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Abstract: Due to the combinatorial nature of graphs they are used easily in pure
sciences and social sciences. The dynamical arrangement of vertices and their
associated edges make them flexible (like liquid) to attain the shape of any phy-
sical structure or phenomenon easily. In the field of ICT they are used to reflect
distributed component and communication among them. Mathematical chemistry
is another interesting domain of applied mathematics that endeavors to display the
structure of compounds that are formed in result of chemical reactions. This area
attracts the researchers due to its applications in theoretical and organic chemistry.
It also inspires the mathematicians due to involvement of mathematical structures.
Regular or irregular bonding ability of molecules and their formation of chemical
compounds can be analyzed using atomic valences (vertex degrees). Pictorial
representation of these compounds helps in identifying their properties by com-
puting different graph invariants that is really considered as an application of
graph theory. This paper reflects the work on topological indices such as
ev-degree Zagreb index, the first ve-degree Zagreb « index, the first ve-degree
Zagreb 3 index, the second ve-degree Zagreb index, ve-degree Randic index,
the ev-degree Randic index, the ve-degree atom-bond connectivity index, the
ve-degree geometric-arithmetic index, the ve-degree harmonic index and the
ve-degree sum-connectivity index for crystal structural networks namely, bismuth
tri-iodide and lead chloride. In this article we have determine the exact values of
ve-degree and ev-degree based topological descriptors for crystal networks.
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1 Introduction

Computation of topological indices for large chemical structures becomes very challenging but still
useful in depicting the structure and physico-chemical properties that are extremely important in reticular
chemistry. Recently reticular Metal-organic frameworks MOFs are evolved as porous conductive solids
with great applicability in fuel cells, batteries, capacitors, sensors and electronics. In MOFs covalent
fibers of carbon atoms form mesh like crystals [1,2]. In reticular chemistry, the numerically representation
of structural characteristics of molecules, are the topological indices, which are obtained by using the
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graphical methods. These indices play an important role in the area of mathematical chemistry and control
theory, mainly in QSAR/QSPR investigations [3,4].

The networks that are topologically equivalent, although they exibit different labelings of distinct atoms
but due to topological indices they are invariant. These indices describe the connections among the atoms and
in this way they are basic invariants that show a relationship with biological activity and chemical reactivity.
Topological study of a MOF means transforming the connectivity of any structure into a unique number
representing an index of the metal-organic framework under consideration.

Wiener in his article [5], introduced the concept of topological index while he was studying the structural
relationships to identify boiling points of paraffins. Many topological indices are used to reflect the structural
arrangement of graphs. In general, they are classified into distance or degree-based topological indices along
with these counting related indices of graphs have play a vital role in chemical characterization. Article [6—
22] can give more deep insight as literature survey.

2 Preliminaries

Let G be a simple connected graph with vertex sets V' (G) and edge sets £(G). The degree of a vertex ¢,
denoted by d(¢), is the number of edges that are incident to the ¢. The open neighborhood of ¢ is defined as
N(e) = {e € V(G) : Xe € E(G)} and closed neighborhood N[¢] = N (&) U {e} [23]. The ve-degree, denoted
by d,.(¢), of any vertex ¢ € V is the number of different edges that are incident to any vertex from the N[e]. In
[24] defined the ev-degree of the edge e = A¢ € E, denoted by d,,(e), the number of vertices of the union of
the closed neighborhoods of A and ¢. For details see [25-30].

The ve-degree and ev-degree topological indices are defines as: ) .cpq) (dev(e N2 ZaeVdve(s)z,
2neer(de(8) + die(N),  Dyenl ve( ) X de(8)),  Doner (de(N) X dve(8)) 2 D cpdre(er)

1
dve()—21)? 2(dve _1
Sver (Sbsacts) - e “aeisact ZASEEd i ad Y (dhe(N) Fdue(e)) ™ are ev-degree
Zagreb (M,,) index, the first ve-degree Zagreb o (M

N
o=

) index, the first ve-degree Zagreb f (M, ﬁw) index, the

7\)6
second ve-degree Zagreb (M2) index, ve-degree Randic (R,.) index, the ev-degree Randic (R..)
index, the ve-degree atom-bond connectivity (4BC,.) index, the ve-degree geometric-arithmetic (GA,.)
index, the ve-degree harmonic (H,.) index and the ve-degree sum-connectivity (y,,) index, respectively.

