0

� �
dl2 þ l3 a2 þ l2ð Þ ; f1 ¼

ea2 1� 1
R0

� �
dl2 þ l3 a2 þ l2ð Þ ;
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m1 ¼ 1� eð Þa1k y1 þ pð Þ
cpþ l4 y1 þ pð Þ 1� 1

R0

	 

:

The free natural enemy equilibrium point exists positively if R0. 1; where, R0 ¼ r
a1þl1

is the basic
offspring number obtained by using the next generation method [19].

3) The coexistence equilibrium point E2 ¼ x2; y2; f2;m2; z2ð Þ, where

x2 ¼ al5
b� l5

; y2 ¼ ea1 dþ l3ð Þx2
dl2 þ l3 a2 þ l2ð Þ ; f2 ¼ a1a2ex2

dl2 þ l3 a2 þ l2ð Þ ;

m2 ¼ 1� eð Þa1x2 y2 þ pð Þ
cpþ l4 y2 þ pð Þ ; z2 ¼ ea a1 þ l1ð Þ

eb� l5ð Þ R0 � 1� arl5
k a1 þ l1ð Þ eb� l5ð Þ

	 

:

4) The coexistence equilibrium point E2 exists if eb.l5 and R0 . 1þ ral5
k a1þl1ð Þ eb�l5ð Þ :

The locally and globally asymptotically stable of equilibrium points of LDM system (1) are now
investigated. The stability analysis of the equilibrium point E0 ¼ 0; 0; 0; 0; 0ð Þ is not considered because
in this case all the population will go to extinction.

The stability of free natural enemy equilibrium point E1 ¼ x1; y1; f1;m1; 0ð Þ is investigated as follows.

Theorem 3. If R0, 1þ ral5
k a1þl1ð Þ eb�l5ð Þ ; then the equilibrium point E1 is locally asymptotically stable.

Proof. The first three eigenvalues of J E1ð Þ are �1 ¼ r � 2rx1
k � a1 þ l1ð Þ ¼ a1 þ l1ð Þ 1� R0ð Þ,

�2 ¼ � cp
y1þp þ l4
� �

and �3 ¼ ebx1
aþx1

� l5 . The other roots are determined by

�2 þ a2 þ dþ l2 þ l3ð Þ�þ dl2 þ l3 a2 þ l2ð Þ ¼ 0: (3)

The roots of Eq. (3) have negative real parts. It can be observed that �3 , 0; when ebx1
aþx1

,l5 which
equivalent R0 , 1þ ral5

k a1þl1ð Þ eb�l5ð Þ : So, E1 is locally asymptotically stable if 1,R0, 1þ ral5
k a1þl1ð Þ eb�l5ð Þ :

Theorem 4. If R0, 1þ ral5
k a1þl1ð Þ eb�l5ð Þ, then the natural enemy extinction equilibrium point E1 is

globally asymptotically stable.

Proof. The following positive definite Lyapunov function is considered.

L1 ¼ ea

aþ x1
x� x1 � x1 ln

x

x1

	 

þ z:

By calculating the time derivative of L1 along the solution of system (1), one obtains,

caDaL1 ¼ ea x� x1ð Þ
aþ x1

r 1� x

k

� �
� bz
aþ x

� a1 þ l1ð Þ

 �

þ ebx
aþ x

� l5


 �
z

�� ear x� x1ð Þ2
k aþ x1ð Þ þ ebx1

aþ x1
� l5

	 

z:

Then caDaL1 � 0, when ebx1
aþx1

,l5 which equivalent R0 , 1þ ral5
k a1þl1ð Þ eb�l5ð Þ : According to generalized

Lyapunov–Lasalle’s invariance principle [20], the natural enemy extinction equilibrium point E1 is globally
asymptotically stable when R0 , 1þ ral5

k a1þl1ð Þ eb�l5ð Þ :

The stability of the coexistence equilibrium point E2 ¼ x2; y2; f2;m2; z2ð Þ is investigated as follows.
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The first eigenvalue of J E2ð Þ is �1 ¼ � cp
pþy2

