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Abstract: Higher transmission rate is one of the technological features of promi-
nently used wireless communication namely Multiple Input Multiple Output-
Orthogonal Frequency Division Multiplexing (MIMO–OFDM). One among an
effective solution for channel estimation in wireless communication system, spe-
cifically in different environments is Deep Learning (DL) method. This research
greatly utilizes channel estimator on the basis of Convolutional Neural Network
Auto Encoder (CNNAE) classifier for MIMO-OFDM systems. A CNNAE classi-
fier is one among Deep Learning (DL) algorithm, in which video signal is fed as
input by allotting significant learnable weights and biases in various aspects/
objects for video signal and capable of differentiating from one another. Improved
performances are achieved by using CNNAE based channel estimation, in which
extension is done for channel selection as well as achieve enhanced performances
numerically, when compared with conventional estimators in quite a lot of scenar-
ios. Considering reduction in number of parameters involved and re-usability of
weights, CNNAE based channel estimation is quite suitable and properly fits to
the video signal. CNNAE classifier weights updation are done with minimized Sig-
nal to Noise Ratio (SNR), Bit Error Rate (BER) and Mean Square Error (MSE).

Keywords: Deep learning; channel estimation; multiple input multiple output;
least square; linear minimum mean square error and orthogonal frequency
division multiplexing

1 Introduction

MIMO integrated with OFDM technique is one among the eminent broadband wireless access system
comprising of peculiar features such as, huge system capacity and higher data rates deprived of additional
bandwidth and power consumption [1]. Channel estimation in a precise manner is highly necessitated for
obtaining the transmitted signal through channel equalization. Also, it requires precise Channel State
Information (CSI) of the system’s receiver end for transmitting signal coherent detection, which is
regarded as significant challenge for achieving optimum performance of MIMO-OFDM systems. While
comparing coherent detection with non-coherent detection technique considering 3 to 4 dB loss in SNR.
This huge loss can be mitigated by developing channel estimation techniques for providing CSI at the
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receiver, for transmitting information from coherent detection in wireless communication systems. The most
important issue to be resolved is the accurate Channel Estimation (CE) in wireless communications [2–5].

In digital communication systems, Adaptive Channel Estimation (ACE) process are performed [6,7], in
which an adaptive filter is utilized for channel information estimation through linear channel estimation
techniques [8]. Linear channel estimation techniques such as Least Squares (LS) algorithms are widely used
because of its reduced computational complexity and simple to implement. Least Mean Square (LMS)
algorithm is one among the commonly used ACE approaches with quite less computational complexity and
also there is meager performance for Mean Square Error (MSE). The complexity can be reduced by
utilizing simplified LMS algorithms like, Sign Data Normalized Least Mean Square (SDNLMS) algorithm [9].

Message transmission security to legitimate users is attained through deep learning-based secured
communication [10]. Complex network in mobile communications such as Channel Estimation, Signal
Detection, Modulation Recognition and Channel Equalization can be well handled through Deep
Learning technology. Soltani et al. [11] utilized 2D image for presenting time-frequency channel fading
matrix. A super-resolution network and a de-noising network might be deployed for achieving more
precise channel estimation, in which pilot values are taken into account as a low-resolution image.
Therefore, Super-Resolution (SR) network combined with a de-noising IR network is deployed for
channel estimation. Balevi et al. [12] achieved one-bit quantization constraint by suggesting a deep neural
network-based auto-encoder in OFDM receiver. A Convolutional Neural Network along with long short-
term memory as the classifier is integrated in Modulation Recognition Algorithm [13] for modulation
recognition robustness improvement.

Recently perfect free space optical communications are considered for developing a pilot independent
Deep Learning-based channel estimator [14,15]. The suggested methodology offers satisfied performance to
perfect channel estimation system which is validated by simulation outcome. These researches yield better
performance for different task over current years. Hence it is concluded that Deep learning has grabbed the
attention of various applications in communication systems. In addition to it, investigation for DNN
structural properties were made considering depth and width owing to their modeling functions potent
proficiency, i.e., DNNs expressiveness [16–18]. DNN expressive power increases exponentially with its
depth for providing significant theoretical intuitions into DNNs greater performance practically. Hence it
is substantiated that DL methods are specifically perfect for channel estimation but analytical
interpretation of this phenomenon has to be concentrated yet.