3 Crystal Structures

The physical structure of solid materials is significant for engineering applications. It depends on the
arrangements of the atoms, ions, or molecules that becomes the reason for strength of solid materials. The
connectivity pattern of ions or atoms in a solid and repetitive patterns in three dimensions is known as
crystal structure and material is called crystalline solid or crystalline material. Due to different crystalline
structure of a materials their performance and characteristics varies. The unit cell is the basic structure
that explains the crystal structure and repetition of this unit cell forms the whole crystal. Some of the
examples of crystalline materials are alloys, metals, and some ceramic materials. In this paper topological
indices for the bismuth tri-iodide and lead chloride are determined by mapping their crystalline structures
in the form of graphs.

4 Graph of Bismuth Tri-Iodide

Bismuth tri-iodide (Bil3) is an inorganic compound. It is the result of the response of bismuth and iodine,
which is important in qualitative inorganic analysis. Layered Bil; crystal is considered to be a three-layered
stacking structure, where bismuth atom planes are lying between iodide atom planes, which form the
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sequence I-Bi-I planes. The rhombohedral Bil; crystal with R-3 symmetry is formed by the periodic stacking
of three layers [31,32]. In 1995, Nason et al. [33] synthesized a unit crystal of Bi/3. The Fig. 1 shows one unit
of bismuth tri-iodide.

Figure 1: One unit of bismuth tri-iodide

The graph of a single unit of bismuth tri-iodide contains six 4-cycles of which two are at the bottom, two
on the top and two in the middle. The unit cells of bismuth tri-iodide can be arranged either linearly or in a
sheet form. A linear arrangement with ¢ unit cells is called g-bismuth chain, p x ¢ bismuth sheet is obtained
by arrangements of pg unit cells into p rows and ¢ columns. A p x g bismuth sheet throughout onward
represented by Bil;. A sheet of Bil3 contains 11pg + 10p + 7q + 2 vertices and 18pq + 12p + 6q edges,
which are shown in Tab. 1. The number of vertices corresponding to their degrees of Bil3 are shown in
Tab. 2 and the edge partition based on degree of end vertices of each edge is shown in Tab. 3.

Table 1: Vertices and edges of Bils

Total vertices Total edges
11pg+10p +7q + 2 18pq + 12p + 6q

Table 2: Number of vertices corresponding to their degrees of Bils

d(e) Number of vertices

1 4p +4q + 4

2 6pq +4p +4q —2

3 2pq — 2q

6 3pg+2p+gq

Total 11pg + 10p 4 7g + 2

Table 3: Edge partition of Bils

(d(N),d(e)) Number of edges
(1,6) 4p +4q + 4

(2,6) 12pg + 8p + 8q — 4
(3,6) 6pq — 6q

Total 18pg + 12p + 64




838 CSSE, 2022, vol.40, no.3

We partitioned the edges of Bil;, based on ev-degree in Tab. 4.

Table 4: Edge partition of Bils

Number of edges dey () (d(N),d(e))
dp+49 +4 7 (1,6)
12pqg +8p + 8q — 4 8 (2,6)
6pq — 69 9 (3,6)

In Tab. 5, we partitioned the vertices of Bils, based on ev-degree.

Table 5: Vertex partition of Bils, based on ve-degree

Number of vertices dye (&) d(e)
4p +4q + 4 6 1
6pqg +4p +4q —2 12 2
2pq — 2q 18 3
2q+4 10 6
4p+2q—6 12 6
3pg —2p —3q+2 14 6

We partitioned the edge of Bil3 with respect to ve-degrees.

Now we calculated ev-degree and ve-degree based indices such as M,, index, M, , index, M, [)l’ve index,

Mvze index, R,, index, R,, index, ABC,, index, GA,, index, H,, index and y,, index for Bil;.

4.1 ev-Degree Zagreb Index

By using ev-degree of Bil; from Tab. 4, we compute the ev-degree based Zagreb index:

M*(BiI3) = Y (de(e))’

ecE(Bil3)
=(4p+4q+4)x 72+(12pq+8p+8q—4) X 82+(6pq—6q) x 92
— 1254pg + 708p + 222¢ — 60

4.2 The First ve-degree Zagreb o. Index
Using Tab. 5 we compute the first ve-degree Zagreb o index:
Mc}ve(Bilf’) - Z dve(g)z
eV
M}, (Bil3) = (4p +4g +4)(6)” + (6pq + 4p + 4q — 2)(12)* + (2pg — 2¢)(18)°
+(2q +4)(10)* + (4p + 29 — 6)(12)* + (3pq — 2p — 3q + 2)(14)?
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= 2100pg + 904p — 28¢ — 216.