� l4. The other eigenvalues are determined by

�4 þ h1�
3 þ h2�

2 þ h3�þ h4 ¼ 0; (4)

where

h1¼ a2 þ dþ l2 þ l3 þ B11;

h2¼ a2l3 þ
eab2z2x2
aþ x2ð Þ3 þ B11 a2 þ dþ l2 þ l3ð Þ þ l2 dþ l3ð Þ;

h3¼
a2 B11l3 aþ x2ð Þ3 þ eab2z2x2
� �

þ l2 B11 aþ x2ð Þ3 dþ l3ð Þ þ eab2x2z2
� �

þ eab2x2z2 dþ l3ð Þ
aþ x2ð Þ3 ;

h4¼ eab2x2z2 a2l3 þ l2 dþ l3ð Þð Þ
aþ x2ð Þ3 ;

where B11 ¼ rx2
k � bz2x2

aþx2ð Þ2 and B44 ¼ cp
pþy2

þ l4. Then, the proposition proposed in Matouk [21] can be used to

determine the stability conditions of the equilibrium point E2. When B11. 0, then hi. 0; i ¼ 1; 2; 3; 4: Also,

h1h2h3 � h23 � h21h4 ¼
B11ðaþx2Þ3�4þ�2�3ð Þ B11dl2ðaþx2Þ3þ�1 a2þl2ð Þþeab2w2x2 dþl3ð Þð Þ2

ðaþx2Þ9 ; where

�1¼ B11l3 aþ x2ð Þ3 þ eab2z2x2;

�2¼ aþ x2ð Þ3 � eab2z2x2;

�3¼ a2l3 þ l2 dþ l3ð Þ � 1;

�4¼ a2 þ dþ l2 þ l3ð Þ:
when �2�3 . 0, then h1h2h3 � h23 � h21h4. 0, therefore all the eigenvalues of the Jacobian matrix J E2ð Þ
near the equilibrium point E2 have negative real parts. Thus, due to the Routh-Hurwitz criterion the
equilibrium point E2 is locally asymptotically stable. The local stability of the coexistence equilibrium
point E2 is given in the following theorem.

Theorem 5. If�2�3. 0 and B11. 0, then the coexistence equilibrium point E2 is locally asymptotically
stable.

The global stability of the coexistence equilibrium point is investigated in the following theorem.

Theorem 6. If bz2
a aþx2ð Þ ,

r
k, then the coexistence equilibrium point E2 is globally asymptotically stable.

Proof. The following positive definite Lyapunov function is considered.

L2 ¼ H x� x2 � x2 ln
x

x2

	 

þ z� z2 � z2 ln

z

z2
:

By calculating the time derivative of L2 along the solution of system (1), one obtains,

caDaL2 ¼H x� x2ð Þ r 1� x

k

� �
� bz
aþ x

� a1 þ l1ð Þ

 �

þ z� z2ð Þ ebx
aþ x

� l5


 �

� H
bz2

a aþ x2ð Þ �
r

k


 �
þ b x� x2ð Þ z� z2ð Þ

aþ xð Þ aþ x2ð Þ ea� H aþ x2ð Þð Þ:

Choosing H ¼ ea
aþx2

; then caDaL2, 0. According to generalized Lyapunov–Lasalle’s invariance
principle [20], the coexistence equilibrium point E2 is globally asymptotically stable when bz2

a aþx2ð Þ ,
r
k.
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4 Bifurcation Analysis

In this section the local bifurcations near the equilibrium points of LDMmodel (1) are inves-tigated with
the help of Sotomayor’s theorem [22]. The Hopf bifurcation theorem given in Liu [23] is also presented to
discuss the bifurcation analysis of the underlying system. One can compute

D2F x; ’ð Þ U ;Uð Þ ¼

2abz

ðaþ xÞ3 �
2r

k

 !
f21 �

2abf1f5
ðaþ xÞ2

0
0

� 2cpmf22
ðpþ yÞ3 þ

2cpf2f4
ðpþ yÞ2

eabf1f5
ðaþ xÞ2 �

2eabzf21
ðaþ xÞ3

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
; (5)

where ’ is any bifurcation parameter and U ¼ ðf1; f2; f3; f4; f5ÞT is any eigenvector.

Theorem 7. The LDM system (1) undergoes a transcritical bifurcation with respect to the bifurcation
parameter r around E0 if r ¼ r� ¼ a1 þ l1.

