
Web Security: Emerging Threats and Defense

Abdulwahed Awad Almutairi1, Shailendra Mishra2,* and Mohammed AlShehri1

1Department of Information Technology, College of Computer and Information Sciences, Majmaah University, Majmaah, 11952,
Saudi Arabia

2Department of Computer Engineering, College of Computer and Information Sciences, Majmaah University, Majmaah, 11952,
Saudi Arabia

�Corresponding Author: Shailendra Mishra. Email: s.mishra@mu.edu.sa
Received: 13 April 2021; Accepted: 09 June 2021

Abstract:Web applications have become a widely accepted method to support the
internet for the past decade. Since they have been successfully installed in the
business activities and there is a requirement of advanced functionalities, the con-
figuration is growing and becoming more complicated. The growing demand and
complexity also make these web applications a preferred target for intruders on
the internet. Even with the support of security specialists, they remain highly pro-
blematic for the complexity of penetration and code reviewing methods. It
requires considering different testing patterns in both codes reviewing and pene-
tration testing. As a result, the number of hacked websites is increasing day by
day. Most of these vulnerabilities also occur due to incorrect input validation
and lack of result validation for lousy programming practices or coding errors.
Vulnerability scanners for web applications can detect a few vulnerabilities in a
dynamic approach. These are quite easy to use; however, these often miss out
on some of the unique critical vulnerabilities in a different and static approach.
Although these are time-consuming, they can find complex vulnerabilities and
improve developer knowledge in coding and best practices. Many scanners
choose both dynamic and static approaches, and the developers can select them
based on their requirements and conditions. This research explores and provides
details of SQL injection, operating system command injection, path traversal, and
cross-site scripting vulnerabilities through dynamic and static approaches. It also
examines various security measures in web applications and selected five tools
based on their features for scanning PHP, and JAVA code focuses on SQL injec-
tion, cross-site scripting, Path Traversal, operating system command. Moreover,
this research discusses the approach of a cyber-security tester or a security devel-
oper finding out vulnerabilities through dynamic and static approaches using man-
ual and automated web vulnerability scanners.

Keywords: SQL injection attack; cross-site scripting attack; command injection
attack; path traversal attack

This work is licensed under a Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

Computer Systems Science & Engineering
DOI:10.32604/csse.2022.019427

Article

echT PressScience

mailto:s.mishra@mu.edu.sa
http://dx.doi.org/10.32604/csse.2022.019427
http://dx.doi.org/10.32604/csse.2022.019427

1 Introduction

A web application vulnerability enables an intruder to crack into the web application to execute
unwanted things on specific victim's sites. The most advanced security vulnerabilities are found in the
systems, networks, and application programs of present-day applications. Web applications are open to
the public by description, including malicious attackers [1]. Moreover, input to web applications is via
Hypertext Transfer Protocol (HTTP) request and response for transferring data over the web, and
accurately processing the input can be highly challenging. In recent years, these attacks on web
applications have been on the top of the list of hazardous attacks. The most significant and noteworthy
examples are Cross-Site Scripting (XSS), which is a type of injection where malicious scripts are
injected, and Structured Query Language injection (SQLi) that uses malicious SQL code for backend
database manipulation [2].

The end users are using their systems more creatively in the present day than in the past decade. A
maximum number of applications are executed online over the network since web applications can
replace desktop applications. The information of users that is connected to the internet; can be accessed
from any location [3]. Moreover, the developer is aware of the version used by the end-user and hence,
conveniently providing support. However, despite having these advantages, there are a few disadvantages.
When the server is offline or the end-user does not have access to the internet, the service is unavailable,
and the end-user cannot access their information. Furthermore, the end-user should also trust that the web
application will protect confidential information, both in terms of availability and confidentiality. It would
ensure that the information would not disappear and be accessible to the people he provides
authorizations [4].

The user should also consider the major disadvantages. When the server is offline or the end-user does
not have accessibility to the internet, the service would be unavailable, and the end-user would not get access
to information. However, the web application itself also has to be highly secured. The web application's
security is within the developer's skills, and hence, he has to be knowledgeable of all the exploits and the
approach of evading them. It can be a challenging job in small web applications and for helping the duty
security testing tools be built and examining the web application for security flaws. This paper examines
the security measures in web applications by addressing techniques that can be done by different tools,
manual processes, and a few vulnerabilities that web applications might experience.

One of the most distinct goals that impact the determination to research this area; is to promote an
approach that would significantly influence the fight against web application vulnerabilities, especially
cases that concern applications written within PHP and JAVA. A reduced rate of exploits is observed by
focusing on the web application vulnerabilities within web applications. The success of this specific
objective is possible by producing an appropriate approach towards securing web applications in the
source code in PHP and JAVA applications and even selecting the appropriate web application scanner to
make the applications more secure.

