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Abstract: One of the most important methods used to cope with multipath fading
effects, which cause the symbol to be received incorrectly in wireless communi-
cation systems, is the use of multiple transceiver antenna structures. By combin-
ing the multi-input multi-output (MIMO) antenna structure with non-orthogonal
multiple access (NOMA), which is a new multiplexing method, the fading effects
of the channels are not only reduced but also high data rate transmission is
ensured. However, when the maximum likelihood (ML) algorithm that has high
performance on coherent detection, is used as a symbol detector in MIMO
NOMA systems, the computational complexity of the system increases due to
higher-order constellations and antenna sizes. As a result, the implementation
of this algorithm will be impractical. In this study, the backtracking search algo-
rithm (BSA) is proposed to reduce the computational complexity of the symbol
detection and have a good bit error performance for MIMO-NOMA systems.
To emphasize the efficiency of the proposed algorithm, simulations have been
made for the system with various antenna sizes. As can be seen from the obtained
results, a considerable reduction in complexity has occurred using BSA compared
to the ML algorithm, also the bit error performance of the system is increased
compared to other algorithms.
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1 Introduction

Insufficient frequency spectral resources are the biggest obstacle to high-rate data transmission. Interest
in the use of the NOMA technique, which is a kind of multi-carrier system that provides high-rate data
transmission by using spectral resources efficiently, has increased considerably in recent years. In addition
to providing spectral efficiency of NOMA, its resistance to multipath damping is another important
advantage of the system. Therefore, the NOMA technique also forms the basis of 5th generation
communication systems [1].

The most significant drawback to being considered in the multiplexing methods is the destructive effects
caused by multipath fading. One of the most important ways to deal with these destructive effects is to use a
multi-antenna transceiver. By using NOMA combined with multiple antenna structures, not only high-rate
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data transmission is provided but also the destructive effects caused by fading are minimized [2–7]. However,
symbol detection is a crucial process to detect symbols coherently in wireless communication systems
[8–21]. Therefore, various algorithms such as zero-forcing (ZF), the vertical Bell Laboratories layered
spice-time (VBLAST), and ML are used for symbol detection [8–17]. Although the ML algorithm is the
best performing algorithm among these since the computational complexity of this algorithm increase in
proportion to the increasing number of antennas, the practicality of this algorithm for the MIMO systems
is very low [12]. Therefore, many studies take place in the literature on reducing the computational
complexity problem of ML algorithms [13–16]. In the study of [14]; a differential metrics-based ML
algorithm that does not require a computational complexity such as the QR decomposition matrix is
proposed. In the study [15], an algorithm is for reducing the QR decomposition complexity, which is a
pre-processing method for symbol detection, in proportion to the increase in antenna numbers. The
authors of [17] in sparse code multiple access systems, modified single tree search scheme is proposed to
soft outputs. From these studies, it can be seen that complexity is a serious problem in the detection of
data and as a result, the availability of algorithms is restricted.

Many difficult real-time engineering problems have been solved by using heuristic algorithms inspired
by the behavior of many events or creatures in nature [18–30]. With the help of heuristic algorithms such as
genetic algorithm (GA), particle swarm optimization (PSO), and differential evolution algorithm (DE), ML
estimation is computed recursively for optimizing subspace search. Because of ML algorithm needs
computation of correlation matrix and matrix inversion, taking advantage of heuristic algorithms we can
overcome these computational challenges [18–21]. In [18] GA has been proposed for the ML algorithm
in pulse amplitude modulation (PAM) systems. Also, in the studies [19–20], they have obtained the
results with less computational complexity close to the ML algorithm, using PSO for spatial multiplexing
systems. In the study of [21], it is seen that the complexity of the symbol detector in the MIMO-OFDM
system is reduced considerably by utilizing DE. BSA algorithm is a new evolutionary algorithm that
provides more efficient solutions with fewer parameters and has recently been used in wide application
areas [22]. some studies are using BSA in many areas such as antenna design, medicine, meteorology,
Complementary metal oxide semiconductor (CMOS) circuit design, and chemistry [22–29]. When we
consider the literature, there is no heuristic-based proposal to eliminate the disadvantages of ML
algorithms in MIMO-NOMA systems.