Gao et al. [19] utilized Signal Processing Technique, which is done in block-by-block manner for
dividing the receiver into signal detection and channel estimation subnet. Every subnet construction is
done using DNN for initialization, which is a simple as well as conventional solution. When compared to
Linear Minimum Mean Square Error technique by means of suggested model-driven DL receiver, precise
channel estimation is attained and higher data recovery accuracy is highly achieved. When compared
with prevailing approaches and Fully Connected Deep Neural Network (FC-DNN), Robustness in terms
of signal-to-noise ratio is further validated through simulation outcomes, which is superior in terms of
computational complexities or memory usage compared to FC-DNN approach.

Ye et al. [20] suggested a methodology in which, DNN model training was initially done by data
generated on the basis of channel statistics, which was later utilized for online transmitted data recovering
in direct way. DNN approach clearly explains the channel distortion and transmitted symbols which are
detected with improved performance equivalent to Minimum Mean-Square Error (MMSE) estimator,
validated through simulation outcome. DNN approach is more robust than traditional approaches, where
smaller number of training pilots are used neglecting cyclic prefix and with existence of non-linear
clipping noise. DNN are considered to be a capable tool even in complicated channel distortion and
interference environment for estimating the channel and signal detection in wireless communications.
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In this paper Convolutional Neural Network Auto Encoder (CNNAE) classifier interpretation is mainly
concentrated for channel estimation in multiple-antenna systems. Also closed-form expression for CNNAE
based channel estimation is formulated, which is considered to be highly sensitive for training data quality.

2 System Model and Channel Estimation

The system model for channel estimation is particularized by presenting conventional channel
estimation methods and the CNNAE based method by multiple-antenna communication. LS and Linear
Minimum Mean-Square Error (LMMSE) are deployed for estimation procedure. By using CNNAE
technique through suggested channel estimation approach, the drawbacks of LS and LMMSE focused
channel estimation strategies are mitigated.

2.1 System Model

Let multiple-antenna communication system with t0 antennas at Base Station (BS) and t1 at user side are
assumed along with uplink channel in combination with block fading, comprising fixed channel fading.
Uplink pilot is greatly utilized for channel estimation at BS in general procedure. Let s represents
transmitted pilot symbol with |τ|2 = 1. The representation of received symbol at BS is given by the
subsequent t0 � t1 vector

x0 ¼ shþ n (1)

where h indicates t0 � t1 random channel vector amid BS and user. And n is t0 � t1 white noise vector with
zero-mean and element-wise variance r2n. The channel vector h is zero mean and with covariance matrix
R = E{hhT}. E{.} represents expectation and tr{.} indicates matrix trace. The set cardinality is denoted
by |.|. The notation || . ||2 signifies L2 norm, and diag{x} indicates a diagonal matrix with all elements in
x at main diagonal. The notations (.)T, (.)* and (.)H denotes matrix transpose, conjugate and conjugate
transpose respectively.

2.2 Conventional Channel Estimation

The extraction of h from x0 is the main objective of channel estimation which should be as precise as
possible. The expert knowledge and signal model are the main basis for conventional estimation approaches.

2.2.1 LS Channel Estimator
From Eq. (1), LS estimate of h is initially derived by Eq. (2),

ĥLS ¼ 1

s
x0 ¼ hþ 1

s
n (2)

and respective MSE is expressed by Eq. (3),

JLS ¼ E h� ĥLS
�� ��2n o

(3)

As shown in Eq. (3), the performance of the LS estimator is inversely proportional to the Signal-To-
Noise Ratio (SNR) defined as 1=r2. Implementation is quite easier because no prior information of
channel statistics is necessitated.

