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Abstract: In this paper, we consider the unique solvability of the inverse problem
of determining the right-hand side of a parabolic equation whose leading coeffi-
cient depends on time variable under nonlocal integral overdetermination condi-
tion. We obtain sufficient conditions for the unique solvability of the inverse
problem. The existence and uniqueness of the solution of the inverse parabolic
problem upon the data are established using the fixed point theorem. This inverse
problem appears extensively in the modelling of various phenomena in engineer-
ing and physics. For example, seismology, medicine, fusion welding, continuous
casting, metallurgy, aircraft, oil and gas production during drilling and operation
of wells. In addition, the numerical solution of the inverse problem is studied by
using the Crank-Nicolson finite difference method together with the Tikhonov
regularization to find a stable and accurate approximate solution of finite differ-
ences. The resulting nonlinear system of parabolic equation is solved computa-
tionally using the MATLAB subroutine lsqnonlin. Both analytical and
numerically simulated noisy input data are inverted. The root mean square
error values for various noise levels for both continuous and discontinuous
time-dependent heat source term are compared. Numerical results presented for
two examples show the efficiency of the computational method and the accuracy
and stability of the numerical solution even in the presence of noise in the input
data. Furthermore, the choice of the regularization parameter is also discussed
based on the trial and error technique.

Keywords: Inverse problem; nonlocal integral condition; fixed point theorem;
Tikhonov regularization; nonlinear optimization

1 Introduction

Inverse boundary value problems arise in various areas of human activity such as mineral exploration,
seismology, medicine, biology, quality control in industry, etc., which makes them an active field of
contemporary mathematics and physics. Inverse problems for parabolic equations satisfying nonlocal
integral overdetermination conditions were first studied in [1–8] for equations with coefficients
independent of time and boundary conditions of the first and third kind. These papers contain the proof
of theorems on the equivalence of the original inverse problem to an operator equation of the second kind
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with a totally continuous operator. Moreover, Cannon et al. [9,10] investigated the inverse problem of
identifying the perfusion, and source control coefficients and the temperature, respectively. Kamynin [11]
proved the unique solvability of the inverse problem of finding the right-hand side of a parabolic
equation with the leading coefficient depending on time and space variables under a final
overdetermination condition while Kamynin [12] discussed the existence of the solution to the initial-
boundary problem for the parabolic equation.

In this paper, we study the existence and uniqueness of the inverse problem of determining a pair of
functions {u(x, t), f(t)} satisfying the parabolic equation

ut � Duþ bu ¼ f ðtÞgðx; tÞ; ðx; tÞ 2 �� ½0; T �; (1)

the initial condition

uðx; 0Þ ¼ ’ðxÞ; x 2 �; (2)

the boundary condition

uðx; tÞ ¼ 0; ðx; tÞ 2 @�� ½0; T �; (3)

and the nonlocal integral overdetermination conditionZ
�

vðxÞuðx; tÞdx ¼ hðtÞ; t 2 ½0; T �; (4)

where Ω is a bounded domain in ℝn with smooth boundary ∂Ω. The functions g(x, t), φ(x), v(x), θ(t) are
known and β is a given positive constant.

Nonclonal integral specifications condition of the form Eq. (4) arises from many important applications
in heat transfer, mass/energy, thermoelasticity, control theory, life science, etc. [13–17]. For instance, for heat
propagation in a thin rod in which the law of variation θ(t) of the total quantit of heat in the rod is given in
[18]. In addition, the inverse problem of determining the time-dependent coefficient in a one and two-
dimensional parabolic equation from nonlocal integral over-specification condition has been investigated
widely by many researchers in the past, see [19–23] to mention only a few.

In the present paper, the existence and uniqueness of the inverse problem Eqs. (1)–(4) are established
using the fixed point theorem. We have also investigated the numerical solution of the inverse problem.
Moreover, the novelty consists in the development of a convergent numerical optimization method for
solving this nonlinear inverse coefficient problem for the parabolic equation. Numerically, the
implementation is realised using the MATLAB subroutine lsqnonlin.

