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Abstract: This paper proposes anoptimal fuzzy-based model for obtaining crisp
priorities for Fuzzy-AHP comparison matrices. Crisp judgments cannot be given
for real-life situations, as most of these include some level of fuzziness and com-
plexity. In these situations, judgments are represented by the set of fuzzy numbers.
Most of the fuzzy optimization models derive crisp priorities for judgments repre-
sented with Triangular Fuzzy Numbers (TFNs) only. They do not work for other
types of Triangular Shaped Fuzzy Numbers (TSFNs) and Trapezoidal Fuzzy
Numbers (TrFNs). To overcome this problem, a sum of squared error (SSE) based
optimization model is proposed. Unlike some other methods, the proposed model
derives crisp weights from all of the above-mentioned fuzzy judgments. A fuzzy
number is simulated using the Monte Carlo method. A threshold-based constraint
is also applied to minimize the deviation from the initial judgments. Genetic
Algorithm (GA) is used to solve the optimization model. We have also conducted
casestudiesto show the proposed approach’s advantages over the existingmethods.
Results show that the proposed model outperforms other models to minimize SSE
and deviation from initial judgments. Thus, the proposed model can be applied in
various real time scenarios as it can reduce the SSE value upto 29% compared to
the existing studies.

Keywords: Analytic hierarchy process; comparison matrices; priority vectors;
fuzzy judgments; triangular fuzzy numbers; triangular-shaped fuzzy numbers;
trapezoidal fuzzy numbers

1 Introduction

Multi-Criteria decision-making (MCDM) methods are used to solve complex decision-making systems.
Rao [1] has listed many decision-making methods like AHP [2–3] ELECTRE [4], TOPSIS [5],
PROMETHEE [6] and GRA [7] etc. AHP is the most popular method among these MCDM methods.
Triantaphyllou and Lin [8] discussed advantages of AHP in many real-life selection problems. AHP had
been integrated with other theories and practices by researchers to solve many decision-making problems
in MCDM scenarios [9–10]. Zhang et al. [11] proposed a method for prioritization using additive and
multiplicative relative deviation interconnection in pairwise comparison matrices. Aguarona et al. [12]
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proposed a novel method for improving the inconsistency of the GCI of AHP by a reevaluation of judgments.
Olabanji et al. [13] proposed MADM method to choose the best design for the Reconfigurable Assembly
Fixture (RAF) from the set of choices. They considered the better of two techniques Fuzzy AHP and
Fuzzy Weighted Average for choosing among various designs. Gundogdu et al. [14] proposed a fuzzy
spherical AHP method to select renewable energy sites. Guler et al. [15] proposed a novel method based
on Fuzzy AHP and Geographic Information System to select stations for electric vehicle charging. Sarkar
et al. [16] presented a hybrid technique consisting of Fuzzy AHP and TOPSIS to solve transport
management’s decision-making issues. They have used Pythagorean fuzzy sets to overcome the limitation
of existing distance measuring techniques. Crisp judgments cannot be given in many real-life scenarios as
most of these include some level of fuzziness and complexity. In such situations, judgments are given in
fuzzy numbers [17–19]. Derivation of crisp weights from the fuzzy numbers is a difficult task [20].
Triangular fuzzy weights have been obtained from the fuzzy triangular matrix by the logarithmic least
squares method (LLSM) [21]. Buckley [22] derived fuzzy weights from trapezoidal fuzzy numbers.
Boender et al. [23] proposed a technique on normalizing the local priorities and showed that this
normalizing technique in LLSM might result in irrational weights. Generalized pseudo-inverse method
has been applied by Kwiesielewicz [24] to obtain a consistent and geometrically normalized solution. All
of the models mentioned above derive fuzzy weights. Therefore, they also require additional aggregation
and ranking processes. Extent analysis method [25] removes these requirements and derives crisp
priorities for the fuzzy comparison matrices. Wang et al. [26] have found that this method does not
estimate true weights and assigns irrational zero weights to useful attributes in some scenarios. Interval
priorities weights are derived from fuzzy comparison matrices by some methods [27–34]. But these
methods also require additional fuzzy ranking procedures.

Mikhailov [35] has derived crisp weights using a linear fuzzy prioritization programming method using
a series of interval judgments. This method removes the requirement of the ranking process but still requires
the aggregation process. Therefore, Mikhailov [35] also proposed a non-linear fuzzy prioritization (fuzzy
optimization) method to remove the aggregation process. Wang et al. [36] proposed a new optimization
model for fuzzy judgments. The objective function’s degree was varied from 2 to 10. Javanbarget al. [37]
have solved three examples with the same objective function of degree [2]. Goyal et al. [38] proposed a
constraint for this objective function to improve its consistency. New methods presented by Goyal et al.
in [39] and Goyal et al. [40] also derive more consistent weights than the fuzzy optimization model
shown in Javanbarg et al. [37].

All these fuzzy optimization models derive crisp weights for Triangular Fuzzy Numbers (TFNs) only in
the literature presented above. Mohtashami [41] proposed a Modified Fuzzy Logarithmic Least Square
Model (MFLLSM) to derive priorities from TFNs, Triangular Shaped Fuzzy Numbers (TSFNs), and
Trapezoidal Fuzzy Numbers (TrFNs). Evaluation of trapezoidal fuzzy numbers on AHP based solution of
multi-objective programming problems for group decision making is given by AkbasandDalkilic [42].

After introducing some preliminary concepts for the fuzzy judgments in comparison pairwise matrices in
Section 2, the following contributions are claimed:

• A novel Sum of Squared Error (SSE) based fuzzy optimization model is proposed. The simulation of
the fuzzy number using Monte Carlo’s method and the threshold-based constraint is also presented.

• Further empirical analysis has been conducted based on eight case studiesto compare the proposed
SSE-based model with existing models. It has been proved that the proposed model performs better than
the existing Mohtashami’s model [41].

To the best of the author’s knowledge, no other fuzzy optimization model has been proposed till now to
derive crisp weights for these types of fuzzy judgments that can surpass the work done by Mohtashami [41].
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2 Materials and Methods

In this section, we have discussed how the various fuzzy judgments can be represented.

2.1 Fuzzy Judgments

For modeling many real-time applications, a decision-maker cannot always give crisp judgments. In
these situations, judgments are illustrated by fuzzy numbers [43]. Fuzzy judgments can be of the
following forms:

• Triangular Fuzzy Number (TFN): ATFN is represented as (l,m,u) where l, m, and u denote the lowest
value, the most promising value uppermost possible value, respectively. Membership function of a TFN is
represented in Eq. (1) [44].

l~NðxÞ ¼

x� l

m� l
; l � x � m

u� x

u� m
; m � x � u

0; otherwise

8>>>><
>>>>:

(1)

• Triangular Shaped Fuzzy Numbers (TSFNs): These fuzzy numbers are represented similarly to TFN
except the member function does not increase or decrease linearly. A TSFN is defined as shown in Eq. (2).
If the values of δ and χ are equal to one, then this membership function becomes the function of TFN. Fig. 1.
1 depicts the asymmetric membership function for TSFN with δ=3 and χ=5. From Fig. 1, it can be visible that
there is more intent of the decision-maker towards l rather than u. If the values of χ and δ are equal, then the
shape of the membership function is symmetric with the decision-maker’s equal intent towards both l and u.

l~NðxÞ ¼

x� l

m� l

� �d

; l � x � m

u� x

u� m

� �v
; m � x � u

0; otherwise

8>>>>><
>>>>>:

(2)

• Trapezoidal Fuzzy Number: In this type of membership function, there are two midpoints between the
lower and upper limits and are represented as (l, m1, m2, u). The membership function for the trapezoidal
fuzzy numbers (TrFNs) is shown in Eq. (3). Fig. 2. shows the graphical representation of TrFN.

l~NðxÞ ¼

x� l

m1� l
; l � x � m1

u� x

u� m2
; m2 � x � u

1; m1 � x � m2

0; otherwise

8>>>>>>><
>>>>>>>:

(3)

• Trapezoidal Shaped Fuzzy Number (TrSFN): This type of fuzzy number is similar to TrFN except that
the membership function does not increase or decrease linearly. The TrSFNmembership function is shown in
Eq. (4). If the values of δ and χ are equal to one, then this membership function becomes the function of
TrFN.
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l~NðxÞ ¼

x� l

m1� l

� �d

; l � x � m1

u� x

u� m2

� �v
; m2 � x � u

1; m1 � x � m2

0; otherwise

8>>>>>>>><
>>>>>>>>:

(4)

The main challenge is to devise a model that can derive crisp priorities from all these types of fuzzy
judgments. In the next section, the proposed fuzzy optimization model for obtaining crisp priorities is
presented.

2.2 Proposed Work

This section presents a novel fuzzy prioritization method for deriving crisp priorities from fuzzy pairwise
comparison matrices. Here, the proposed SSE-based fuzzy optimization model is discussed and the
constraint applied to the fuzzy optimization model for minimum deviation from initial judgmentsis also
presented. Further, the fuzzy number simulation method is elaborated, and the overall working of the
proposed work has been discussed.

Figure 1: Triangular shaped Fuzzy Number with δ<χ

Figure 2: Trapezoidal Fuzzy Number
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2.2.1 Fuzzy Optimization Model
In this paper, a new Sum of Squared Error (SSE) based fuzzy optimization model is presented as a

nonlinear system. Crisp weights (w1, w2, …, wn) of n criteria are derived from fuzzy judgments (~aij) in
the comparison matrices as follows:

min J ðw1; w2; . . . ; wnÞ ¼ min
Xn
i¼1

Xn
j¼1

~aij � wi

wj

� �� �2

ð i 6¼ jÞ (5)

subject to
Pn
k¼1

wk ¼ 1; k ¼ 1; 2 . . . ; n: where wi and wj> 0

The weight ratio (wi/wj) must satisfy the following inequality:

lij ~�wi=wj ~�uij (6)

lij and uij represent the lower and upper limits of fuzzy judgments. The symbol ~� represents the fuzzy
inequalities. For a consistent comparison matrix, solutions satisfying lij ≤wi/wj ≤ uij can be found. But for
inconsistent matrices, there will be no solution to satisfying this inequality simultaneously. Therefore, the
fuzzy inequality lij ~�wi=wj ~�uij is applied to find the crisp priorities that satisfy the inequality as well as it
can. To find the weight ratios wi/wj that deviate minimum for this inequality, a constraint is proposed. ~aij
represents the fuzzy judgments in the form of TFNs, TSFNs, TrFNs, and TrSFNs. In the case of TFN and
TrFN, the value of ~aij assumed as the center of the fuzzy number. In other cases, the value of ~aij
represents the objective function obtained by Monte Carlo simulation.

2.2.2 Monte Carlo’s Method for Fuzzy Number Simulating
The value of ~aij is obtained, as shown in Algorithm 1. This algorithm is a modified version of the Monte

Carlo method for fuzzy number simulation presented by Mohtashami [41]. Monte Carlo simulation is used to
generate the fuzzy number based on algorithm 1.

Algorithm 1: Modified Monte Carlo Simulation

Step 1:Divide the fuzzy number into n+1 numbers from l to u as follows with distanced: l, l + d, l + 2d, l
+ 3d, …, l + (n − 1) d, u

Step 2: Calculate the membership degree of each number as μN(l), μN(l + d), μN(l + 2d),…, μN(l + (n − 1)
d), μN(u).

Step 3: Normalize the membership function values (N(l), N(l + d), N(l + 2d), …, N(l + (n − 1) d), N(u)) as
following

v1 ¼
lN ðlÞ
N

; v2 ¼
lN ðl þ dÞ

N
; v3 ¼

lN ðl þ 2dÞ
N

; . . . ; vn ¼
lN ðl þ ðn� 1ÞdÞ

N
; vnþ1 ¼

lN ðuÞ
N

where N ¼
Xu
i¼l

lN ðiÞ

Step 4: Classify the successive values of χi as

�1 ¼ v1 þ v2; �2 ¼ v2 þ v3; . . . ; �n ¼ vn þ vnþ1

Step 5: Generate a random number r ∈ (0, 1)

if ðr, ¼ �1Þ
(continued)
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The fuzzy number = l

if ðr.�1Þ && if ðr, ¼ �2Þ
The fuzzy number = l + d

if ðr.�2Þ && if ðr �¼ �3Þ
The fuzzy number = l + 2d

..

.

if ðr.�n�1Þ && if ðr, ¼ �nÞ
The fuzzy number = l + (n − 1) d

if ðr. nÞ
The fuzzy number = u

Step 6: Repeat Step 5 for large number of times to simulate fuzzy number.

Step 7: Calculate the average of these simulated fuzzy numbers in order to simulate the fuzzy number ~aij.

To check the effectiveness of this proposed Model, graphs for different types of fuzzy numbers have
been drawn considering the frequency (count) of the simulated fuzzy number. If the values of δ and χ are
equal to one, then it is a TFN otherwise, the number is TSFN. The values of (l,m,u) are taken as (1,2,3).
Similarly, this method can be extended to Trapezoidal Fuzzy Numbers (TrFN). Fig. 3. shows the shape
obtained for a TrFN with values (1, 1.5, 2.5, 3), which is similar to the actual shape.

lij � wi=wj � uij (7)

The point to be noted here is that this inequality is � not ~� as mentioned in Eq. (6). But, for inconsistent
pairwise matrices, no set of priority vectors can simultaneously satisfy this inequality. Therefore, fuzzy
inequality is used in Eq. (6) to allow some deviation. To achieve minimum violation from the Eq. (7), the
constraint shown in Eq. (8) is applied.

Figure 3: Simulation of trapezoidal number based on algorithm 1

Algorithm 1: (continued)
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2.2.3 Violation from Initial Judgments
Each priority vector (crisp weight) should satisfy the constraint defined in Eq. (6). The proposed

algorithm first tries to obtain the crisp weights by satisfying the following inequality

lij � a � wi

wj
� uij þ a (8)

α represents the threshold value of the allowed deviation for the optimization problem. If the solution is
feasible, then the crisp weights are derived. Otherwise, the optimization process is repeated and α is
increased with a small value of 0.1. After obtaining the feasible crisp weights (w�

1, w�
2; . . . ; w�

nÞ
deviation from initial judgments (ε) can be calculated as follows:

e ¼ max
w�
i

w�
j
� lij; uij � w�

i

w�
j

 !
where i; j ¼ 1; 2; 3 . . . ; n: (9)

Thus, the crisp weights deviate with ε from the initial judgments far less than the existing models shown
in Section 4.

2.2.4 Working of the Proposed Model
The working of the proposed model is shown in Fig. 4. Firstly, the fuzzy number is simulated, as

mentioned in above mentioned algorithm.

Figure 4: Working of the proposed technique
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Then, the crisp weights are derived using the fuzzy optimization model, as shown in Eq. (5). To check
the deviation from initial weights, a threshold-based constraint shown in Eq. (8) is applied. The value of α is
set to zero initially and is increased by 0.1 until feasible weights are obtained. Genetic Algorithm (GA)
[45,46] is used to solve this optimization problem with both population size and number of iterations
equal to 300 and 350 respectively. Rank scaling is used as a fitness scaling function, and Uniform
Stochastic Sampling is used to select parents. The heuristic operator is applied for crossover operation
while adaptive feasible mutation is applied for the mutation process. We have solved this objective
function by GA method with significantly large population size of 300 and 350 iterations for each
example in Matlab. Any optimization algorithm can be used to solve this optimization problem. The time
complexity is increased in case of finding crisp weights only. Obtaining the crisp weights is a one-time
process only. So, it will have no impact on the selection process. So, the proposed model can be easily
applied in real world problems.