To prevent malicious access, the web application should be secured. The web application is protected
within the developer's skill set, and therefore, they require to know about all the exploits and the
approach to work around them. It can be challenging for small web applications and examine the web
application for security vulnerabilities [5,6]. Vulnerabilities and attack detection processes are reported
based on features’ selection [7]. The drawback of this approach is its subjective nature due to ranking. In
the paper [8], the authors have presented a planning-based attack model. The disadvantage of this model
was that the representation is extremely small. This research aims to explore and analyze four
vulnerabilities from the most common and critical vulnerabilities found in a web application in both PHP
and JAVA code. A comprehensive description of the vulnerabilities, exploitation, and testing is discussed

1234 CSSE, 2022, vol.40, no.3

in [8] using manual and automated web vulnerability scanners. Moreover, this research examines different
security measures in web applications.

The main contributions of this research are summarized as follows:

� This research explores and analyzes vulnerabilities found in a web application in both PHP and
JAVA codes.

� It examines the security measures in web applications by using techniques that can be performed by
the tools manually and examination of some of the vulnerabilities that web applications might
experience.

� The research also aims to promote an approach that would significantly influence the fight against web
application vulnerabilities, especially cases concerning applications written in PHP and JAVA.

� It has proposed an appropriate approach towards securing web applications in source code in PHP
and JAVA applications and choosing a suitable web application scanner to make the applications
more secure.

The main part of the paper is organized as follows:

i) Related work in web security, threats attacks, and countermeasures are discussed in section two.

ii) Research Methodology is illustrated in section three.

iii) A detailed discussion of the implementation and result analysis is discussed in section four.

iv) The paper is concluded in section five.

2 Related Work

A literature review has been conducted to explain the modern state-of-the-art automated web application
security scanners using dynamic and static analysis. It has also intended to explain the primary issues of the
subject and summarize the essential concepts of existing challenges and attacks, such as SQL injection
attacks, OS command Injection, Cross-Site Scripting, and directory traversal [9–11]. The advanced
development methods include specific frameworks and libraries for regulating effective and quick
approaches to improve market requirements. A web application vulnerability allows an intruder to
penetrate the web application for performing unwanted aspects on the specified pages of the user. In
Durai et al. [12], the authors explained the differences between vulnerability assessment and exploitation
and the approach of an assessment to be performed for SQL injection attacks, cross-site scripting attacks,
and cross-site request forgery attacks. They even mention secured code reviews and penetration testing in
the development lifecycle to identify and mitigate significant vulnerabilities in web applications.

The white-box testing method uses an examination of the programming code to detect major
exploitations in the applications. The examination of the programming code can be done either in the
traditional style of testing, i.e., manually, or with the help of tools. The black-box testing process, on the
contrary, analyzes the execution of an application and detects the issues. This particular examination
process is termed penetration testing, in which the scanner sends massive, predefined HTTP requests.
Similar to white box testing, black box testing can be done either manually or with tools. In [13], the
authors explain a system that automatically detects and mitigates the attacks. Web applications are
inefficient in checking the correctness of the data request. For this reason, intruders can exploit their
power by inserting the malicious data into the application, bypassing the website's security attributes. The
inserted parameters should be examined for their effectiveness in terms of their information representation
and field labeling. Patterns and values examine the legitimacy of the parameters for the occurrence of null
values, duplicate values.

CSSE, 2022, vol.40, no.3 1235

In [14], the authors have discussed the Injection Attack (IA) classification, which classifies SQLi and is
exploited in PHP. The standard and extensive learning-based IA algorithms have appeared to teach and
estimate the classification types with the help of testing and validation features of data input from the
code source data. A prototype has been taught using a Convolutional NN, and it produced the most
significant accuracy of 95.4%. In comparison, another prototype based on Multilayer Perceptron has
achieved the highest recall of 63.7% and the most significant measure of 74.6%. The main functionalities
of this specific vulnerability scanning system have been realized, and the scanning results show the
probability of the technical analyses. In [15], the authors have examined a couple of open and freely
available static investigation tools, with a couple of weakly designed applications for vulnerability
identification. These are made of insecure applications as evidence after the testing process. Both of them
produce results after running the tests.

These results are documented and examined using the Open Web Application Security Project’s
(OWASP) WAP and static code analysis tool RIPS to detect vulnerabilities in PHP source code. The XSS
exploits are classified into two classes, called inside and outside. The inside-cross-site scripting occurs
within the corresponding website, where the exploit is to be inserted. In this class, the exploit is also
executed on the machine when that inserted page is being clicked. For the outside XSS, the exploit is
executed through the browser. Paper [16] has addressed identification of characteristic exploitation in
PHP code. It extends the traditional custom design with a component called cleans. It refers to designing
of different sanitation methods. An inactive and behind-the-information investigation procedure is
provided to discover technical exploits based on the unique design. The tool of POSE performs this
process, and the investigation results have proved that the procedure is highly efficient for discovering
techniques in web application exploits. The input given by the end-user is included in an HTTP request
created by the web server or takes place somewhere in the HTML pages of the Document Object Model
(DOM). DOM is a programming interface for HTML.