Proof. Let V1 ¼ ðm1; m2; m3; m4; m5ÞT be the eigenvector corresponding to the zero eigenvalue of the matrix
J E0ð Þ r� ¼ a1 þ l1, hence J E0ð ÞV1 ¼ 0, gives

V1 ¼

m1
ea1 dþ l3ð Þm1

a2l3 þ l2 dþ l3ð Þ
ea1a2m1

a2l3 þ l2 dþ l3ð Þ
1� eð Þa1m1
cþ l4

0

0
BBBBBBBBB@

1
CCCCCCCCCA
;

where m1 is any non zero real number. Similarly, suppose V2 ¼ ðs1; s2; s3; s4; s5ÞT be the eigenvector

corresponding to the zero eigenvalue of the matrices J E0ð Þ, thus JðE0ÞTV2 ¼ 0 gives V2 ¼ ð1; 0; 0; 0; 0ÞT .
Consider, @F

@r ¼ FrðX ; rÞ ¼ ðxð1� x
kÞ; 0; 0; 0; 0ÞT , thus, VT

2 Fr E0; r�ð Þ ¼ 0: Therefore, according to
Sotomayor’s theorem for local bifurcation, the LDM model (1) has no saddle-node bifurcation near E0 at
r� ¼ a1 þ l1. One can note that r ¼ a1 þ l1 is equivalent to R0 ¼ 1. Now,

DFr E0; r
�ð Þ ¼

1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0
BBBB@

1
CCCCA;

then VT
2 DFr E0; r�ð ÞV1 ¼ m1 6¼ 0: Using (5), one obtains

VT
2 D

2F X ; rð Þ V1;V1ð Þ ¼ � 2r

k
m21 �

2b
a
m1m5 6¼ 0:

Thus, according to Sotomayor’s theorem, the LDM system (1) has a transcritical bifurcation at
r� ¼ a1 þ l1 as the parameter r passes through the value r�, thus the proof is complete.

CSSE, 2022, vol.40, no.2 755



Theorem 8. The LDM system (1) undergoes a transcritical bifurcation with respect to the bifurcation
parameter l5 around E1 ¼ x1; y1; f1;m1; 0ð Þ if l5 ¼ l�5 ¼ ebx1

aþx1
.

Proof. The Jacobian matrix of the LDM system (1) at the free enemy equilibrium point E1 with l5 ¼ l�5
has zero eigenvalue takes the form

J E1;l
�
5

� � ¼
A11 0 0 0 �bx1

aþx1
a1e �A22 d 0 0
0 a2 �A33 0 0

1� eð Þa1 cpm1

pþy1ð Þ2 0 �A44 0

0 0 0 0 0

0
BBBB@

1
CCCCA;

where A11 ¼ r � 2rx1
k � a1 þ l1ð Þ; A22 ¼ a2 þ l2ð Þ; A33 ¼ dþ l3ð Þ and A44 ¼ cp

y1þp þ l4: J E1ð ÞV3 ¼ 0,
gives the eigenvector corresponding to the zero eigenvalue of the matrix J E1ð Þ, hence

V3 ¼

l5m5
eA11

eA33a1l5m5
eA11 A22A33 � da2ð Þ

ea1a2l5m5
eA11 A22A33 � da2ð Þ

a1 1� eð ÞA22 y1 þ pð Þ2þecpm1

� �
A33 � 1� eð Þd y1 þ pð Þ2a2

� �
l5m5

e y1 þ pð Þ2A11A44 A22A33 � da2ð Þ
m5

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
;

where m5 is any non zero real number. Similarly, J ðE1ÞTV4 ¼ 0 gives the eigenvector corresponding to

the zero eigenvalue of the matrix JðE1ÞTV4 ¼ 0, hence V4 ¼ 0; 0; 0; 0; 1ð ÞT : Consider, @F
@l5

¼
Fl5ðX ; l5Þ ¼ ð0; 0; 0; 0;�zÞT , thus, VT

4 Fl5 E1;l5
�ð Þ ¼ 0: Therefore, according to Sotomayor’s theorem

for local bifurcation, the LDM model (1) has no saddle-node bifurcation near E1 at l5 ¼ l�5. Now,

DFl5 E1; l5
�ð Þ ¼

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 �1

0
BBBB@

1
CCCCA;

then, VT
4 DFl5 E1; l5

�ð ÞV3 ¼ �m5 6¼ 0: Using (5), one obtains

VT
4 D

2F X ; l5ð Þ V3;V3ð Þ ¼ eabm1m5
aþ x1ð Þ2 6¼ 0:

Thus, according to Sotomayor’s theorem, the LDM system (1) has a transcritical bifurcation at l�5 ¼ ebx1
aþx1

as the parameter l5 passes through the value l�5, thus the proof is complete.

In this part, we shall show that as the coexistence equilibrium loses stability, periodic solutions can
bifurcate from the positive equilibrium. We first give the following lemma.

Lemma 9 . The characteristic Eq.(4) has a pair of purely imaginary roots and the remaining roots have

negative real parts if and only if z2 ¼ rðaþx2Þ2
kb and h1h2h3 � h23 � h21h4 ¼ 0:

Suppose (4) has two eigenvalues which have negative real parts and two complex conjugates
eigenvalues (call them � ¼ m ’ð Þ � in ’ð Þ) such that m ’�ð Þ ¼ 0; n ’�ð Þ. 0; dm

d’ j’¼’� 6¼ 0: Substituting
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� ¼ m ’ð Þ � in ’ð Þ into (4), and separating the real and imaginary, we get

m4 þ h1m
3 þ h2m

3 þ h3mþ h4 � 6m2 þ 3h1mþ h2
� �

n2 þ n4 ¼ 0; (6)

4m3 þ 3h1m
2 þ 2h2mþ h3 � 4mþ h1ð Þn2 ¼ 0; (7)

Substituting (6) into (7), differentiating with respect to ’ and utilizing m ’�ð Þ ¼ 0 and n ’�ð Þ 6¼ 0; we
have

dm

d’
¼

d
d’ h1h2h3 � h23 � h21h4
� �

2h1 4h4 � h1h3 � h22
� �

" #
’¼’�

6¼ 0:

Theorem 10. For the coexistence equilibrium point E2 of the integer order LDM system (1), the system
around E2 enters into the Hopf bifurcation when ’ passes ’� if the coefficients hj ’ð Þ j ¼ 1; 2; 3; 4ð Þ at
’ ¼ ’� satisfying the following condition:

1. � ’�ð Þ ¼ h1 ’ð Þh2 ’ð Þh3 ’ð Þ � h23 ’ð Þ � h21 ’ð Þh4 ’ð Þ� �j’¼’� ¼ 0;

2. 4h4 � h1h3 � h22
� �j’¼’� 6¼ 0,

3. d� ’ð Þ
d’ j’¼’� 6¼ 0.

According to Theorem 10, there exists a Hopf bifurcation in the LDM model (1) with a ¼ 1, where the
Hopf bifurcation is controlled by ’.

5 Stochastic Fractional Order Model

This section extends the deterministic fractional-order LDM model (1) to the following stochastic
fractional-order model.

CaDax ¼ rx 1� x

k

� �
� a1x� bxz

aþ x
� l1xþ r1 x

dW1

dt
;

CaDay ¼ e a1x� a2yþ df � l2yþ r2 y
dW2

dt
;

CaDaf ¼ a2y� df � l3f þ r3 f
dW3

dt
;

CaDam ¼ 1� eð Þa1x� cpm
yþ p

� l4mþ r4 m
dW4

dt
;

CaDaz ¼ ebxz
aþ x

� l5zþ r5 z
dW5

dt
;

(8)

where Wi i ¼ 1; 2; 3; 4; 5ð Þ are independent standard Brownian motions with Wi 0ð Þ ¼ 0 and ri. 0 denote
the intensities of the white noise. The stochastic fractional-order LDM model (8) can be written in the
general form:

CaDaX tð Þ ¼ F Xð Þ þ g Xð Þ dW
dt

; (9)

where F xð Þ is given in (2), g xð Þ ¼ r1x;r2y;r3f ;r4m;r5zð Þ and dW
dt ¼ ðdW1

dt ;
dW2
dt ;

dW3
dt ;

dW4
dt ;

dW5
dt ÞT : Applying

Riemann–Liouville integral to both sides of (9), one can obtain the following stochastic Volterra
integral equation.
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X tð Þ ¼ X0 þ
Z t

0

FðX Þðt � sÞa�1

� að Þ dsþ
Z t

0

gðX Þðt � sÞa�1dW ðsÞ
� að Þ ds: (10)

According to Wang et al. [24,25], under some conditions on the coefficient functions, the
global existence and uniqueness of solutions for the stochastic fractional-order system (8) can be
investigated. Because Grunwald-Letnikov’s definition is the most straightforward from the point of view
of numerical implementation, so we will use it to solve the LDM system of fractional order stochastic
differential equations. Grunwald-Letnikov (GLDa) fractional derivative of order a defined by Aminikhah
et al. [26,27]