2.2.2 LMMSE Channel Estimator
LMMSE estimator utilizes signal model in Eq. (1) and channel statistics which is represented by ensuing

Eq. (4),
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ĥLMMSE ¼ RðRþ r2nIt0Þ�1x0 (4)

MSE computation of LMMSE estimator as in Eq. (5)

JLMMSE ¼ tr R It0 þ
1

r2n
R

� �� �
� JLS (5)

This is merely smaller than that of LS estimator. The channels second order statistics is greatly utilized
for further precise LMMSE channel estimation. Besides LMMSE estimator performances are sensitive to
channel statistics imperfection, conversely there lies a challenge in acquiring this information practically.
In contradiction to it, LS estimator is utilized in many scenarios as a result of its simplicity. Nonetheless
its accuracy is comparatively small in contradiction with LMMSE estimator. In recent times CNNAE
estimator has been developed as a capable substitute for addressing channel estimation in wireless
communication systems. CNNAE estimator’s strong robustness and outstanding learning capacity helps it
to be a potential tool for channel estimation in an imperfect and interference corrupted systems.

MIMO-OFDM system model designing is done followed by channel estimation using LS and LMMSE
is performed which is given in ensuing sections. Also channel estimation is achieved by utilizing 16-QAM
modulation [21]. 16-QAM modulation implementation has been carried out for different fading channels.

MIMO and OFDM integration is exploited in this research since it utilizes the benefits of both, like
increase in wireless communication system capacity along with better-quality performances in multi path
frequency-selective fading channels. Rayleigh fading is generally used for radio signal propagation effect
evaluation such as amplitude fading. Non-Linear of Sight (NLOS) communication among transmitter and
receiver is utilized in Rayleigh distribution based examination on multi path propagation background.

Subsequently the system used in Rayleigh fading is estimated using channel performance with consistent
phases distributed over [0; 2π] Probability Density Function (PDF), which is represented in Eq. (6),

PR rð Þ ¼ 2r

�
exp�r=�; r � 0; (6)

where ‘r’ represents a random variable with Rayleigh distribution ‘Ω’ and is identified by Eq. (7).

� ¼ E R2
� �

(7)

Single parameter is utilized for Rayleigh distribution characterization. The earlier fading method fails for
receiver with robust direct component of the signal.

Rician fading LOS path is presumed amid transmitter and receiver. It is suitable for multi path waves
appearing at the receiver. The probability distribution function is specified by Eq. (8),

p rð Þ ¼ r

r2
exp � r2 þ A2

2r2

� �
J0

rA

r2

� �
; r � 0 (8)

where Jo ( ) is the 0
th order modified Bessel function. It is described by Eq. (9),

J0 zð Þ ¼
X1
n¼0

z2n

22nn!n!
; for z � 1 (9)

Next the Nakagami fading is the distributed gamma parametric fading, the data performance for
obtaining approximate output was revealed by Eq. (10),
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f rð Þ ¼ 2mmr2m�1

�m� mð Þ exp �mr2

�

� �
; m � 1

2
: r � 0 (10)

where ‘m’ denotes Nakagami scale parameter which is fading parameter Ω and Г (m) are average power and
gamma function.

3 Convolutional Neural Network Auto Encoder (CNNAE) Channel Estimation

In wireless communication systems, CNNAE estimator turns out to be a favorable substitute for
addressing channel estimation. Especially for channel estimation in the inappropriate and interference
corrupted systems, the CNNAE estimator can be considered as an effective model due to its robustness
and efficient learning ability.

Assume that the CNNAE estimator P with an N-layer fully-connected Leaky Rectified Linear Unit
(LReLU) CNN. x0 2 v � <t0 denotes the input of P; h 2 H � <t0 indicates the output of P, in which v
and H signify input space and the output space. Consider f(x0, h) as the <t0 ! <t0 function that is
denoted by P, in which all the parameters of P are indicated by h and the estimated channel of the
CNNAE estimator is notated by f(x0, h). Consider Z = v� H as the sample space of training. A set of
training samples drawn from the joint distribution of x0 and Zm ¼ zif gmi¼1¼ x0;i; hi

� �	 
m
i¼1 represents h, in

which the number of training samples is signified by m. AE denotes the symmetrical CNN that is
architecturally referred by three layers, namely input layer, hidden layer, and output layer, as depicted in
Fig. 1. