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Abstract: Urban rail trains have undergone rapid development in recent years due
to their punctuality, high capacity and energy efficiency. Urban trains require fre-
quent start/stop operations and are, therefore, prone to high energy losses. As
trains have high inertia, the energy that can be recovered from braking comes
in short bursts of high power. To effectively recover such braking energy, an
onboard supercapacitor system based on a radial basis function neural network-
based sliding mode control system is proposed, which provides robust adaptive
performance. The supercapacitor energy storage system is connected to a bidirec-
tional DC/DC converter to provide traction energy or absorb regenerative braking
energy. In the Boost and Buck modes, the state-space averaging method is used to
establish a model and perform exact linearization. An adaptive sliding mode con-
troller is designed, and simulation results show that it can effectively solve the
problems of low energy utilization and large voltage fluctuations in urban rail
electricity grids, and maximise the recovery and utilization of regenerative
braking energy.

Keywords: Energy control; on-board supercapacitor; neural sliding mode control;
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1 Introduction

Urban rail transit systems can effectively alleviate urban traffic congestion due to their ability to carry
large loads at high speeds for long distances. More than 300 cities around the world have developed urban
rail transit systems, and their passenger volumes have reached 50%–80% in many developed cities. As of
31 December 2018, there was a total of 5,139 km of urban rail transit in 34 cities of mainland China. It is
clear that city rail transit has entered a period of vigorous development.

Due to the short distances between stations on urban lines and the high density of vehicles, considerable
braking energy is generated during frequent starting/braking processes. Vehicle speeds have increased in
recent years, such that greater braking energy is involved [1–4]. Generally, about 30% of the electricity
consumed by urban rail transit is used for auxiliary equipment such as lighting and air conditioning, 10%
is used by other components, and the remaining 60% is used for traction power. Among them, the energy
generated by regenerative braking accounts for at least 40% of the traction energy. To make better use of
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regenerative braking energy and suppress fluctuations in DC traction grid voltages, onboard supercapacitor
control systems have been introduced [5].

Automotive supercapacitor control systems are nonlinear and uncertain control systems that are
susceptible to end-to-end disturbance [6]. By switching the control quantity in sliding mode control, the
system can slide along the sliding surface and gain good robustness and interference resistance.
resistance. The algorithm used is independent of the system parameters and disturbances, so sliding mode
control can be considered for the control of vehicle supercapacitor control systems. A hybrid vehicle
supercapacitor system based on DC-DC electricity and batteries was proposed in Gao et al. [7] for energy
recovery and utilization. A regenerative braking energy storage system for subway networks based on
supercapacitors (SC) was proposed in Shetty et al. [8]. A method of optimal braking-force distribution
based on an artificial neural network and sliding mode control was proposed in Ma et al. [9]. A controller
composed of a radial basis function (RBF) neural network and sliding mode controller (SMC) was
designed in Mao et al. [10] to recover energy from the braking process of mobile vehicles to extend
driving distance and save energy. According to the requirements for fast and robust braking in automobile
anti-lock braking systems, a sliding mode controller based on an RBF neural network was designed by
Hung et al. [11]. An adaptive neural network sliding mode controller design method based on a
decoupling method was proposed, and a trolley rod system and ball beam system were simulated.

However, in the design of practical control systems, chattering is prone to occur on both sides of the
sliding mode surface when under sliding mode control. To alleviate the chattering problem effectively in
traditional sliding mode control, the robustness of the neural network adaptive control system was
improved to a certain extent. This study uses the advantages of RBF neural networks (excellent nonlinear
function approximation, adaptiveness and self-learning abilities) to propose an onboard supercapacitor
system with adaptive and robust sliding mode control. This can be used to recover regenerative braking
energy and reduce the line losses of traction grids.

2 Description of a Vehicular Ultracapacitor System For Urban Rail Transit

A structural diagram of an onboard ultracapacitor control system is shown in Fig. 1.

2.1 Affine Nonlinear Model (Discharge Condition)

With an on-board ultracapacitor control system, if the train starts or accelerates, the system will supply
power to the train and the supercapacitor will be in a discharged state to avoid supplying power to the train
and causing a drop in grid voltage. In this state, circuit modelling using the state-space averaging method can
be used to model the discharge state [12–16] as follows:
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Figure 1: Structural diagram of an onboard ultracapacitor control system
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where iL and Usc are the average values of the inductor current and ultracapacitor voltage within 1 switching
period T, respectively; Udc is the voltage of the traction grid; L is the effective inductance; C is the vehicular
ultracapacitor value; R is the load resistance and μ1 is the IGBT1 duty ratio.