GLaDaf tð Þ ¼ Lim
h!0

h�a
Xt�a

h½ �

j¼0

ð�1Þj a
j

	 

f t � jhð Þ; (11)

where t�a
h

� �
means the integer part of t�a

h . This formula (11) can be reduced to

GLaDaf tnð Þ 	 h�a
Xn
j¼0

wa
j f tn�j

� �
; (12)

where h is the time step, tn ¼ nh and wa
j are the Grunwald-Letnikov coefficients satisfy the following

recurrence relationship

wa
0 ¼ 1; wa

j ¼ 1� 1þ a
j

	 

wa
j�1; j ¼ 1; 2; 3; . . .

If f tð Þ is continuous function and f 0 tð Þ is integrable function in the interval 0; T½ �, then the relation
between Caputo and Grunwald-Letnikov fractional derivative takes the form [28,29]

CaDaf tð Þ ¼GLa Daf tð Þ � f 0ð Þ t�a

� 1� að Þ
¼GLa Daf tð Þ � Lim

n!1
ð�1Þn
ha

a� 1

n

	 

f 0ð Þ

	 1

ha
Xn
j¼0

wa
j f tn�j

� �� f 0ð Þ� �
:

(13)

Now, the fractional order stochastic LDM model (8) can be written as

xn ¼ x0 þ ha rxn�1 1� xn�1

k

� �
� a1 þ l1ð Þxn�1 � bxn�1zn�1

aþ xn�1
þ r1xn�1

ffiffiffi
h

p
f1n

	 

�
Xn
j¼1

wa
j xn�j � x0
� �

yn ¼ y0 þ ha e a1xn � a2 þ l2ð Þyn�1 þ dfn�1 þ r2yn�1

ffiffiffi
h

p
f2n

� �
�
Xn
j¼1

wa
j yn�j � y0
� �

fn ¼ f0 þ ha a2yn � dþ l3ð Þfn�1 þ r3fn�1

ffiffiffi
h

p
f3n

� �
�
Xn
j¼1

wa
j fn�j � f0
� �

mn ¼ m0 þ ha 1� eð Þa1xn � cpmn�1

yn þ p
� l4mn�1 þ r4mn�1

ffiffiffi
h

p
f4n

	 

�
Xn
j¼1

wa
j mn�j � m0

� �

zn ¼ z0 þ ha
ebxnzn�1

aþ xn
� l5zn�1 þ r5zn�1

ffiffiffi
h

p
f5n

	 

�
Xn
j¼1

wa
j zn�j � z0
� �

;

(14)
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where, ri and fin represent real constants and a 5D Gaussian white noise processes, respectively,
i ¼ 1; 2; 3; 4; 5: fi satisfy the follows:

fj tð Þ
� � ¼ 0; j ¼ 0; 1; 2; 3; 4; 5ð Þand fi t1ð Þfj t2ð Þ� � ¼ dijd t1 � tj

� �
;

dij is Kronecker delta and d t1 � tj
� �

is the Dirac delta function.

6 Numerical Simulations

In this section, we simulate the fractional-order LDM system (1) and stochastic fractional-order LDM
(8) by the following parameters:

r ¼ 1:8; e ¼ 0:6; k ¼ 30; l1 ¼ 0:01; l2 ¼ 0:01; l3 ¼ 0:01; l4 ¼ 0:01; l5 ¼ 0:01;

a1 ¼ 0:5; a2 ¼ 0:5; d ¼ 0:5; a ¼ 15; c ¼ 0:4; p ¼ 0:2; e ¼ 0:9; b ¼ 0:1:

To show the effect of the intrinsic growth rate of the LDM larvae, we draw the bifurcation diagram
concerning r as a bifurcation parameter. It can be seen that a transcritical bifurcation occurs at r = 0.51 as
shown in Fig. 1 and stated in Theorem 7. It can also be observed that when r > 0.51, the coexistence
equilibrium point E2 = (1.6667, 25.2475, 24.7525, 25.36, 157.407r − 85) is locally asymptotically stable.
According to Theorem 10, it can be seen that the supercritical Hopf bifurcation value localized at
r = 1.31143. For r > 1.31143 the LDM system (1) undergoes limit cycle behaviour.