Cross-site scripting exploits can be broken into web-server-side exploits and client-side vulnerabilities. The
web-server-side XSS exploits mostly covered “reflected XSS” and “stored XSS”. The client-side exploit is
applicable to DOM Cross-site scripting [17]. It distinguishes and examines advanced study outcomes on
XSS discovery, breaks them into three vital sections to various tools, and these three sections include static
examination, dynamic examination, and hybrid examination. They list 30 discovery methods, make overall
similar analyses, and note on powers and flaws of discovered XSS exploits. Sqlmap is a free exploit
discovery and pen-testing tool that finds out SQL injection attacks. This tool also automates identification
and impacting SQLi exploits and allows for getting across the databases. Havij GUI is an established SQLi
tool that benefits all pen testers to identify and exploit SQL injection weakness in a web application [18].
The study reported in [18] is successfully converged on popular and common vulnerabilities like SQLi, XSS,
and Cross-Site Request Forgery (CSRF) and explaining such exploitations of the exploits with DVWA.
Benefits of the web exploit with discovery and security refers to a reliable web access policy plan.

Machine learning (ML) exceeds difficulties that people can determine. Various ML types, such as
Logistic Regression, information description, are significant for design performance. It is essential to
collect and choose the convenient characteristics that are utilized to describe any information situation.
Deep learning (DL) types, rather than defining the features, are likely to study them concurrently with the
primary task. In [19], the authors have performed an extensive learning type capable of analyzing PHP
parts as vulnerable or not to the SQL injection. This strategy is meant to suit the workflow of web
applications' support written in server-side programming languages like PHP, JSP, and ASP. In [20], the
authors have proposed a strategy that combines the software support lifecycle with system examination.
All unprotected codes are recreated for showing the recommended encoder. It is validated with the help
of a valuating censure method to obtain a conventional replacement. Evaluation of this method has
remained successful for an open-source pharmaceutical application written in JSP.

1236 CSSE, 2022, vol.40, no.3

In [21], the authors have performed a combined examination strategy for examining web applications
related to the concerns of SQLi exploits and proposed a SQL-INJECTION tool capable of automatic
SQLi exploits examination in web applications. In [22], the authors have built the first level RegExps for
SQL Injection discovery from network traffic. To identify malicious SQL Injection of web traffic, it uses
legitimate expressions obtained from popular SQL Injection tools. SQLi is amongst the traditional
protection warnings to cloud databases that work by expanding applications that install their settings on
the cloud. Session Hijacking happens when an intruder gains entrance to the session of a particular end-
user. The intruder slices a legitimate session identifier applied to go inside the system and take the
information. Privilege Escalation refers to the end-user getting the rights of different users. These rights
can be utilized to remove data, observe confidential data, or even place undesired applications like
viruses. A directory traversal is additionally recognized as path traversal. Directory traversal exploits
mainly inadequate validations of browser inputs from end-users.

The algorithm Vul-Scan is applied to create a deception method for mutating examination data
automatically. The algorithm chooses methods that meet the victim system and scan class, do not break
the conflicted relationship, and follow the hierarchy relationship. The input is victim system data, the
most evasion techniques, scan type, and evasion methods database. The authors have developed a web
scanner, VulScan, which creates analysis data by utilizing a mixture of deception methods. It avoids
filters and Web application firewalls (WAFs) to expose SQLi and XSS exploits [23].

The discovery of XSS vulnerability starts with the Pixy tool to investigate the origin codes for
illustrating the control flow graph (CFG) and obtain the PHP source code's entire paths. A few paths of
the Control Flow Graph are introduced as unseen routes, which means they will not perform.
Consequently, they have pushed the unseen routes to provide reliable outcomes, and they utilized the GA
generator on the unseen routes completely. The GA generator begins to initialize an arbitrary group of
irregular Cross-site scripting hateful scenarios as inputs. The convenience function estimates the
outcomes of the population in every generation. This paper has developed the discovery strategy of XSS
exploits in PHP by implanting that elimination step to the discovery strategy as a whole to identify and
eliminate Cross-site scripting. The outcomes have proved the ability of the suggested strategy to identify
and eliminate Cross-site scripting exploits in PHP [24]. A logic exploit appears when programmers have
produced a relevant mistake in their applications. It might be extremely easier, similar to the decreasing
price in calculating it or any aspect, which has occurred completely ignored. This study explains the
aspects of entirely automated and standard pen-testing techniques that result in identifying certain exploits.

3 Research Methodology

This research aims to explain the high-risk vulnerabilities in web applications and helping the security
developers and penetration testing teams have secure code in their applications. It will also compare the web
application scanner statically and dynamically for all selected vulnerabilities. It is needed to set up a
workstation on Windows and Linux with all the tools to analyze the vulnerable codes of PHP and JAVA.
After setting up the workstation, the vulnerable web application will be examined and explained, in
which the vulnerability occurs in the code, and the approach of it can be secured through the code review
process. Tools are also run and analyzed statically and dynamically in PHP and JAVA. After completing
the vulnerable web application analysis and explaining how the exploits work and how to secure them,
the web application scanner will scan the vulnerable web application for any kind of vulnerability and
then compare the results of different tools. The benefits associated with the investigation include an in-
depth analysis of the selected vulnerabilities within the source codes, gaining insights into the existing
vulnerabilities, learning remediation strategies for reducing exposure to the identified vulnerabilities, and
providing assistance to the security developer and penetration tester selecting the right scanner tool. The
research process is shown in Fig. 1.

CSSE, 2022, vol.40, no.3 1237

Figure 1: Research process

1238 CSSE, 2022, vol.40, no.3

4 Experimental Setup and Analysis

There are a variety of tools for static as well as dynamic source code scanners (Acuntix [25], NetSparker
[26], BurpSuitePro [27], SonarCloud [28], Cobra [29], VulnyCode [30], ASST [31], AppSpider 7 [32],
FindBug [33]). Some of them are commercial, and others are free and open source. The support of
scanning PHP and JAVA applications allows different vulnerabilities that this study focuses on: SQL,
XSS, Path Traversal, and OS Command. It also focuses on the popularity of the tools and accuracy in
finding the vulnerability. A basic script to find vulnerabilities in a PHP source code; uses Regular
Expression to find vulnerabilities. It can also find out bugs and implements a program that uses static
analysis to look for bugs in Java code. Experimental Setup to scan the vulnerability in the web
application is shown in Fig. 2. Vulnerability in the web application is scan with the help of static and
dynamic web scanners.

4.1 Vulnerabilities and Attack Analysis

SQL injection is a web security vulnerability that allows an attacker to interfere with the queries of an
application to its database. It usually enables an attacker to view data that is usually unrecoverable. This
might be related to data for other users or other data that the application itself can reach. In many cases,
an attacker can modify or delete this data, permanently altering the content or performance of the
application. SQL injection consistently appears in the Open Web Application Security Project's (OWASP)
list of top 10 security risks [34].

4.1.1 SQL Injection in PHP Code
The SQLi attack occurs when an SQL statement selects a specific user with a specified user ID. Fig. 3

shows the PHP SQLi Vulnerable Code 1. Fig. 4 generates a SELECT statement by adding a variable “id” to a
select string. The variable is fetched from user input: When there is no validation to prevent a user from
entering “malicious” input, the user might enter a "smart" input such as 'AND 1=1'. This SQL statement
is correct and returns ALL rows from the Users table because AND 1=1 is always TRUE in the SQL
statement. It also indicates that the SQL queries can bypass ACL by avoiding regular authorization and
authentication checks, and the distinct SQL queries even may provide a way to host OS-level commands.

Figure 2: Experimental setup

CSSE, 2022, vol.40, no.3 1239

The primary purpose of the code was to build an SQL statement for selecting a user with a provided user
id. When there is no validation to prevent a user from entering “malicious” input; the user can enter some
“clever” input like provided below:

4.1.2 SQL Injection in JAVA Code
SQL Injection attacks work because, in various applications, the most distinct method is to perform a

provided computation and dynamically produce code that is run by another system or component. When
we use untrusted data without proper sanitization, we often drop an open door for the intruders to exploit
in generating this code. Let us take a view of how this occurs in the following example shown in Fig. 5.

The problem of this specific code is apparent. We have put the username value into the query with no
validation. Exploiting this query code is trivial, and all the attackers have to send a condition that, when
concatenated with the fixed part of the query, it is needed to modify the expected performance:

Figure 3: PHP SQLi vulnerable code 1

Figure 4: PHP SQLi vulnerable code 2

Figure 5: JAVA SQLi vulnerable code 1

1240 CSSE, 2022, vol.40, no.3

The SQL statement above (Fig. 6) is correct and will return ALL rows from the "Users" table since OR
a=a is always TRUE in the SQL statement.

4.1.3 Cross-Site Scripting in PHP Code
Cross-site scripting (XSS) attacks are injections in which malicious scripts are being inserted into trusted

websites. XSS happens when an attacker uses a web application to push malicious code, usually on a browser's
page, to another end user. Vulnerabilities that allow attacks to work are quite well known and take place in
every location. A web application accepts input from a user within the output it produces without validating
or encrypting it. When there would be a variable that outputs some data directly to the browser without
validation, it can lead to the execution of XSS attacks. An attacker exploits this vulnerability by intercepting
the POST or GET requests and injecting the variables with harmless JavaScript codes. In the following
example (Fig. 7), a sample of a vulnerable code to XSS in PHP is provided.

The vulnerable variables are $gty and $isbn. The code echoes the number of books directly in the cart
and the book ISBN without sanitization of validation. It results in the execution of an XSS (Fig. 8).

An attacker will exploit this vulnerability by intercepting the POST request and injecting the variables
with harmless javascript codes. In the following example (Fig. 9), a sample of a vulnerable code to XSS in
JAVA is provided.

The parameter XSS is unescaped or sanitized. It will print any input it receives from the user. A
malicious attacker can inject JavaScript code into the application (Fig. 10).

An attacker will exploit this vulnerability by injecting the GET request with harmless JavaScript codes.
In the following example, the script passes the $file_name variable an unvalidated/unsensitized HTTP
request value directly to the $file_dir variable to get the path to upload the file to it.

Figure 6: JAVA SQLi vulnerable code 2

Figure 7: PHP XSS vulnerable code 1

Figure 8: PHP XSS vulnerable code 2

CSSE, 2022, vol.40, no.3 1241

4.1.4 Directory Traversal in JAVA Code
A path traversal attack (identified as directory traversal) aims to reach files and directories that are stored

outside the Webroot directory [34]. In the example (Fig. 11), a web service receives a parameter named
filepath that corresponds to the name of a file previously in the server’s directory. Different attackers can
also control the parameter to read files in the system leading to information disclosure. The attacker
would initiate the request as following to read files in the system. By manipulating variables that
reference files or foldersfile path../) sequences and their changes, or by using absolute file paths, it can
likely reach out arbitrary files and directories stored on the system OS, including application source code
or important system files (Fig. 12)

4.1.5 OS Command Injection in JAVA Code
Command injection attack executes arbitrary commands on the operating system through a vulnerable

program or a web application. Command injection attacks are possible when an application passes the
insecure user-supplied data to a specific system shell. The OS commands provided by the attacker; are
regularly executed with all vital privileges of the vulnerable application [34]. This specific application
passes a cmd parameter and executes it without any kind of validation or cleanup, which is vulnerable to
command injection via the CommandExec method that results in the execution of OS.

Figure 9: JAVA XSS vulnerable code 1

Figure 10: JAVA XSS vulnerable code 2

Figure 11: JAVA directory traversal vulnerable code 1

Figure 12: JAVA directory traversal vulnerable code 2

1242 CSSE, 2022, vol.40, no.3

The above example (Fig. 13) is a java application that is vulnerable to command injection; since the
method, CommandExec is passing a cmd parameter and executing it without validation or sanitization,
leading to OS command execution. The attacker would send the request as following for executing
commands in the system.

4.2 Vulnerabilities Mitigations in PHP and JAVA

More than 60% of all codebases used by enterprises contain at least one specific vulnerability from open
source elements, according to the “Open-Source Security and Risk Analysis” (OSSRA) report [35]. The
main aspect is to check whether the application is exclusive code or open-source code; it will indeed have
vulnerabilities. However, the experts overwhelmingly admit that the open-source code libraries '
"components" are highly secured than the commercial applications. The dilemma is not within the use of
open-source libraries. Application vulnerabilities thrive because it's complicated to write secure code. As
a result, many companies are dependent on open source projects. We will list the processes of mitigating
the web applications from the vulnerabilities of XSS, SQL, Path traversal, OS command injection in PHP
and JAVA, based on the OWASP Cheat Sheet Series. We will also demonstrate the process of mitigating
the vulnerability in the source code below the images. The OWASP Cheat Sheet Series was created to
present a dense collection of high-quality knowledge on specific application security issues [36].

To protect the code from SQLi, we can use a function called mysql_real_escape_string in PHP. It is
responsible for escaping certain characters in a string for use in a SQL declaration to avoid SQL injection
attacks. The developer can use the "PreparedStatement" function to protect and escape the SQL query
from SQL injection attacks to avoid SQL injection attacks in JAVA code. Prepared Statements help stop
SQL injection because the values that are entered into a SQL query are transmitted to the SQL server;
after the actual query is sent to the server. We can use the “htmlspecialchars” function to turn special
characters into HTML entities to prevent XSS attacks in PHP codes. Developers can also use a custom
method to convert special characters into HTML entities.

The developer uses the "basename ()" function to return only the filename part of a given path to prevent
path traversal attacks. However, to make the code more secure, we can use another function called realpath()
with the basename() function. It is needed to return the canonicalized absolute pathname and avoid path
traversal attacks in PHP codes. Moreover, they can also use a customized method to protect their
application from path traversal attacks in codes to check if the parameter contains ".." or "/." The
developer can use a function escapeshellarg() in PHP, and in Java to prevent OS Command Injection, and
they should use every method that executes a system command and prevent the end-user from supply
their inputs in it.

Figure 13: JAVA OS command vulnerable code 1

CSSE, 2022, vol.40, no.3 1243

4.3 Comparison with Static and Dynamic Tools

Comparing the tools has been conducted by installing the vulnerable applications in both PHP and java
language. They are also vulnerable to SQL injection and cross-site scripting and directory traversal, and os
command injection. After deploying the applications in windows server with Java tomcat and Linux server
with PHP interpreter scanned vulnerable applications with the dynamic tools like AppSpider, Burp Suite Pro,
with a windows machine. Examining the result from these scanners after it finishes scanning, Results are in a
report format with all the details, i.e., the vulnerability found, the time it takes to scan the application, etc.
Based on the report, a comparison takes place between scanners. In the static approach, we run the static
tools scanner locally in Linux machine and using the time command combined with the static tools in a
terminal and scan the vulnerable application statically after it finishes the scanning and produces the
report of the finding, we compare the result based in the information we get for these scanners in static
mode. The sonar cloud scanner is a web-based static scanner. We upload the vulnerable applications to it
and scan them. After scanning, the scanner produces a report of the result with all the information (time,
the vulnerability found), etc. The FindBug is a plugin tool that scans the vulnerable applications in IDE
software and shows a report if there is a vulnerability in the codes (statically). Recorded the time of the
plugin when it finishes and if it found the vulnerability in the code.