3 Case Studies and Result Analysis

To evaluate the proposed model, eight case studies are solved. As discussed earlier, among the fuzzy
optimization models, only Mohtashami’s model [41] derive crisp weights for all the TFNs, TSFNs and
TrFNs.

Case-1:

In this example, a perfectly consistent comparison pairwise matrix with only two elements is
considered. In comparison to the second element, the first element is more important and is represented
by a TFN ~a12 = (1,2,3). Crisp weights obtained by different methods are shown in Tab. 1. Results show
that the difference between crisp weights obtained by the proposed fuzzy optimization model and
the existing models is inconsiderable. Therefore, results obtained by the proposed model are acceptable
for this consistent matrix.

Case-2:

Consider the comparison matrix of three elements represented by TFNs as ~a13 = (4, 5, 6), ~a21 = (2, 3, 4)
and ~a23 = (6, 7, 8). For this, the value of SSE is more as compared to Mohtashami’s [41] model as shown in
Tab. 2. But the value of ε is not zero with Motashami’s model. The value of SSE is more with the proposed
model as it minimizes the SSE by constraining the deviation (ε) from the judgments. Therefore, the value of ε
is zero with the proposed model. The proposed derives similar priority vectors (crisp weights) as of Non-
Linear FPP model. Linear FPP performs poorly in terms of SSE and ε. For illustration purpose, the
weights are also derived with α (threshold value) = 0.1. The results of the proposed model are better than
Mohtashami’s model. Therefore, the proposed model outperforms all the other models for this example.

Table 1: Crisp weights, deviation from initial judgments (ε) and SSE values for case 1

Non-Linear FPP [35] Linear FPP [35] Mohtashami [41] Proposed model

w1 0.6666 0.6666 0.6664 0.6667

w2 0.3333 0.3333 0.3336 0.3333

ε 0 0 0 0

SSE 0 0 0.0002 0
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Case-3:

In this example, judgments of the comparison matrices of four elements are given as ~a12 = (7, 8, 9), ~a13 =
(3, 4, 5), ~a14 = (6, 7, 8), as ~a32 = (4, 5, 6), ~a34 = (7, 8, 9) and ~a42 = (3, 4, 5). Tab. 3. depicts the values of SSE
and ε. Results show the superiority of the proposed model over all the other models. The value of SSE in
Mohtashami model is more than the Linear FPP model. But with the proposed model, lesser values of
SSE and ε are obtained as compared to all the considered models.

In all the above examples, triangular fuzzy numbers are used. But, the proposed optimization model can
work for trapezoidal numbers as well. The followingcases demonstrate the usefulness of the proposed model
by taking the judgments in the comparison matrices in the form of TrFNs. As discussed earlier, only
Mohtashami’s model [35] can derive crisp weights from the TrFN and TSFN judgments out of all the
fuzzy optimisation models. Therefore, only Linear FPP and Mohtashami’s models are considered
compared to the proposed fuzzy optimization model.

Case-4:

Consider the comparison matrix of four elements where the judgments are represented in the form of
TrFNs as ~a12 = (4, 9/2, 11/2, 6), ~a14 = (7, 15/2, 17/2, 9), ~a31 = (3, 7/2, 9/2, 5), ~a32 = (7, 15/2, 17/2, 9),
~a34 = (6, 13/2, 15/2, 8) and ~a42 = (3, 7/2, 9/2, 5). Results show that the proposed model derives crisp
weights with lesser values of SSE and ε as compared to Linear FPP and Mohtashami’s model as shown
in Tab. 4.