To show the effect of the natural enemy’s mortality rate around the coexistence equilibrium points, we
draw the bifurcation diagram for µ5 as a bifurcation parameter. It can be seen that the Hopf bifurcation value
localized at µ5 = 0.0284692 as shown in Fig. 2. It can also be observed that when µ5 > 0.0284692, the
coexistence equilibrium point E2 is locally asymptotically stable. For µ5 < 0.3235, the system undergoes
limit cycle behaviour. According to Theorem 7, for µ5 > 0.0642346 the natural enemy goes extinct from

Figure 1: Bifurcation diagram of LDM model (1) with respect to r
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the system and a transcritical bifurcation occurs at µ5 = 0.0642346 and the equilibrium point E1 = (26.94,
408.101, 400.009, 528.446, 0) is locally asymptotically stable.

In order to show the effect of the predation rate, we draw the bifurcation diagram with respect to β as a
bifurcation parameter. It can be seen that a transcritical bifurcation occurs at β = 0.0501342 as shown in
Fig. 3. It can also be observed that when β < 0.0501342, the free enemy equilibrium point E1 = (22.35,
338.569, 331.93, 436.688, 0) is locally asymptotically stable as indicated in Theorem 8. For 0.0501342 <
β < 0.152449, the coexistence equilibrium point E2 is locally asymptotically stable. It can be seen that the
supercritical Hopf bifurcation value localized at β = 0.152449. For β > 0.152449 the LDM system (1)
undergoes limit cycle behaviour.

From Fig. 4a, it can be seen that the sex pheromone trap parameter p is important in that it affects the
population density of the LDMmale. One can observe from Fig. 4b. that the population density of LDMmale
decrease with increasing p. We conclude that the dynamics of LDM can be controlled by sex pheromone trap
parameters p.

Fig. 5 shows that the deterministic fractional-order remains stable for different values of fractional-order
α though solutions reach to equilibrium point E2(7.5, 113.614, 111.386, 140.149, 189) more slowly for a
smaller value of fractional-order α. It is important to notice that when α = 1 the fractional order model for
lesser date moth (1) reduces to the classical integer-order model [10–14].

When the strength of environmental noise is very close to zero, the fractional-order stochastic LDM
system (8) behaves like the deterministic model. Fig. 6a indicates the dynamical behavior of stochastic
LDM (8) without noise (i.e., ri = 0), which gives the deterministic model (1). In Fig. 6a, the dynamical
behavior of the LDM system was unstable, which corresponds with the results of Theorem 5. Fig. 6b
shows that the LDM smooth oscillations’ dynamical behavior when the strength of the noise was low
(ri = 0.02). However, with an increase in the strength of noise, such as the medium-noise situation shown
in Fig. 6c, the dynamical behavior of the LDM became more complex, and they tended to extinction.

Figure 2: Bifurcation diagram of LDM model (1) with respect to µ5
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Fig. 6c represents the dynamical behavior of the model (1) when the noise strength was high (ri = 0.05). The
natural enemy can die out due to the white noise stochastic disturbance. By comparing Figs. 6a and 6b, one
can realize that if the noise is not strong, the stochastic perturbation does not cause sharp changes in the LDM
model (8). However, when the environmental noise ri is sufficiently large (see Fig. 6c), the noise can force
the natural enemy to become extinct.

Figure 3: Bifurcation diagram of LDM model (1) with respect to β

Figure 4: (a) Plot of the LDMmale versus time with p = 0.1, 0.3, 0.8, (b) Plot of the LDM male versus time
with 0 ≤ p ≤ 1
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7 Discussion and Conclusion

In this paper, we consider a deterministic and stochastic fractional order model for LDM using mating
disruption and natural enemies. We obtain some sufficient conditions that ensure the local and global stability
of equilibrium points. We conclude that sex pheromone trap parameters can control dynamics of LDM. The
occurrence of local bifurcation near the equilibrium point is performed using Sotomayor’s theorem.
Numerical simulations are performed to support and illustrate the theoretical findings. From the numerical
results, one can realize that if the noise is not strong, the stochastic perturbation does not cause sharp
changes in the dynamics of the LDM model. However, when the environmental noise is sufficiently
large, the noise can force the population to become extinct.
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Figure 5: Time series of the LDM female with α = 0.94, 0.97, 1

Figure 6: Time series of the fractional order stochastic model (10) with σ = 0, 0.02, 0.05 (a) σi = 0
(b) σi = 0.02 (c) σi = 0.05
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