The rest of the paper is organized as follows. Section 2 illustrates the preliminaries. The unique
solvability of the inverse problem is given in Section 3. The numerical solution of the direct (forward)
problem based on the finite difference method with a Crank-Nicolson scheme is given in Section 4. In
Section 5, the numerical solution to solve the inverse problem based on a minimization of the Tikhonov
objective functional is given. Numerical results are presented and discussed in Section 6. Finally,
conclusions are stated in Section 7.

2 Preliminaries

We begin with certain notations and definition as:

g�ðtÞ ¼
Z
�

vðxÞgðx; tÞdx; QT ¼ �� ½0; T �: (5)
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Definition 1.We denote by C((0, T), L2(Ω)) the space of all continuous functions on (0, T) with values in
L2(Ω). The norm of C((0, T), L2(Ω)) is given by

k u kCðð0;TÞ;L2ð�ÞÞ¼ max
ð0;TÞ

k u kL2ð�Þ ,1:

Definition 2. We denote the space L2(Ω) by u � uL2ð�Þ. We use the well-known inequality (Cauchy’s
ε-inequality):

2jabj�ea2 þ 1

e
b2; e. 0; a; b 2 R1:

3 Unique Solvability of the Inverse Problem

Definition 3. By a generalized solution of problem Eqs. (1)–(4), we mean a pair of functions {u(x, t),
f(t)}, uðx; tÞ 2 CðW 1

2 ð�Þ 0; TÞ, ut, uxx ∈C(0, T;L2(Ω)), f(t) ∈ [0, T] satisfying Eq. (1) almost everywhere
in QT; moreover, the function u(x, t) satisfies conditions Eqs. (3), and (4) in W 1

2 ð�Þ:
We seek a solution of the original inverse problem as

fuðx; tÞ; f ðtÞg ¼ fzðx; tÞ; f ðtÞg þ fyðx; tÞ; 0g; (6)

where y(x, t) is the solution (in QT) of the original problem

yt � Dyþ by ¼ 0; ðx; tÞ 2 QT ; (7)

yðx; 0Þ ¼ ’ðxÞ; x 2 �; (8)

yðx; tÞ ¼ 0; ðx; tÞ 2 @�� ½0; T �; (9)

while the pair {z(x, t), f(t)} is the solution (in QT) of the inverse problem

zt � Dzþ bz ¼ f ðtÞgðx; tÞ; ðx; tÞ 2 QT ; (10)

zðx; 0Þ ¼ 0; x 2 �; (11)

zðx; tÞ ¼ 0; ðx; tÞ 2 @�� ½0; T �; (12)Z
�

vðxÞzðx; tÞdx ¼ EðtÞ; t 2 ½0; T �; (13)

where

EðtÞ ¼ hðtÞ �
Z
�

vðxÞyðx; tÞdx: (14)

Suppose that the functions appearing in the data for the problem are measurable and satisfy the following
conditions:

ðA1Þ g 2 Cðð0; TÞ; L2ð�ÞÞ; v 2 W 1
2 ð�Þ; E 2 W 2

2 ð0; TÞ
ðA2Þ kgðx; tÞk�m; jg�ðtÞjp. 0; p 2 R; ðx; tÞ 2 QT ; ’ðxÞ 2 W 1

2 ð�Þ:
Here m is a given positive constant. The relation between f and z is given by the following linear operator

A:L2ð0; TÞ ! L2ð0; T ; L2ð�ÞÞ; (15)
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with the values

ðAf ÞðtÞ ¼ 1

g�

Z
�

rzrvdx: (16)

In light of this, the previous relation between f and z is shaped in the form of a linear equation of the second
kind for the function f over L2(0, T) :

f ¼ Af þW ; (17)

where

W ¼ E0 þ bE
g�

:

Remark. As {u, f} = {z, f} + {y, 0}, where y is the solution of the direct problem Eqs. (7)–(9). It is clear
that the solution y exists and is unique by the previous section. So instead of studying the main inverse
problem Eqs. (1)–(4), it is enough to study the inverse problem Eqs. (10)–(14).

Theorem 1. Suppose that the input data of the inverse problem Eqs. (10)–(14) satisfies the conditions
(A1) and (A2). Then we have the equivalent between the following assumptions:

i) if the inverse problem Eqs. (10)–(14) has a unique solution, then so is Eq. (17), and
ii) if the Eq. (17) possesses a solution and verify the compatibility conditionE(0) = 0, then there exists

a solution of the inverse problem Eqs. (10)–(14).

Proof. (i) Suppose that the problem Eqs. (10)–(14) is solvable. Let {z, f} be the solution of the inverse
problem Eqs. (10)–(14). Now, multiplying equation Eq. (10) by the function v and integrating over Ω, we
obtain

d

dt

Z
�

zvdxþ
Z
�

rzrvdxþ b
Z
�

zvdx ¼
Z
�

f ðtÞvðxÞgðx; tÞdx: (18)

Using Eqs. (13) and (16), it follows from Eq. (18) that

f ¼ Af þ E0 þ bE
g�

: (19)

This leads that f solves the Eq. (17).

(ii) Now, we suppose that the Eq. (17) has a solution in the space L2(0, T), and so be f. If inserting the function
f in Eq. (10), then resulting relations Eqs. (10)–(13) can be considered as a direct problem with a unique
solution z 2 W 1

2 ðQT Þ.
It remains to show that the function z verifies the condition Eq. (13). Form the using of the Eq. (19),

it yields that

d

dt

Z
�

zvdxþ
Z
�

rzrvdxþ b
Z
�

zvdx ¼ f ðtÞg�ðx; tÞ: (20)

Differently, being a solution to Eq. (17), z satisfies the following relation
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E0 þ bE þ
Z
�

rzrvdx ¼ f ðtÞg�ðx; tÞ: (21)

By subtracting the Eq. (20) from the Eq. (21), we obtain

d

dt

Z
�

zvdxþ b
Z
�

zvdx ¼ E0 þ bE: (22)

Integrating the previous differential equation and taking into account the compatibility condition E(0) =
0 into account, we conclude that z satisfies Eq. (13), and finally, we find that the pair of functions {z, f} is
a solution of the original inverse problem Eqs. (10)–(14). This completes the proof of Theorem 1.

Lemma 1. Suppose that the conditions (A1) and (A2) be fulfilled. Then, for which A is a contracting
operator in L2(0, T).

Proof. Definitely, Eq. (16) gives the estimate

k Af kL2ð0;TÞ�
k

p
ð
Z t

0

krzð:; sÞk2L2ð�ÞdsÞ
1
2; (23)

where

k ¼ krvkL2ð�Þ:
Multiplying the Eq. (10) by the function z and integrating over L2(QT), and using Eq. (11), we obtain the
identity

1

2
kzð:; tÞk2L2ð�Þ þ krzk2L2ðQT Þ þ bkzk2L2ðQT Þ ¼ f ðtÞ

Z
�

gðx; tÞzdx: (24)

Using the Cauchy’s ε-inequality, we obtain

1

2
kzk2Cðð0;TÞ;L2ð�ÞÞ þ krzk2L2ðQT Þ þ bkzk2L2ðQT Þ

� m2

2e

Z t

0

jf ðsÞj2dsþ e
2
kzð:; tÞk2L2ðQT Þ: (25)

Choosing 0 < ε < 2β, we obtain

1

2
kzk2Cðð0;TÞ;L2ð�ÞÞ þ krzk2L2ðQT Þ þ b� e

2

� �
kzk2L2ðQT Þ �

m2

2e

Z t

0

jf ðsÞj2ds: (26)

Omitting the terms on the LHS of Eq. (26), we get

krzk2L2ðQT Þ ¼
Z t

0

krzð:; sÞk2L2ð�Þds �
m2

2e

Z t

0

jf ðsÞj2ds: (27)
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Thus, according to Eqs. (25) and (26), we obtain the estimate:

kAf kL2ð0;TÞ � d
ZT
0

jf ðsÞj2dt; 0�t�T ; (28)

where

d ¼ km

p
ffiffiffiffiffi
2e

p :

So, we obtain

kAf kL2ð0;TÞ � dkf kL2ð0;T ;L2ð0;TÞÞ: (29)

It follows from the foregoing that there exists a positive ε such that

d, 1: (30)

The inequality Eq. (30) shows that the linear operator A is a contracting mapping on L2(0, T). This completes
the proof of Lemma 1. ◼

Theorem 2. Let the conditions (A1), (A2), and the compatibility condition E(0) = 0 be satisfied. Then the
assertions:

i) a solution {z, f} of the inverse problem Eqs. (10)–(14) exists and is unique, and
ii) with any initial iteration f0 ∈ L2(0, T), the successive approximations

fnþ1 ¼ ~Afn (31)

converge to f in the L2(0, T, L2(0, T))-norm (for ~A see below) are valid.

Proof. (ii) We use the following operator

~A:L2ð0; TÞ ! L2ð0; T ; L2ð0; TÞÞ;
defined by

~Af ¼ Af þ E0 þ bE
g�

; (32)

where the operator A and the function g� are arises from Eq. (16). From Eq. (32), it follows that Eq. (17) can
be written as

f ¼ ~Af : (33)

Therefore, it is sufficient to show that operator ~A has a fixed point in the space L2(0, T). By the relations

~Af1 � ~Af2 ¼ Af1 � Af2 ¼ Aðf1 � f2Þ:
We conclude from Eq. (30) that

k~Af1 � ~Af2kL2ð0;TÞ ¼ kAðf1 � f2ÞkL2ð0;TÞ � dkðf1 � f2ÞkL2ð0;T ;L2ð0;TÞÞ: (34)

Also, from Eqs. (30) and (33), we obtain that ~A is a contracting mapping on L2(0, T). Therefore, the operator
~A has a unique fixed point f in L2(0, T), and the successive approximations Eq. (31) converge to f in the under
the norm L2(0, T) independently of f0 ∈ L2(0, T).
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i) This shows that, Eqs. (33) and (17) have a unique solution f in L2(0, T). Hence, according to the
Theorem 1, this validates the existence of solution to the inverse problem Eqs. (10)–(14). Now, it
remains to show the uniqueness of this solution. Using the proof by the contrary, for this we a
ssume that there are two distinct solutions {z1, f1} and {z2, f2} of the main inverse problem.
Firstly, we start by the case f1 ≠ f2 almost everywhere on (0, T). Since, if f1 = f2, then the
theorem of the uniqueness or the direct problem of Eqs. (7)–(9) gives z1 = z2 almost everywhere
in QT. Thus, as both pairs verify Eq. (20), we obtain that the two f1 and f2 functions are
different solutions of Eq. (34), which contradicts the uniqueness of the solution of Eq. (34).
This completes the proof of Theorem 2. ◼

Corollary 1. Let the assumptions of Theorem 2 be fulfilled, and then the solution f depends continuously
with respect to the data W of the Eq. (17).

Proof. SupposeW and Vare two sets of data satisfying the assumptions of Theorem 2. Let f and g be two
solutions of Eq. (17) corresponding to W and V, respectively. According to Eq. (17), we have

f ¼ Af þW ; g ¼ Ag þ V : (35)

First, let us estimate f − g. By using Eq. (29), we get

kf � gkL2ð0;TÞ ¼ kðAf þW Þ � ðAg þ V ÞkL2ð0;TÞ
¼ kAðf � gÞ þ ðW � V ÞkL2ð0;TÞ
�dkf � gkL2ð0;T ;L2ð0;TÞÞ þ kðW � V ÞkL2ð0;TÞ; (36)

so, we obtain

kf � gkL2ð0;T ;L2ð0;TÞÞ�
1

ð1� dÞ kðW � V ÞkL2ð0;TÞ: (37)

This completes the proof of Corollary 1. ◼

4 Numerical Solution of the Direct Problem

The numerical scheme of the one-dimensional (n = 1) initial-boundary value problem Eqs. (1)–(3) can
be established using the Crank-Nicolson FDM, see e.g., [24], which is unconditionally stable and second-
order accurate in space x and time t, when f(t) and g(x, t) are known and the solution u(x, t) is to be
determined together with the quantity of interest θ(t). Set the domain Ω = (0, 1), and QT = (0, 1) × (0, T).
For numerical discretization, a rectangular network is constructed by subdividing the domain QT into M
and N subintervals of equal lengths Δx and Δt, where Δx = 1/M and Δt = T/N, respectively. At the node
(i, j) we denote u(xi, tj) = ui,j, where xi = iΔx, tj = jΔt, f(tj) = fj, and g(xi, tj) = gi,j for i ¼ 0; M and j ¼ 0; N .
Based on the CN-FDM, Eq. (1) can be approximated as:

� Bui�1;jþ1 þ ð1þ CÞui;jþ1 � Buiþ1;jþ1

¼ Bui�1;j þ ð1� CÞui;j þ Buiþ1;j þ Dt

2
ðfjgi;j þ fjþ1gi;jþ1Þ; (38)

for i ¼ 1; ðM � 1Þ; j ¼ 0; N ; where

B ¼ Dt

2ðDxÞ2 ; C ¼ Dt

ðDxÞ2 þ
ðDtÞb
2

:
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The initial and boundary conditions in Eqs. (2) and (3) are discretized as

ui;0 ¼ ’ðxiÞ; i ¼ 0; M ; (39)

uð0; tjÞ ¼ uð1; tjÞ ¼ 0; j ¼ 0; N : (40)

At each time step tj+1, for j ¼ 0; ðN � 1Þ, using the Dirichlet boundary conditions Eq. (40), the difference
Eq. (38) can be reformulated as a (M − 1) × (M − 1) system of linear equations of the form,

Gujþ1 ¼ Huj þ r; (41)

where ujþ1 ¼ ðu1;jþ1; u2;jþ1; . . . ; uM�2;jþ1; uM�1;jþ1Þtr;

G ¼

1þ C �B 0 . . . 0 0 0
�B 1þ C �B . . . 0 0 0
..
. ..

. ..
. . .

. ..
. ..

. ..
.

0 0 0 . . . �B 1þ C �B
0 0 0 . . . 0 �B 1þ C

0
BBBBBB@

1
CCCCCCA
;

H ¼

1� C B 0 ::: 0 0 0
B 1� C B ::: 0 0 0
..
. ..

. ..
. . .

. ..
. ..

. ..
.

0 0 0 ::: B 1� C B
0 0 0 ::: 0 B 1� C

0
BBBBBB@

1
CCCCCCA
; r ¼

Dt
2 fjg1;j þ fjþ1g1;jþ1

� �
Dt
2 fjg2;j þ fjþ1g2;jþ1

� �
..
.

Dt
2 fjgM�2;j þ fjþ1gM�2;jþ1

� �
Dt
2 fjgM�1;j þ fjþ1gM�1;jþ1

� �

0
BBBBBBBBBB@

1
CCCCCCCCCCA
:

The nonlocal integral condition Eq. (4) can be approximated using the trapezoidal rule as:

hðtjÞ ¼ 1

2N
v0u0;j þ 2

XM�1

i¼1

viui;j þ vMuM ;j

 !
; j ¼ 1; N : (42)

5 Numerical Solution of the Inverse Problem

Our aim is to obtain stable and accurate identification for the heat source f(t) along with the temperature u
(x, t) satisfing Eqs. (1)–(4). The inverse problem is formulated as minimizing the regularized nonlinear
Tikhonov function

J ðf Þ ¼
����
Z
�

vðxÞuðx; tÞdx� hðtÞ
����
2

þ �kf ðtÞk2; (43)

where u solves numerically using the Crank-Nicolson FDM [24] the forward problem Eqs. (1)–(3) for given
f(t), and λ ≥ 0 is regularization parameter which is initiated for stabilizing the numerical results. In discrete
form, Eq. (43) becomes
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J ðf Þ ¼
XN
j¼1

�Z
�

vðxÞuðx; tjÞdx� hðtjÞ
	2

þ �
XN
j¼1

f 2j : (44)

The unregularized case, i.e., λ = 0, yields the ordinary nonlinear least-squares method which is usually
producing unstable solutions when noisy data are inverted. The minimization of the objective function (44) is
carried out utilizing the MATLAB subroutine lsqnonlin [25]. This iterative routine attempts to solve a
nonlinear least-squares minimization problem, starting from an initial guess, subject to constraints, and
this generally is referred to as a constrained nonlinear optimization. We use the Trust-Region-Reflective
(TRR) optimization algorithm from lsqnonlin based on the interior-reflective Newton method, and some
details about how this is implemented for the minimization of a least-squares functional Eq. (44) has
recently been given in [26].

The noisy data is numerically simulated as

heðtjÞ ¼ hðtjÞ þ ej; j ¼ 0; 1; . . . ; N ; (45)

where εj are random variables generated from a Gaussian normal distribution with mean zero and standard
deviation σ given by

r ¼ p� max
t2½0;T �

jhðtÞj; (46)

where p denotes the percentage of noise.

6 Numerical Results and Discussion

In this section, the numerical methods for reconstructing the time-dependent source term f(t) alonge with
the temperature u(x, t) are illustrated, and two numerical experiments based on the FDM with the Crank-
Nicolson established in the previous section are shown. We measure the accuracy by rmse [27–29]:

rmseðf Þ ¼
�
T

N

XN
j¼1

ðf numericalðtjÞ � f exactðtjÞÞ2
	1=2

: (47)

We take T = 1, for simplicity. The lower and upper bounds for the heat source f(t) are taken as − 102 and 102,
respectively.

6.1 Example 1

First, we consider the inverse problem Eqs. (1)–(4) with a smooth unknown heat source term f(t), with
the following input data:

’ðxÞ ¼ uðx; 0Þ ¼ sinðpxÞ; uð0; tÞ ¼ uð1; tÞ ¼ 0;

gðx; tÞ ¼ e�tp2sinðpxÞ
�1� t

; vðxÞ ¼ 1; b ¼ 1; (48)

hðtÞ ¼
Z
�

vðxÞuðx; tÞdx ¼ 2

p
e�t; (49)
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where Ω is a bounded domain in [0, 1]. The exact solution to this inverse problem is given by

uðx; tÞ ¼ e�tsinðpxÞ; (50)

and

f ðtÞ ¼ �1� t; t 2 ½0; 1�: (51)

The initial guess for the vector f is taken as follows:

f 0ðtjÞ ¼ f ð0Þ ¼ �1; j ¼ 1; N : (52)

First of all, let us solve the direct problem Eqs. (1)–(3) with the input data Eq. (48) with various mesh sizes
M =N ∈ {10, 20, 40}, when f(t) is known and given by Eq. (51). Fig. 1 shows that the exact Eq. (49) and
numerical solutions for θ(t), obtained are in very good agreement. The analytical Eq. (50) and numerical
solutions for u(x, t) together with absolute error norms are depicted in Fig. 2. It is clear from Figs. 1
and 2 that the accuracy of the approximate solution increases, as the mesh sizes decreases.

Next, let us fix Δx = Δt = 0.025 and start the investigation of determining the coefficient f(t), where there
is no noise, i.e., p = 0, in the measured data θ(t), as in Eq. (46). The objective function J, as a function of the
number of iterations, is depicted in Fig. 3a. From this figure it can be seen that a fast convergence is achieved
in 4 iterations to reach a very low value of O(10−30). Fig. 3b illustrates the numerical solutions for the heat
source f(t). From Fig. 3b it can be seen that there is an excellent agreement between the exact Eq. (51) and
numerical solutions with rmse(f) =5.4E − 5.

Figure 1: The exact Eq. (49) and numerical solutions for θ(t), with various mesh sizes M =N ∈ {5, 10, 20,
40}, for direct problem
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Figure 2: The exact Eq. (50) and numerical temperature u(x, t), for direct problem with vaiuous grid sizes
for: (a) M =N = 5, (b) M =N = 10, (c) M =N = 20 and (d) M =N = 40. The absolute errors between them are
also included
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Now, the stability of the approximate solution is examined with respect to the perturbed (noisy
measured) data Eq. (45). We include various noise levels p ∈ {1%, 3%} to the input data Eq. (48). Figs. 4
and 5 show the reconstruction of the estimated f(t). The heat source f(t) is depicted in Figs. 4a and 5a,
where the unstable and inaccurate results are obtained, if no regularization, i.e., λ = 0, is imposed with
rmse(f) = 0.7134 for p = 1%, and ..)=2.1384 for p ¼ 3 noise. Therefore, regularization is needed in order
to achieve a stable and accurate solution. From all regularization parameters that were selected, we
deduce that λ = 10−6 to 10−4 and λ = 10−5 to 10−3, (see Figs. 4b and 5b), give a stable and reasonable
approximate solutions for the time-depndent heat source coefficient f(t), achieving rmse(f) ∈ {0.0580,
0.0283, 0.0377} for p = 1%, and rmse(f) ∈ {0.0801, 0.0653, 0.1131} for p = 3%, respectively.
Furthermore, from Figs. 3b, 4 and 5, it can be seen that as the percentage of noise p decreases from 3%
to 1% and then to zero the numerically obtained results becomes more stable and accurate. The absolute
errors between exact Eq. (50) and numerical solutions for u(x, t), without and with regularization
parameters, are demonstrated in Fig. 6, where the effect of λ > 0 in decreasing the unstable behaviour of
the recovered temperature can be observed.

6.2 Example 2

In the previous example we have inverted a smooth coefficient given by Eq. (51). In this example, we
consider the recovery of a non-smooth (discontinuous) function for the heat source f(t) for the inverse
problem given by Eqs. (1)–(4) with the following input data:

f ðtÞ ¼
2; 0 � t, 0:25;
4; 0:25 � t, 0:5;
2þ 2sinð8ptÞ; 0:5 � t � 1:

8<
: (53)

We also have the same analytical solution for the temperature u(x, t) given by Eq. (51). The rest of the input
data are the same as in Example 1, and

Figure 3: (a) The objective function J Eq. (44), as a function of the number of iterations, and (b) the exact
Eq. (51) and numerical solutions for the heat source f(t), with no noise and no regularization, for Example 1
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Figure 5: The exact Eq. (51) and numerical solutions for the heat source f(t), with p = 3% noise and with and
without regularization, for Example 1

Figure 4: The exact Eq. (51) and numerical solutions for the heat source f(t), with p = 1% noise and with and
without regularization, for Example 1
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gðx; tÞ ¼ e�tp2sinðpxÞ
2; 0 � t, 0:25;
4; 0:25 � t, 0:5;
2þ 2sinð8ptÞ; 0:5 � t � 1

8<
:

0
@

1
A

�1

: (54)

The initial guess for the vector f for this example has been taken as

f 0ðtjÞ ¼ f ð0Þ ¼ 2; j ¼ 1; N : (55)

We investigate the inverse problem as we did in Example 1. We take and determining the unknown force
coefficient f(t) along with the temperature u(x, t) for exact measured input data Eq. (45), i.e., p = 0, in
Eq. (46). Although not illustrated, it is reported that a rapid monotonic decreasing convergence of the
objective function Eq. (44) to a very small minimum value of O(10−30) is achieved in about 6 iterations.
The exact Eq. (53) and numerical results for f(t) are depicted in Fig. 7. From this figure, it can be seen
that the recovered coefficient is in very good agreement with their corresponding analytical solutions with
rmse(f)= 6.2E − 4.