In this study, the BSA is proposed for symbol detection in MIMO-NOMA systems with various
transmitter and receiver antennas. To highlight the complexity reduction and bit error rate (BER)
efficiency of the proposal, the proposed BSA is compared to the classical algorithms such as ML, ZF and
VBLAST and heuristic algorithms such as GA, PSO. The simulation results and complexity analysis
demonstrate that our proposal is an effective solution for symbol detection.

This paper is organized as follows, Section 2 introduces the concept of the MIMO-NOMA system and
ML scheme. The architecture of the backtracking search algorithm for data detection is described in
Section 3. The simulation results and conclusion are drawn in Section 4 and Section 5 respectively.

2 MIMO-NOMA System Model

NOMA combined with MIMO is a new multicarrier modulation system that provides orthogonal access
to the users either in frequency, time, space, or code. For this scheme, each user uses the same time and
frequency where they are selected considering the power levels. In NOMA, the successive interference
cancellation (SIC) is used to reserve the users both in the downlink and uplink [1–7].

When we consider a MIMO-NOMA system consists of N transmitter andM receiver antenna, the signal
is transmitted in the same frequency and time domain but various power levels as;
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s ¼ P~x (1)

Where~x is Nx1 symbol vector, P is NxN precoding matrix used by the base station.

~x ¼
c1;1x1;1 þ . . .þ c1;2x1;2

..

.

cN ;1xN ;1 þ . . .þ cN ;2xN ;2

2
64

3
75 (2)

Where xn;k is information signal to belongs to the kth user in the nth cluster and cn;k is NOMA power
allocation coefficient. The observed signal yn;k for kth user and nth cluster is

yn;k ¼ Hn;kP~xþ nn;k (3)

Where Hn;k channel matrix of base station (BS) and the kth user in nth cluster. After the detection vector is
applied, the signal can be re-written as;

vHn;kyn;k ¼ vHn;kHn;kP~xþ vHn;knn;k (4)

Where :ð ÞH is the Hermitian transpose operation. Denote the nth of the column of P by pn. The signal can be
rewritten as in Eq. (5)

vHn;kyn;k ¼ vHn;kHn;kpnðcn;1xn;1 þ . . .þ cn;Kxn;KÞ þ
XN

m¼1;n6¼m

vHn;kHn;kpnxn
!þ vHn;knn;k (5)

As can be seen from Eq. (6) received signal is a combination of desired and interference signal [2–3].
Interference signals consist of two parts called intra-cluster interference and inter-cluster interference [4]

vHn;kyn;k ¼ vHn;kHn;kpncn;kxn;k|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
desired signal

þ vHn;kHn;k

XK
j ¼ 1

j 6¼ k

pncn;jxn;j

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Intra�cluster Interference

þ vHn;kHn;k

XM
i ¼ 1

j 6¼ n

pi xi
!

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Inter�Cluster Interference

þ vHn;knn;k|fflfflffl{zfflfflffl}
noise

(6)

Channel gains can be presented as follows,

vHn;kHn;1pn
��� ���2 � vHn;2Hn;2pn

��� ���2 n 2 1; 2; . . . ;Nf g (7)

Besides PA coefficients are ordered as

c1;1 � . . . � c1;K (8)

To detect symbol, an ML algorithm can be implemented by maximizing the (9) metric;

x� ¼D argmaxDðv xÞj (9)
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Data can be detected by using the Eq. (10) which minimize the squared Euclidian distance to the
target vector,

x� ¼ argmin v� xHk k2 (10)

For ML detection CN possible combinations must be searched [12].

3 Back Tracking Search Algorithm for Symbol Detection

BSA, is a population-based evolutionary algorithm that provides to make the right choice from a variety
of ways to reach a goal or search for a value.

BSA is distinct from other similar algorithms in that it has a memory for storing a population from a
previous generation, which is then used to create the search-direction matrix for the next iteration.
Besides, Since BSA has a basic structure, it is efficient, fast, and capable of solving multidimensional
problems. The mix-rate, which is the only control parameter in BSA, decreases the sensitivity of the
inceptive values to the algorithm’s parameters greatly. Initialization, selection I, mutation, crossover, and
selection II are the five processing stages in BSA [22].

The processing steps of the BSA are given in Fig. 1.