4.3 The First ve-degree Zagreb [ Index
Using Tab. 6 we compute the first ve-degree Zagreb f index:

M}, (Bils) = ) " (dve(N) + due(e))

e€E

M, (Bily) = (4q +8)(16) + (4p — 4)(18) + (8¢ + 16)(22) + (16p + 12 — 28)(24)
+(12pg — 8p — 12 + 8)(26) + (4p — 4)(30) + (6pg — 4p — 6q + 4)(32)

= 504pq + 240p + 24q — 48.

Table 6: Edge partition of Bils, based on ve-degree

Number of edges dve(N), dye(€)) (d(N),d(e))
4q + 8 (6,10) (1,6)
4p — 4 (6,12) (1,6)
8g + 16 (10,12) (2,6)
16p + 12 — 28 (12,12) (2,6)
12pg — 8p — 12 +8  (12,14) (2,6)
4p — 4 (12,18) (3,6)
6pg —4p — 6q + 4 (14,18) (3,6)

4.4 The second ve-degree Zagreb index
Using Tab. 6 we compute the second ve-degree Zagreb index:

M (Bil) =) " (dve(N) X due())

Ae€E
M2(Bil3) = (4q + 8)(60) + (4p — 4)(72) + (8¢ + 16)(120) + (16p + 12 — 28)(144)
+ (12pg — 8p — 12q + 8)(168) + (4p — 4)(216) + (6pg — 4p — 6q + 4)(252)
= 3528pg + 1104p — 600 — 432.

4.5 ve-degree Randic Index

Using Tab. 6 we compute the ve-degree Randic index:

Rie(Bily) = Y (die(A) X dye(e))

Ae€E

Rye(BiI3) = (4g + 8)(60) ™ + (4p — 4)(72) % + (8¢ + 16)(120) % + (16p + 12¢ — 28)(144)*
4 (12pg — 8p — 12¢ + 8)(168) ™ + (4p — 4)(216) % + (6pg — 4p — 6 + 4)(252)
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:<M>pq+<84+21ﬁ_6\/‘ﬁ+7\/5—6\ﬁ>p+(105+14\/_—15\/_+14\/_—15\f>

7 63 105
21 =3vV2 =6 4/15+4V30 27 +2V42
+ 9 + 15 + 21

4.6 The ev-degree Randic Index
Using Tab. 4 we compute the ev-degree Randic index:

ev Bl]3 Zd\/e el %

e €E

1

R(Bil3) = (4p + 4q +4)(7) 7 + (12pg + 8p + 8¢ — 4)(8) ™ + (6pg — 6¢)(9)

- (3f2+2)pq+ <§\ﬁ+2\/§)p+ <§ﬁ+2f2—2>q+g\f—f2-

4.7 The ve-degree Atom-bond Connectivity Index

Using Tab. 6 we compute the ve-degree atom-bond connectivity index:

o do(N) + due () — 2
ABC,,(Bil3) = A; ( dye(N) X dye() )

, [14 /16 /20 22
ABC\o(Bil3) = (49 + 8)\ /o + (4p — 4)y /55 + (8¢ + 16)y 155+ (16p + 12 — 28) /-
[24 /28 30
+(12pg — 8p — 12q + 8) 1es + (4p — 4) 716 + (6pg — 4p — 6g + 4) 753

_ (M)pq N <12\/52' +2VA2 + 12\/§>p . <_24\/7 _ 2m>p

7 9 21
( 180\/_+140\/_+105\/_—\/21> 24\/5—12\/5—21\/2_2—2\/4ﬁ+120\/7+38\/210
105 9 105 ’

4.8 The ve-degree Geometric-arithmetic Index
Using Tab. 6 we compute the ve-degree geometric-arithmetic index:

2(dve(N) X di(2))?
dye(N) + dye(€)

GA,o(Bily) =
Ne€E

Gy (BiI3) = (4q + 8) D% + (4p — 4) D + (8¢ +16) P3P0 1 (16p + 129 — 28) 2™
+(12pg — 8p — 12¢ + 8) (2)2“6_ +(4p—4)C W_ + (6pg — 4p — 6 + 4) <z>¢z?