Figure 6: The absolute errors between the exact Eq. (50) and numerical temperature u(x, t), for Example
1 with p = 3% noise: (a) λ = 0, (b) λ = 10−5, (c) λ = 10−4, and (d) λ = 10−3
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In order to investigate the stability of the solution we add p ∈ {0.5%, 1%} noise to the input data Eq. (4),
as in Eq. (46). We have also investigated higher amounts of noise p in Eq. (46), but the results obtained were
less accurate and therefore, they are not presented. The corresponding numerical results for the unknown
coefficient are presented in Figs. 8 and 9. From Figs. 8a and 9a it can be seen that unstable results are
obtained for f(t) (compare with the results for exact data in Fig. 7) with rmse(f) = 0.5625 and 1.1192,
respectively. This is expected since the problem under investigation is ill-posed and very sensitive to
noise. Consequently, regularization should be applied to restore the stability of the solution in the
component f(t). We selected the regularization parameter λ ∈ {10−8, 10−7} for p = 0.5% noise (see
Fig. 8b), and λ ∈ {10−7, 10−6} for p = 1% noise (see Fig. 9b), which give stable and reasonablly accurate
solutions for the heat source coefficient f(t), obtaining rmse(f) ∈ {0.2070, 0.1899} and rmse(f) ∈ {0.2203,
0.3648}. One of the main difficulties when we solve inverse and ill-posed problems is how to choose an
appropriate regularization parameter λ which must compromise between accuracy and stability.
Nevertheless, one can use techniques such as the L-curve method [30] or, Morozov’s discrepancy
principle [31] to find such a parameter, but in our work we have used trial and error. As mentioned in
[32], the regularization parameter λ is selected based on experience by first choosing a small value and
gradually increasing it until any numerical oscillations in the unknown coefficient are removed. Overall,
the numerical results obtained by using the methods established in this paper, i.e., the FDM with a Crank-
Nicolson combined with the minimization of the nonlinear Tikhonov regularization functional using the
MATLAB optimization toolbox routine lsqnonlin illustrate that accurate and stable solutions can be
obtained for reconstructing the time-dependent coefficient f(t) in parabolic PDE.

Figure 7: The exact Eq. (53) and numerical solutions for the heat source f(t), with no noise and no
regularization, for Example 2
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7 Conclusions

In this paper, the inverse problem involving the determination of the time-dependent component and the
temperature in the parabolic heat Eq. (1) from the nonlocal integral over-specification condition (4) has been
investigated theoretically as well as numerically. Sufficient conditions which ensure the unique solvability of
a local solution are provided and proved. The direct solver based on the Crank-Nicolson FDM has been

Figure 9: The exact Eq. (53) and numerical solutions for the heat source f(t), with p = 1% noise and with and
without regularization, for Example 2.

Figure 8: The exact Eq. (53) and numerical solutions for the heat source f(t), with p = 0.5% noise and with
and without regularization, for Example 2

1124 CSSE, 2022, vol.40, no.3



employed. The inverse problem solution based on a nonlinear least-squares minimization problem has been
solved using the MATLAB optimisation toolbox routine lsqnonlin. The Tikhonov regularization has been
applied in order to obtain stable and accurate solutions since the inverse problem is ill-posed (small errors
in the nonlocal integral input data cause large errors in the output force) and sensitive to noise. Two
numerical examples for one-dimensional inverse problem have been illustrated for continuous and
discontinuous heat source coefficient. Numerical results presented and discussed for both exact and noisy
data show that accurate and stable solutions have been obtained. Finally, the generalization of the
proposed numerical method for determining the time-dependent coefficient in a two-dimensional
parabolic equation is an interesting topic for future research.
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