4.4 Discussion

There are a variety of tools for static source code scanners. A few of them are commercial, and others are
free and open source. The selected five tools based on their scanning PHP and JAVA code features to focus
on, mainly include SQL, XSS, Path Traversal, OS Command. It is needed to focus on the tools' popularity
and the accuracy in finding out the vulnerability. Cobra is a source code security audit tool that supports the
detection of major security issues and vulnerabilities in the source code of several development languages.
SonarCloud is cloud-based, and it supports twenty-three languages Java, JS, C#, C/C++, Objective-C, and
more. It also supports Deep Code analysis to examine all source files. ASST is an open-source developed
with JavaScript. It uses Regular Expression to find out vulnerabilities. FindBugs is a program that uses
static analysis to look for bugs in Java code.

All dynamic tool scanners are commercial as the large companies put a lot of effort into them. In this
study, we have selected four dynamic tools to scan the vulnerable application; they support scanning PHP
and JAVA applications, and these are SQL, XSS, Path Traversal, OS Command". Moreover, we have
shown a compression between Static and Dynamic Tools in Tab. 1. It also shows that the dynamic tools
are excellent in finding vulnerabilities; however, it is slower than static tools. The top vulnerability type
found by static and dynamic tools ranks accordingly by SQL Injection, Cross-Site Scripting, Path
Traversal, and OS Command Injection. Regarding the above analysis of the tools, we found that the top
tools for static tool scanners are FindBug,Vulny, and the top tools for dynamic tool scanners are
AppSpider, NetSparker. Fig. 14 shows the comparison between static and dynamic tools against speed
and vulnerability. Analysis speed of Cobra, FindBug, Sonar, ASST, and Vulny are higher than others.

1244 CSSE, 2022, vol.40, no.3

5 Conclusions

There are a large number of vulnerabilities and security flaws in applications, which interact on the
internet. Developers and penetration testers need a reference point to create or verify that a web
application is secure. OWASP is the most reliable standard to refer to for guidelines in the present
scenario, and the tools draw one of the best ways to make web application security. New vulnerabilities
are found every day, and even the most trivial vulnerability, if properly exploited, can cause significant
damage to an organization. SQL injection is the most prevalent in this study, along with path traversal
and OS command injection. Moreover, XSS can also lead to serious consequences. In many
organizations, application security is the most vital aspect of the application lifecycle that is usually
ignored, and cybersecurity is seen as a cost rather than an investment. Experimental results indicate that
SQL queries can bypass ACL by avoiding regular authorization and authentication checks, and seldom
SQL queries even may provide a way to host OS-level commands. SQLi in JAVA Code works because,
for various applications, the only way to perform a given computation is to dynamically produce code
that is, in turn, run by another system or component. When it uses untrusted data without effective
sanitization, it drops an open door for attackers to exploit in generating this code. XSS attack happens
when an attacker uses a web application to push malicious code, usually on a browser's page. An attacker
exploits this vulnerability by intercepting the POST or GET request and injecting the variables with
harmless JavaScript codes.

Table 1: Compression between static and dynamic tools

Tool Name Analysis
Style

Language
Support

Cost
Factor

Testing
Style

Method Analysis
Speed

Vulnerability
Found

Vulnerability
Top Language

Acuentix Dynamic PHP-JAVA Commercial Black Runtime Slow 4 PHP&JAVA

AppSpider Dynamic PHP-JAVA Commercial Black Runtime Slow 5 JAVA

Cobra Static PHP-JAVA Free White Source Fast 1 JAVA

FindBug Static JAVA Free White Source Fast 3 JAVA

Sonar Static PHP-JAVA Free White Source Fast 2 PHP

BurpSuitePro Dynamic PHP-JAVA Commercial Black Runtime Slow 4 PHP&JAVA

ASST Static PHP Free White Source Fast 0 None

Vulny Static PHP Free White Source Fast 3 PHP

NetSparker Dynamic PHP-JAVA Commercial Black Runtime Slow 5 JAVA

1

5 5 5 5

1

5 5 54

5

1
3 2

4 0

3
5

STATIC AND DYNAMIC TOOLS

Analysis Speed Vulnerability Found

Figure 14: Comparison of Static vs. Dynamic tools against analysis speed and vulnerability

CSSE, 2022, vol.40, no.3 1245

A path traversal attack aims to reach out to files and directories stored outside the Webroot directory.
Attackers can control this parameter to read files in the system leading to information disclosure.
Command injection attacks are possible when an application passes insecure user-supplied data to a
system shell. The application passes a cmd parameter and executes it without validation or cleanup,
which is vulnerable to command injection via the CommandExec method, resulting in the execution of
OS. To protect the code from SQLi, we can use a function called mysql_real_escape_string in PHP,
responsible for escaping certain characters in a string for use in a SQL declaration to avoid SQL injection
attacks. To avoid SQL injection attacks in JAVA code, the developer can use the "PreparedStatement"
function to protect and escape the SQL query from SQL injection attacks. The developer uses the
"basename ()" function to return only the filename part of a given path to prevent path traversal attacks.
The users should use every method that executes a system command and prevent the end-user from
supplying their inputs to prevent OS Command Injection. The developer can use the function
escapeshellarg() in PHP and Java.