If x1 ¼ iL, x2 ¼ Udc, a standard type of single-input, affine, nonlinear, vehicular supercapacitor system
can be obtained as follows:

_x ¼ f ðxÞ þ gðxÞl1
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Then, the onboard ultracapacitor control system can be considered as a class of second-order nonlinear
uncertain system:

_x1 ¼ x2
_x2 ¼ f ðxÞ þ gðxÞuþ dðtÞ
y ¼ hðxÞ

8<
: (3)

Here, f ð�Þ is the unknown nonlinear function; u and y are the control input and object output; and dðtÞ is
the interference, where dðtÞj j � D.

If x1 ¼ h, the ideal angle is hd. Then, the error is e ¼ hd � h and the sliding mode function is

s ¼ _eþ ce: (4)

Among them, c > 0, then:

_s ¼ €eþ c_e ¼ €hd � €hþ c _e ¼ €hd � f � gu� dðtÞ þ c_e (5)

If f and g are known, the design control law is:

u ¼ 1

g
ð�f þ €hd þ c _eþ gsgnðsÞÞ (6)

By substituting the control law into the above equation, it can be found that:

_s ¼ €eþ c_e ¼ €hd � €hþ c _e ¼ €hd � f � gu� dðtÞ þ c_e ¼ gsgnðsÞ � dðtÞ (7)

If g � D is certain, then:

s_s ¼ �g sj j � sdðtÞ � 0 (8)

So, the control system designed in this paper can meet the stability requirements of Lyapunov theory.
The RBF neural network is used for approximating f ð�Þ in the onboard ultracapacitor control system.
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2.2 Precise Feedback Linearization of the Onboard Ultracapacitor Control System

Through the above analysis, it can be seen that the on-board ultracapacitor control system satisfies the precise
linearization condition of the nonlinear system, so it can be linearized [17–20]. If z1 and z2 are the state variables
used in linearized feedback linearization, the output function mðxÞ of the system model can be created.

If z1ðxÞ ¼ mðxÞ is set, then it can be obtained that:

dz1
dt

¼ dz1
dx

dx

dt
¼ L1f mðxÞ þ LgmðxÞl1 (8)

In the above formula, L1f mðxÞ and LgmðxÞ are the lie derivatives along the direction of the sum.

If LgmðxÞ ¼ 0, L1f mðxÞ ¼ z2 are set, then it can be obtained that:
dz1
dt

¼ z2.

Similarly, it can be obtained that:

dz2
dt

¼ dz2
dx

dx

dt
¼ L2f mðxÞ þ LgL

1
f mðxÞl1 (9)

So,

z1ðxÞ ¼ mðxÞ ¼ Lx21 þ Cx22 (10)

Then, the feedback linearized state variable system equation is:

_z1 ¼ z2 ¼ Lx21 þ Cx22

_z2 ¼ Lf mðxÞ ¼ 2Uscx1 � 2

R
x22

(
(11)

3 Design of an Adaptive, Robust, RBF Neural Network Sliding Mode Controller

Due to the state discontinuity caused by frequent on-off events, the converter has nonlinear characteristics
and is easily affected by disturbances, so the control effect is not ideal. A sliding mode variable structure control
algorithmwith independent parameter inputs and disturbances is used to design the controller [21–24], which is
then switched by the control quantities in order to make the system slide along the sliding mode surface. To
overcome the chattering phenomenon on both sides of the sliding mode surface, a neural network is added
to approximate the nonlinear relationship between the sliding mode surface and the control quantity, so the
system has good robustness and anti-interference characteristics.

According to the characteristics of the on-board supercapacitor system, a single, hidden-layer, three-
layer, feed-forward, RBF neural network is adopted in this paper, which can approximate arbitrary
nonlinear and linear functions. Its structure is shown in Fig. 2.
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Figure 2: RBF neural network structural diagram
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In this paper, an RBF neural network is used to approximate the nonlinear mapping relationship between
the sliding mode surface and the control quantity, with the switching function s and the derivative _s used as
inputs to the RBF neural network [25–29], while the sliding mode controller is the output. The structure of its
adaptive sliding mode control system based on RBF is shown in Fig. 3.

The input and output algorithms of the RBF network are supposed as:

hj ¼ exp
x� cj
�� ��2

2b2j

 !
(12)

f ¼ W �ThðxÞ þ e (13)

Among them, x is the input of the neural network, i is the network input of the first input layer, j is the
network input of the hidden layer, h ¼ hj

� �T
is the output of the Gaussian basis functions, W� is the ideal

network weight, e is the network approximation error (e � eN ) and f is the output of the neural network.

The input of the neural network is x ¼ e _e½ �T , then its output is:

f̂ ðxÞ ¼ Ŵ ThðxÞ (14)

The control law is:

u ¼ 1

g
ð�f̂ þ €hd þ c _eþ gsgnðsÞÞ (15)

Substituting control law Eq. (15) into Eq. (5), we can obtain:

_s ¼ €hd � f � gu� dðtÞ þ c _e

¼ €hd � f � �f̂ þ €hd þ c_eþ gsgnðsÞ
h i

� dðtÞ þ c _e

¼ �f þ f̂ � gsgnðsÞ � dðtÞ
¼ �~f � gsgnðsÞ � dðtÞ

(16)

Among them, ~f ¼ f � f̂ ¼ W �ThðxÞ þ e� Ŵ ThðxÞ ¼ ~WThðxÞ þ e, ~W ¼ W � � Ŵ .

The Lyapunov function is designed as:

L ¼ 1

2
s2 þ 1

2
c ~WT ~W (17)

Among them, c > 0.
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Figure 3: Structure of the adaptive sliding mode control system based on RBF
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From Eqs. (17) and (16), it can be obtained that:

_L ¼ s_sþ c ~W
T _~W ¼ sð�~f � dðtÞ � gsgnðsÞÞ � c ~W

T _̂W

¼ sð� ~W
T
hðxÞ � e� dðtÞ � gsgnðsÞÞ � c ~W

T _̂W

¼ � ~W
TðshðxÞ þ c _̂W Þ � sðeþ dðtÞ þ gsgnðsÞÞ

(18)

The adaptation law can be derived as follows:

_̂W ¼ � 1

c
shðxÞ (19)

Then,

_L ¼ �sðeþ dðtÞ þ gsgnðsÞÞ ¼ �sðeþ dðtÞÞ � g sj j (20)

Because the RBF network’s approximation error e is very small, we set g � eN þ D, then _L � 0. When
_L ¼ 0, s � 0, so according to the Lasalle principle of the invariant, the closed-loop system is asymptotically
stable. When t ! 1, s ! 0. It can be seen that the role of the robust term gsgnðsÞ in the control law is to
overcome interference and neural network approximation errors to ensure the stability of the system.

4 Simulation Verification

A simulation test was carried out on a certain track line with an operating interval of 1.98 km. The
parameters of the supercapacitor are: capacitance = 30 F, rated voltage = 500 V and working
current = −400–400 A. The parameters of the bidirectional DC/DC converter are: energy storage
inductance = 7.5 mH and filter capacitance = 30,000 uF. The IGBT switching frequency = 10 kHz and
the standard supply voltage of the DC traction network = 1500 V [30,31].

Simulink was used to establish a simulation model of a single train with an on-board ultracapacitor
(Fig. 4), which can be used to robustly verify the absorption and utilization of regenerative braking
energy by the designed control system.

It can be seen from the simulation results (Fig. 5) that when the system is not connected to the on-board
supercapacitor energy storage system and the train accelerates and tows, the network voltage fluctuation is
about 400 V. The voltage difference between the train deceleration stage and the traction network is about
200 V. It can be seen that the voltage fluctuation of the traction network is high and braking energy

Figure 4: Simulink structural diagram of the onboard ultracapacitor sliding mode control system based on
an RBF network
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cannot be recovered during this process. When the system is connected to the onboard supercapacitor energy
storage system, the voltage difference between the train acceleration stage and the traction network is about
150 V, while that between the train deceleration and braking stages is about 90 V. Hence, the designed neural
network adaptive sliding mode control system obviously reduces the dynamic amplitude of the traction grid
voltage and, at the same time, effectively absorbs and utilizes regenerative braking energy.

It can be seen from Fig. 6 that, the designed control system can follow the ideal train operating speed
curve well. This significantly improves the response speed and steady-state error of the control system,
enhances the external anti-interference ability and improves its robustness, making driving more
comfortable, safe and stable.

Figs. 5–7 show that the designed on-board ultracapacitor control system can alleviate drops in traction
grid voltage during train starts and absorb energy during braking, and can also prevent increases in grid
pressure. When the braking resistor is used before optimization, the line losses of the traction grid are
about 1.395 kWh. When the onboard ultracapacitor control system is used and the neural network
adaptive sliding mode control method is adopted, the line loss of the traction grid is about 0.38 kWh.
Hence, losses are reduced by 37.4%, which avoids energy wastage.

Figure 5: Voltage variation in the traction grid before (BO) and after optimization (AO)

Figure 6: Train operation curve (velocity vs. distance) before and after optimization
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From the above analysis, it can be seen that the vehicle-mounted ultracapacitor energy storage system
can effectively utilize regenerative braking energy, suppress fluctuations in grid voltage and reduce losses in
the traction grid.

5 Conclusions

(1) With their high power density and long service life, ultracapacitors have unique advantages and
development prospects in utilising regenerative energy in urban rail trains. They can improve the braking
power of high-speed trains and allow operation without feeders, making trains more comfortable, safe
and stable.

(2) An adaptive, neural network-based, sliding mode control system for supercapacitors was proposed in
this paper. Through simulation, it was verified that the system can suppress fluctuations in network pressure,
reduce losses in traction grids, and improve the utilization rate of regenerative braking energy.
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