Table 2: Crisp weights, deviation from initial judgments (ε) and SSE values for case 2

Non-Linear FPP [35] Linear FPP [35] Mohtashami [41] Proposed model

w1 0.3076 0.2738 0.3104 0.3077 0.3103

w2 0.6153 0.6492 0.6117 0.6154 0.6115

w3 0.0769 0.0769 0.0777 0.0769 0.0782

ε 0 0.031 0.036 0 0.0293

SSE 3.0313 4.5624 2.8610 3.0306 2.8328

Table 3: Crisp weights, deviation from initial judgments (ε) and SSE values for case 3

Non-Linear FPP [35] Linear FPP [35] Mohtashami [41] Proposed model

w1 0.5583 0.6397 0.5262 0.4918

w2 0.0519 0.0805 0.0487 0.0584

w3 0.3311 0.2221 0.3568 0.3806

w4 0.0585 0.0574 0.0680 0.0701

ε 1.8728 3.1307 1.8049 1.7997

SSE 32.2888 52.7075 34.97 24.8729
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Case-5:

To demonstrate the superiority of the proposed fuzzy optimization model over the other models, another
example where judgments are represented in the form of TrFNs is considered. Suppose the judgments of the
comparison matrix are as ~a12 = (2, 5/2, 7/2, 4), ~a13 = (5, 11/2, 13/2, 7), ~a14 = (6, 13/2, 15/2, 8), ~a32 = (6, 13/2,
15/2, 8), ~a34 = (7, 15/2, 17/2, 9) and ~a42 = (3, 7/2, 9/2, 5). Tab. 5. depicts the values of crisp weights, SSE
and ε. Tab. 5 depicts the values of crisp weights, SSE and ε. The proposed model shows its superiority to the
other models in terms of ε and SSE values. Therefore, these two examples demonstrate that the proposed
model performs better than the other models for judgments represented in the form of TrFNs.

Till now the fuzzy judgments considered in this manuscript are symmetric like TFNs and TrFNs. But in
some situations, a decision-maker makes the judgments of asymmetric nature like TSFNs and TrSFNs. If the
values of δ and χ are equal to one, then it demonstrates TFN otherwise it will act as TSFN.

Case-6:

Consider a comparison matrix of four elements in which judgments are represented by ~a12 = (3, 4, 5),
~a14 = ð7; 8; 9Þ d ¼ 3; v ¼ 3 as TSFN; ~a31 = (4, 5, 6) as TFN; ~a32 = ð7; 8; 9Þ d ¼ 3; v ¼ 1=3 as TSFN,
~a34 = (3, 4, 5) as TFN and ~a42 = (1, 2, 3) δ = 1/3, v = 3 as TSFN. Tab. 6 depicts the values of crisp
weights, SSE and ε. The value of SSE with the proposed model is 36.4661 as compared to 37.5998 in
Mohtashami’s model. Values of SSE and ε in Linear FPP are very high. Results show that the proposed
model outperforms all these models as depicted in Tab. 6.

Table 4: Crisp weights, deviation from initial judgments (ε) and SSE values for case 4

Linear FPP [35] Mohtashami [41] Proposed model

w1 0.2423 0.3249 0.3677

w2 0.0721 0.511 0.0487

w3 0.6274 0.5589 0.5147

w4 0.0579 0.0649 0.0681

ε 2.84 1.99 1.6

SSE 45.614 35.080 34.2698

Table 5: Crisp weights, deviation from initial judgments (ε) and SSE values for case 5

Linear FPP [35] Mohtashami [41] Proposed model

w1 0.6544 0.5555 0.5594

w2 0.0843 0.0784 0.0932

w3 0.1875 0.2923 0.2797

w4 0.0728 0.0738 0.0667

ε 4.4245 3.09 3.0

SSE 96.1872 71.0065 69.7089

166 CSSE, 2022, vol.41, no.1



Case-7:

To show the proposed model’s effectiveness, another example of comparison matrix with four elements
is considered. Judgments are represented as by ~a12 = ð3; 4; 5Þ d ¼ 1=3; v ¼ 3 as TSFN, ~a31 = (5, 6, 7) as
TFN; ~a32 = ð7; 8; 9Þ d ¼ 3; v ¼ 1=3 as TSFN; ~a34 = ð3; 4; 5Þ d ¼ 3; v ¼ 3 as TSFN, ~a41 = (7, 8, 9) as
TFN and ~a42 = ð4; 5; 6Þ d ¼ 1=3; v ¼ 3 as TSFN. Linear FPP model performs poorly as shown
in Tab. 7. The values of SSE and ε with the Mohtashami’s model are 39.4676 and 1.9846, respectively.
These values are comparatively more than the proposed model’s value of 37.4647 and 1.6, respectively.
Thus, the proposed model outperforms all the other considered models.