The four security risks are implemented in the web application, used as an analysis set for evaluating the
effectiveness of Acunetix vulnerability scanners, Netsparker vulnerability scanners, Burp Suite Pro
vulnerability scanners, AppSpider vulnerability scanners, Cobra vulnerability scanners, Sonar
vulnerability scanners, FindBug vulnerability scanners, ASST vulnerability scanners, and Vulny
vulnerability scanners. The evaluation of the reputed web application vulnerability scanners is done by
examining the results obtained while running web scanners for the vulnerable web application in PHP
and JAVA and then comparing the number of vulnerabilities detected.

Several vulnerability scanners might comprise of multiple reports, and they even have several
techniques to test particular types of vulnerabilities. The comparison of the tools shows that the top
languages in which the tools find security vulnerabilities are JAVA and PHP. It also shows that dynamic
tools excel at finding security vulnerabilities but are slower than static tools. The vulnerabilities found by
both static and dynamic tools are SQLi XSS, Path Traversal, and OS Command Injection. FindBug and
Vulny are the best static, and AppSpider, NetSparker are the best dynamic tools. Therefore, developers
and testers should attempt to use more scanners to discover web vulnerabilities. When we exploit
vulnerable applications, we can imagine from our views. While possible attackers are evermore more
creative than developers, they may have talented ideas to attack the system. Therefore, the evaluation
result of these vulnerabilities may not be permanent. In the future, focus on finding complex
vulnerabilities such as insecure direct object references related to PHP and JAVA applications. That
strategy is referred to suit the workflow of web applications written in server-side programming
languages like PHP, JSP, and ASP and even develops an automatic detection and mitigation of XSS
vulnerabilities, SQL injection, and other attacks based on machine learning techniques.

Acknowledgement: The authors sincerely acknowledge the support fromMajmaah University, Saudi Arabia
for this research.

Funding Statement: The authors would like to thank the Deanship of Scientific Research at Majmaah
University for supporting this work under Project Number No -R-14xx-4x.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] S. Mishra, S. K. Sharma and M. A. Alowaidi, “Analysis of security issues of cloud-based web applications,”

Journal of Ambient Intelligence and Humanized Computing, vol. 3, no. 1, pp. 50, 2020.

1246 CSSE, 2022, vol.40, no.3

[2] D. Mitropoulos, P. Louridas, M. Polychronakis and A. D. Keromytis, “Defending against web application attacks:
Approaches, challenges and implications,” IEEE Transactions on Dependable and Secure Computing, vol. 16, no.
2, pp. 188–203, 2019.

[3] H. Tabrizchi and M. K. Rafsanjani, “A survey on security challenges in cloud computing: Issues, threats, and
solutions,” Journal of Supercomputing, vol. 76, no. 12, pp. 9493–9532, 2020.

[4] P. Martins, S. I. Lopes, A. M. R. D. Cruz and A. Curado, “Towards a smart & sustainable campus: An application-
oriented architecture to streamline digitization and strengthen sustainability in academia,” Sustainability, vol. 13,
no. 6, pp. 1–25, 2021.

[5] A. Tekerek, “A novel architecture for web-based attack detection using convolutional neural network,” Computers
& Security, vol. 100, no. 2, pp. 102096, 2021.

[6] A. Gkortzis, D. Feitosa and D. Spinellis, “Software reuse cuts both ways: An empirical analysis of its relationship
with security vulnerabilities,” Journal of Systems and Software, vol. 172, no. 2, pp. 110653, 2021.

[7] S. Mishra, M. A. Alowaidi and S. K. Sharma, “Impact of security standards and policies on the credibility of e-
government,” Journal of Ambient Intelligence and Humanized Computing, vol. 12, pp. 1–12, 2021.

[8] J. Bozic and F. Wotawa, “Planning-based security testing of web applications with attack grammars,” Software
Quality Journal, vol. 28, no. 1, pp. 307–334, 2020.

[9] Y. B. Zikria, R. Ali, M. K. Afzal and S. W. Kim, “Next-generation internet of things (IoT): Opportunities,
challenges, and solutions,” Sensors, vol. 21, no. 4, pp. 1174, 2021.

[10] Z. Zhang, H. Ning, F. Shi, F. Farha, Y. Xu et al., “Artificial intelligence in cyber security: Research advances,
challenges, and opportunities,” Artificial Intelligence Review, vol. 54, pp. 1–25, 2021.

[11] A. Aljumah and T. A. Ahanger, “Cyber security threats, challenges and defence mechanisms in cloud computing,”
IET Communications, vol. 14, no. 7, pp. 1185–1191, 2020.

[12] K. N. Durai, R. Subha and A. Haldorai, “A novel method to detect and prevent SQLIA using ontology to cloud
web security,” Wireless Personal Communications, vol. 117, no. 4, pp. 2995–3014, 2021.