24 9 8 16 8 3
- (E\/AEJrZ\ﬁ)qur<l6+§\/_—ﬁx/ﬁ+§\/_—§\/7>p




CSSE, 2022, vol.40, no.3

24 16 9 8 8 32
+<\/1 —E\/42+ﬁ\/30+12—Z\ﬁ>q+2\/1 —gf—gﬁ—zmﬁ\/w
3 16
+5f7+—13\/42.

4.9 The ve-degree Harmonic Index

Using Tab. 6 we compute the ve-degree harmonic index:

. 2
He(Bily) = 3 o

AecE Ve

H,(Bil3) = (4q + 8)3 + (4p — 4)3 + (8q + 16)i + (16p + 12¢ — 28)3
16 18 22 24

2
30

2

4—(6pq—4p—6q—i—4)32

2
+(12pg — 8p — 12 + 8)% + (4p — 4)

135 2759 1063 7091
~ 10477 " 2340P T 11449 T 25740

4.10 The ve-degree Sum-connectivity Index
Using Tab. 6 we compute the ve-degree sum-connectivity index:

1oe(Bils) = D (die(N) + dhele))

AeeE
(BiI3) = (4q + 8) —— + (4p — 4)—— + (8¢ + 16) ——+ (16p + 12q — 28) —
ve\ Dl = T - TS T AA - A
1 1 1
+ (12pg — 8p — 12q + 8) —— + (4p — 4) —— + (6pg — 4p — 6q + 4) ——
(12pq — 8p q )\/2—6 (4p )\/3—0 (6pg — 4p — 6 )\/3—2

6 3 4 4 2 1
= (E\/2_6+Z\/§>pq+ (g\/_—ﬁ\/%—i—gm—f—g\/E)p

6 4 3 1 4 8 7 2
n (1—B\/2_6+ﬁ\/ﬁ+f—zﬁ>q+2—8\f2+ﬁx/2_6+ﬁ\/ﬁ—§f—gx/ﬁ.

5 The Graph of Lead Chloride

841

Lead chloride is a precious halide stone that usually occurs in mineral cotunnite. The structure of lead
chloride is orthorhombic dipyramidal. The diagram of a solitary unit of lead chloride is obtained from
bismuth tri-iodide by joining an extra vertex to only one 2-degree vertex of every one of the 4-cycles.

Fig. 2 shows one unit of lead chloride.

The unit cells of lead chloride can be arranged either linearly or in a sheet form. A linear arrangement
with ¢ unit cells is called g-lead chloride chain, p x ¢ lead chloride sheet is obtained by arrangements of pg
unit cells into p rows and ¢ columns. A p X ¢ lead chloride sheet throughout onward represented by LC. A
sheet of LC contains 12pg + 10p + 7g + 2 vertices and 24pq + 12p + 64q edges, which are shown in Tab. 7.
The number of vertices corresponding to their degrees of LC are shown in Tab. 8 and the edge partition based

on degree of end vertices of each edge is shown in the Tab. 9.
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Figure 2: One unit of lead chloride

Table 7: Vertices and edges of LC

Total vertices Total edges

12pg + 10p + 7q + 2 24pg + 12p + 6¢g

Table 8: Number of vertices corresponding to their degrees of LC

d(e) Number of vertices

1 dp +4q +4

2 dp+4q -2

3 8pg — 2¢q

6 dpg +2p+gq

Total 12pg + 10p 4+ 7q + 2

Table 9: Edge partition of LC

(d(N),d(e)) Number of edges
(1,6) 4p+4q9+4
(2,6) 8p+8g—4
(3.60) 24pq — 69

Total 24pq + 12p + 6q

We partitioned the edges of LC, based on ev-degree in Tab. 10.

Table 10: Edge partition of LC

Number of edges dey(e) (d(N),d(e))
4p + 4q + 4 7 (1,6)
8p+8q—4 8 (2,6)

24pg — 6q 9 (3,6)
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In Tab. 11, we partitioned the vertices of LC, based on ev-degree.

Table 11: Vertex partition of LC, based on ve-degree

Number of vertices dye (&) d(e)
4dp+4qg+4 6 1
4p +4q —2 12 2
8pq — 2q 18 3
2g +4 12 6
4p — 4 14 6
2qg —2 16 6
4pg —2p —3q +2 18 6

We partitioned the edge of LC with respect to ve-degrees.

Now we calculated ev-degree and ve-degree based indices such as M,, index, M!
Mvze index, R,, index, R,, index, ABC,, index, GA,, index, H,, index and y,, index for LC.

5.1 ev-Degree Zagreb Index

By using ev-degree of LC from Tab. 10, we compute the ev-degree based Zagreb index:

ML) = Y (dule))

ecE(LC)
—(4p+4g+4) x 7+ (8p +8q — 4) x 8% + (24pg — 6q) x 9*
= 1944pg + 708p + 2224 — 60.

5.2 The First ve-degree Zagreb o Index
Using Tab. 11 we compute the first ve-degree Zagreb o index:

My (LC) =) de(e)’

eelV

M, (LC) = (4p +4q +4)(6)” + (4p + 4q — 2)(12)* + (8pg — 2¢)(18)> + (29 + 4)(12)?

+(4p — 4)(14)” + (2g — 2)(16)* + (4pg — 2p — 3q +2)(18)’
— 3888pq + 856p — 100 — 216.

5.3 The First ve-degree Zagreb [ Index
Using Tab. 12 we compute the first ve-degree Zagreb f index:

M/}ve(LC) = Z(dve()‘) + dve(g))

e€eE

843

index, M /)l,v . index,
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M/}ve(LC) = (49 + 8)(18) + (4p — 4)(20) + (49 + 8)(24) + (8p — 8)(26) + (49 — 4)(28)
+(4g + 8)(30) + (12p — 12)(32) + (8¢q — 8)(34) + (24pg — 12p — 18¢q + 12)(36)
= 768pq + 288p + 96q — 96.

Table 12: Edge partition of LC, based on ve-degree

Number of edges (dve(N), dye(e)) (d(N),d(e))
49 + 8 (6,12) (1,6)
4p — 4 (6,14) (1,6)
4 +8 (12,12) 2,6)
8 — 8 (12,14) (2,6)
4q — 4 (12,16) (2,6)
4 +8 (12,18) (3,6)
12p — 12 (14,18) (3,6)
84 — 8 (16,18) (3,6)
24pg — 12p — 18¢ + 12 (18,18) (3,6)

5.4 The second ve-degree Zagreb index
Using Tab. 12 we compute the second ve-degree Zagreb index:

M (LC) = " (dve(N) X dye(2))

Ae€E
MZ(LC) = (4 +8)(72) + (4p — 4)(84) + (4q + 8)(144) + (8p — 8)(168) + (4g — 4)(192)
+(4g + 8)(216) + (12p — 12)(252) + (8¢ — 8)(288) + (24pg — 12p — 18q + 12)(324)
— 6048pg + 1680p + 264g — 1296.

5.5 ve-degree Randic Index
Using Tab. 12 we compute the ve-degree Randic index:

Re(LC) = 3 (dye(N) X dye(e))

Ae€E

Roe(LC) = (4g + 8)(72) 7 + (4p — 4)(84) 2 + (4 + 8)(144) ™ + (8p — 8)(168)

[STE

1 (4g — 4)(192)7F + (49 + 8)(216) 2 + (12p — 12)(252) + (84 — 8)(288)

+(24pg — 12p — 18q + 12)(324)”

:;ﬁpq—i— <M>p+ <l+&+%§+g 3ﬁ>q

21 373 7
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+f+2 f+2\/6 242 2421
3 3 6 9 21 21

5.6 The ev-degree Randic Index
Using Tab. 10 we compute the ev-degree Randic index:

cv LC Z dvc 61 %

e €E

Ra(LC) = (4p +4g +4)(7) > + (89 + 8¢ — 4)(8) > + (24pg — 64)(9)*

= 8pq + <4\7ﬁ+2xf2>p+ (4\7ﬁ+2\/§—2>q+\f—\/§

5.7 The ve-degree Atom-bond Connectivity Index
Using Tab. 12 we compute the ve-degree atom-bond connectivity index:

— dve(>\) + dve(g) —2 :
ABC,(LC) = é ( dye(N) X dye(e) )

16 18 22 24
ABC,(LC) = (4 D4 (4p— )= _8)y
CulLC) = (g +8)) 30+ (4p — )1 [ + (40 +8)\ s + (80— 8| or
/26 /28 /30 32
34
+(24pq — 12p — 18q + 12)\/324

(0,20, (e ) (208 2

+8ﬁ+2\/ﬂ 10\/_ V78 8 8f

3 3+63 6 3 7

5.8 The ve-degree Geometric-arithmetic Index
Using Tab. 12 we compute the ve-degree geometric-arithmetic index:

2(dve(N) X dye(e))

1=

GAelLCY= 2 =5 )+ duele)
GA,o(LC) = (4g +8) (2)1\g7_2+ (4p —4) (2)2\58_4+ (4q+ 8)%@+ (8p— 8)7(2);@* (49 _4)7(2);/8@
+(4g + 8)%*‘ (12p — 12)%@+ (8g — 8)%
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2)V/324
\/ 16v/42 424 16v/3 86 277
=WTpg+ [ ——+ Va2 p+ |4+ \/_ \/_+ \/_— v q
13 51 7 5 4
_16\@_16\/22'_4\/§T+8_16\/§+16ﬁ
51 13 5 7 5

5.9 The ve-degree Harmonic Index

Using Tab. 6 we compute the ve-degree harmonic index:

2

Hve(LC) - )\geEdve<)\) +dve(8)
Ho(LC) = (49 4+ 8) o=+ (4 —4) o+ (49 + 8) 2+ (8 — 8) o2 + (49 —4) o+ (49 + 8) 1o
(129 — 12) 2 4 (8¢ — 8) = + (24pq — 12p — 18¢ + 12) =
32 34 34
3 66 28949 22082
— 2P 657 48407 T 69615

5.10 The ve-degree Sum-Connectivity Index

Using Tab. 12 we compute the ve-degree sum-connectivity index:
e (LC) = Z (dve(A) + dye(e)) 2

Ae€E

e (LC) = (4 + 8) =+ (4p 4) 5+ (4g+8) =+ (8p — 8) =+ (49— 4) 5

+(4q +8) 75+ (120 — 12) 5+ (89 — 8) s + (24pg — 12p — 18¢ + 12) 1=

4 2 19v2 30 2v7 434
—avapg+ (W20 2V (L19V2 V6 2V30 2V 4VIE)
13 5 12 3 15 7 17

+4ﬁ N 2V6 2V5 2V7 434 430 426

3 305 7 17 15 13

6 Graphical Representation and Discussion

Data or information visualization is becoming more popular due to ease of understanding and analysis in
the modern scientific field. This section shows the graphical behavior of the above calculated topological
descriptors for crystal networks (bismuth tri-iodide and lead chloride) is shown. It can be observed that
by increasing the values of parameters values of topological descriptors are also increased. These
graphical representations of ve-degree based topological descriptors are shown in Figs. 3—6.

In this section, we will discuss the graphical behavior of above calculated topological descriptors for
crystal networks namely, bismuth tri-iodide and lead chloride. We observe that with the increase the
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values of parameters, the values of the defined topological descriptors are increased. The graphical
representation of all above ve-degree based topological descriptors are shown in Figs. 3—6.

350000
300000
250000
200000
150000

100000

Numerical and Graphical Comparison

50000

1 2 3 4 5 6 7 8 9 10

—=—MA"1_ove e=g=M"1 fve =—g=M"2_ve

Figure 3: Graphical comparison of M

ve)

My, M, for Bily

2500

g 8 8

Mumerical and Graphical Comparison
wm
8

o ABC_ve o=GA ve e==g=H ve X ve

Figure 4: Graphical comparison of ABC,., GAye, Hye, ¥, for Bil;



848

7 Conclusion
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For numerical representaion of topologies for graphs or netwroks, topological descriptors are most

useful invariants. That is why such investigations are widely used in computer applications and
mathematical chemistry. Calculated results in this paper for ev-degree and ve-degree based topological
indices for the crystal networks are shown pictorial in form of line chart from Figs. 3—6. In all the line
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charts it can be seen clearly that by increasing the values of p or g vlaues of topolgical decsriptors also
incraese in a regular manner.
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