Case-8:

In the last example, consider the comparison matrix of four elements as ~a13 = ð3; 4; 5Þ d ¼ 1=3; v ¼ 3
as TSFN, ~a14 = ð3; 4; 5Þ d ¼ 1=3; v ¼ 3 as TSFN; ~a21 = ð5; 6; 7Þ d ¼ 3; v ¼ 3 as TSFN; ~a23 =
ð1; 2; 3Þ d ¼ 1=3; v ¼ 3 as TSFN, ~a24 = (3, 4, 5) as TFN and ~a43 = ð7; 8; 9Þ d ¼ 1=3; v ¼ 3 as TSFN.
Tab. 8. depicts the values of SSE and ε of different models for deriving crisp weights. In this case, the
SSE value for the proposed model is more as compared to Mohtashami’s model. But the value of ε is
lesser with the proposed model. Similarly, when the value of threshold limit (α) is increased, the values
of SSE and ε are lesser with the proposed model is compared to Mohtashami’s model. Thus the proposed
model is superior to the other models for this example also. In all the eightexamples the proposed model
performs better than the other models. Therefore, crisp weights can be derived from different types of
fuzzy judgments. This model can be applied in various real-life applications like operation research,

Table 6: Crisp weights, deviation from initial judgments (ε) and SSE values for case 6

Linear FPP [35] Mohtashami [41] Proposed model

w1 0.2002 0.3341 0.3302

w2 0.1194 0.0612 0.0690

w3 0.6135 0.5315 0.5283

w4 0.0669 0.0732 0.0718

ε 4.1704 2.4358 2.4001

SSE 73.1194 37.5998 36.4661

Table 7: Crisp weights, deviation from initial judgments (ε) and SSE values for case 7

Linear FPP [35] Mohtashami [41] Proposed model

w1 0.0608 0.0652 0.0681

w2 0.0883 0.0514 0.0487

w3 0.6263 0.5565 0.5152

w4 0.2246 0.3269 0.3680

ε 3.4 1.9846 1.6

SSE 57.3787 39.4676 37.4647
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material selection, and handover in wireless networks, cloud computing, and other managerial and
engineering problems.

4 Conclusion

This paper presents a novel Sum of Squared Error (SSE) based fuzzy optimization model to derive crisp
weights for fuzzy pairwise comparison matrices. The proposed optimization model can derive priorities for
Triangular Fuzzy Numbers (TFNs), Trapezoidal Fuzzy Numbers (TrFNs), Triangular Shaped Fuzzy
(TSFNs), and Trapezoidal Shaped Fuzzy Numbers (TSFNs) unlike most of the optimization models that
derive weights in the case of TFNs only. Simulation of the fuzzy number is done by Monte Carlo’s
method. The proposed model minimizes the SSE value and deviation from judgments ischecked by
applying a threshold-based constraint.Eightexamples are illustrated that include examples of consistent
and inconsistent fuzzy judgments represented by TFNs, TrFNs and TSFNs. Results show that the
proposed model outperforms other models for all theabove mentioned cases.

Analytic Hierarchy Process (AHP) can be used in many decision-making problems in various fields like
healthcare [45] operation research [46], management [47], engineering [48], etc. Therefore, the proposed
model has utility in all these decision-making systems where decision makers cannot give crisp weights.
The proposed model’s main limitation is that it considers the judgments as type 1 fuzzy sets only. This
work can be further extended to obtain crisp priorities from type 2 fuzzy sets. Also methods to measure
theconsistency for triangular shaped and trapezoidal fuzzy comparison matrices can be measured.
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