For the symbol detection problem, in the BSA population of the individuals corresponds to the symbols.
At the first steps of BSA, the individuals Gij (j ¼ 1; 2; . . . ;DÞ which represents the solution of the problem
are initialized randomly between the predefined upper and lower constraints as

Gi;j � Uðlowj; upjÞ i ¼ 1; 2; . . . ;N j ¼ 1; 2; . . . ;D (11)

Where N population is size and D is the number of control parameters. In selection 1 step, the historical
population which is used for determination of search direction is obtained as;

oldGi;j � Uðlowj; upjÞ (12)

The population is updated at the beginning of each epoch as follows

if a, b then oldG :¼ G a; b � U 0; 1ð Þj (13)

Where a and b are uniform real numbers between [0–1] to check whether Pold is selected from the previous
generation or not.

1. Initialization
Evaluate of fitness function (using equation 10)

Repeat

2. Selection I
Generation of Trial Population

3. Mutation
4. Crossover
end

5. Selection II
Until stopping criteria (10-2)

Figure 1: Process steps of BSA
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BSA alters a randomly selected population from the previous generation as the old population and keeps
this old population in memory until it changes.

Population members are shuffled using the permitting function as follows;

oldG :¼ permuting oldGð Þ (14)

The mutation process is then performed using the Eq. (15).

mutant ¼ Gþ F:ðoldG� GÞ (15)

where F is a real number that is used for control of amplification in search space.

The purpose of mutation is to include the experiences of previous generations in the process. In the
crossover step, the final version of the trial population ðTÞ is produced. In selection-II, Gi is updated
using Ti that have better fitness values than Pi. If the best value of G is better than the global minimum,
the solution value is updated as the Pbest [22]. For symbol detection, these processes are repeated until the
stopping criteria as 10−2.

4 Simulation Results

The performance evaluation of the algorithms has been made by considering the systems with 10 MHz
bandwidth and 16QAM modulation for various antennas size over the channel. The NOMA system and
channel parameters are given in Tabs. 1 and 2 respectively.

Besides the parameters of the proposed heuristic algorithms for data detection are given in Tab. 3.

A comparison between the results of the proposed method to other detectors for a NOMA system with a
2 × 2 antennas array is shown in Fig. 2.

Although it can be observed from Fig. 2 that the ML algorithm is the best performing algorithm,
increasing the size of transmitter and receiver antennas makes this algorithm impractical in terms of
complexity. Besides, the proposed BSA algorithm has better BER values than not only classical but
also heuristic algorithms. At 10−1 BER, the BSA algorithm has a gain of 14 dB better than the

Table 1: MIMO-NOMA System Parameters

Parameter Value

Bandwidth 10 MHz

Number of Subcarriers 64

Number of User 2

Power Allocation Factor 0.75 0.25

Modulation 16QAM

Table 2: COST 207 Bad Urban Channel Parameters [31]

Path 1 2 3 4 5 6

Delay Spread (µs) 0 0.3 1.0 1.6 5.0 6.6

Average Power (dB) −2.5 0 −3 −5 −2 −4
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worst-performing ZF and 2 dB better than the PSO with the closest performance to it. Also, the difference
between BSA and VBLAST at a value of 20 dB signal to noise ratio (SNR) is around 10−1.

The BER performance of the proposed detector for the systems with 4 × 4 antennas is shown in Fig. 3. It
can be seen from Fig. 3 that to have BER = 10−2 GA requires 18 dB, PSO requires 16.5 dB whereas BSA
requires 14 dB. Also, at fewer BER values the required SNR value of the proposal is less than the
other algorithms.

Finally comparing the performance of the algorithms for the system with 8 × 8 antennas in Fig. 4, we
observe that our proposal provides better detection capability not only for few antennas but also for larger
antenna arrays. From Fig. 4, it is seen that BSA algorithm needs more than 21 dB of SNR to have
BER = 10−3 while PSO and GA need around 23.5 dB and 26 dB of SNR respectively to reach the
BER = 10−3. As can be seen from all figures that our proposal offers large SNR improvements compared
to other detectors.

Furthermore, to demonstrate the computational complexity benefits of BSA over the ML detector, we
can analyze the computational complexity of the detectors in terms of number complex multiplication [19].