[13] S. Mishra, S. K. Sharma and M. A. Alowaidi, “Multilayer self-defense system to protect enterprise cloud,”
Computers, Materials & Continua, vol. 66, no. 1, pp. 71–85, 2020.

[14] P. Tang, W. Qiu, Z. Huang, H. Lian and G. Liu, “Detection of SQL injection based on artificial neural network,”
Knowledge-Based Systems, vol. 190, pp. 1–10, 2020.

[15] A. Kaur and R. Nayyar, “A comparative study of static code analysis tools for vulnerability detection in c/c++ and
java source code,” Proc. Computer Science, vol. 171, no. 13, pp. 2023–2029, 2020.

[16] A. Gupta, B. Suri, V. Kumar and P. Jain, “Extracting rules for vulnerabilities detection with static metrics usingmachine
learning,” International Journal of System Assurance Engineering and Management, vol. 12, pp. 65–76, 2020.

[17] M. Liu, B. Zhang, W. Chen and X. Zhang, “A survey of exploitation and detection methods of XSS
vulnerabilities,” IEEE Access, vol. 7, pp. 182004–182016, 2019.

[18] O. C. Abikoye, A. Abubakar, A. H. Dokoro, O. N. Akande and A. A. Kayode, “A novel technique to prevent SQL
injection and cross-site scripting attacks using knuth-morris-pratt string match algorithm,” EURASIP Journal on
Information Security, vol. 14, pp. 1–14, 2020.

[19] A. Fidalgo, I. Medeiros, P. Antunes and N. Neves, “Towards a deep learning model for vulnerability detection on
web application variants,” in 2020 IEEE Int. Conf. on Software Testing, Verification and Validation Workshops,
Porto, Portugal, pp. 465–476, 2020.

[20] C. Li, Y. Wang, C. Miao and C. Huang, “Cross-site scripting guardian: A static XSS detector based on data Stream
input-output association mining,” Applied Sciences, vol. 10, no. 14, pp. 1–20, 2020.

[21] D. E. Simos, J. Zivanovic and M. Leithner, “Automated combinatorial testing for detecting SQL vulnerabilities in
web applications,” in 2019 IEEE/ACM 14th Int. Workshop on Automation of Software Test, Montreal, QC,
Canada, 55–61, 2019.

[22] H. Gu, J. Zhang, T. Liu, M. Hu, J. Zhou et al., “DIAVA: A traffic-based framework for detection of SQL injection
attacks and vulnerability analysis of leaked data,” IEEE Transactions on Reliability, vol. 69, no. 1, pp. 188–202, 2020.

CSSE, 2022, vol.40, no.3 1247

[23] H. C. Huang, Z. K. Zhang, H. W. Cheng and S. W. Shieh, “Web application security: Threats, countermeasures,
and pitfalls,” Computer, vol. 50, no. 6, pp. 81–85, 2017.

[24] V. K. Malviya, S. Rai and A. Gupta, “Development of web browser prototype with embedded classification
capability for mitigating Cross-Site Scripting attacks,” Applied Soft Computing, vol. 102, no. 3, pp. 106873, 2021.

[25] Acunetix [Online]. Available: https://www.acunetix.com.

[26] NetSparker [Online]. Available : https://www.netsparker.com.

[27] Burp Suite Pro [Online]. Available: https://portswigger.net/burp.

[28] SonarCloud [Online]. Available: https://sonarcloud.io.

[29] Cobra [Online]. Available: https://github.com/WhaleShark-Team/cobra.

[30] VulnyCode [Online]. Available: https://github.com/swisskyrepo/Vulny-Code-Static-Analysis.

[31] ASST, OWASP [Online]. Available: https://github.com/OWASP/ASST.

[32] AppSpider7 [Online]. Available: https://www.rapid7.com/products/appspider.

[33] FindBug [Online]. Available: http://findbugs.sourceforge.net.

[34] Owasp top 10 [Online]. Available: https://owasp.org/www-project-top-ten.

[35] OSSRA report [Online]. Available: https://www.synopsys.com/software-integrity/resources/analyst-reports/
2020-open-source-security-risk-analysis.html.

[36] OWASP Cheat Sheet Series [Online]. Available: https://cheatsheetseries.owasp.org/index.html.

1248 CSSE, 2022, vol.40, no.3

https://www.acunetix.com
https://www.netsparker.com
https://portswigger.net/burp
https://sonarcloud.io
https://github.com/WhaleShark-Team/cobra
https://github.com/swisskyrepo/Vulny-Code-Static-Analysis
https://github.com/OWASP/ASST
https://www.rapid7.com/products/appspider
http://findbugs.sourceforge.net
https://owasp.org/www-project-top-ten
https://www.synopsys.com/software-integrity/resources/analyst-reports/2020-open-source-security-risk-analysis.html
https://www.synopsys.com/software-integrity/resources/analyst-reports/2020-open-source-security-risk-analysis.html
https://cheatsheetseries.owasp.org/index.html

	Web Security: Emerging Threats and Defense
	Introduction
	Related Work
	Research Methodology
	Experimental Setup and Analysis
	Conclusions
	flink6
	References