In the ZF algorithm, there are 4N3 þ 2N2M multiplications due to the pseudo-inverse matrix calculation
[19]. In that case, multiplications of the ZF algorithm are

Table 3: Heuristic Algorithm Parameters

BSA PSO GA

Number of Population = 30 Swarm Size = 30 Number of Population = 30

Step Size Amplification = 3.rnd
rnd (0-1)

Max Velocity = 20 Crossover Rate = 0.8

Mix Rate = 1 Inertia factor = 0.9 to 0.4 Mutation Rate = 0.5

Learning factor = 2
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Figure 2: SNR versus BER performance of detectors for 2 × 2 NOMA system
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ZFmult: ¼ 4N3 þ 2N2M (16)

In the VBLAST algorithm, after the calculation of N times the pseudo-inverse matrix and interference
canceling, the complexity can be written as

VBLASTmult: ¼
XN
i¼0

4i3 þ 2Mi2
� �þXN�1

i¼0

½N M � 1ð Þ þ 2N � (17)

¼ N4 þ 5

2
þ 2

3
M

� �
N3 þ 7

2
þM

� �
N2 þ 1

3
NM (18)

0 5 10 15 20 25 30
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

SNR (dB)

ZF

VBLAST

GA
PSO

BSA

ML

B
it 

E
rr

or
 R

at
e 

(B
E

R
)

Figure 3: SNR versus BER performance of detectors for 4 × 4 NOMA system
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Figure 4: SNR versus BER performance of detectors for 8 × 8 NOMA system
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When we consider the ML algorithm, the number of multiplications required for matrix multiplication
and squaring operations are,

MLmult: ¼ M N þ 1ð ÞCN (19)

Where C is constellation size, in heuristic algorithms, the number of multiplications required to calculate
the fitness of each particle in the population are,

HEURISTICSmult: ¼ NPðNMÞ (20)

After applying the population updating parameters (µ) and Nitr times repetition to convergence to an
optimal value, the complexity becomes as

HEURISTICSmult: ¼ NPðNM þ lÞNitr (21)

The complexity comparison analysis of the detectors can be found in terms of the number of
multiplications in Tab. 4.

As can be seen from this computational complexity analysis, the number of transceiver antennas
increases the computational load of each algorithm. However, this amount of load is even higher for the
ML detector when the number of antennas increases. For instance, the complexity value of the ML
algorithm is 3250 for a 2 × 2 antenna, while the number of antennas is as high as 309 billion in the case
of 8 × 8. It can be seen from this analysis that the increase in the number of antennas and modulation
index makes the algorithm less practical. Although the complexity of the ZF and VBLAST algorithms is
low, their error performance is worse than the heuristic algorithms. Although the value of complexity in
heuristic algorithms is similar, the number of iterations required for convergence has a direct effect on the
complexity of these algorithms.

To reach optimal solutions for the 4 × 4 NOMA, 8 iterations in the BSA, 10 iterations in the PSO, and
11 iterations in the GA are needed. As a result, BSA, PSO, and GA need 1440, 1800,
and 1980 multiplications respectively. Among heuristic algorithms, BSA has the lowest complexity.

Furthermore, BSA provides a 6.25% complexity reduction compared to the ML algorithm 2 × 2 systems.
However, it significantly reduces the complexity by 99.59% and 99.9% in 4 × 4 and 8 × 8 systems.

Table 4: Computational Complexity Analysis of Detectors

DETECTOR 2 × 2 NOMA 4 × 4 NOMA 8 × 8 NOMA

ML 1536 1.320.720 309 B

ZF 48 384 3072

VBLAST 70 712 8864

BSA 1440
Nitr = 8, µ = 2

5400
Nitr = 10, µ = 2

23760
Nitr = 12, µ = 2

PSO 1800
Nitr = 10, µ = 2

6480
Nitr = 12, µ = 2

29700
Nitr = 15, µ = 2

GA 1980
Nitr = 11, µ = 2

7560
Nitr = 14, µ = 2

31680
Nitr = 16, µ = 2
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5 Conclusion

In this study, the use of the BSA algorithm is proposed for data detection in the MIMO-NOMA systems
which provide high-rate and quality of service. With this proposed algorithm, computational complexity is
reduced in systems where the number of antennas and modulation constellation is large, and BER
performance is increased compared to ML algorithm. As can be seen from the simulation results, the
BSA algorithm has better values than the other heuristic algorithms in any case; also, it has a close
performance to the ML algorithm. Besides, it is better than the classic algorithms such as ZF and
VBLAST used for data detection, in terms of BER. So, we can say that the proposed algorithm can be
used in a remarkable way for data detection in MIMO-NOMA systems.
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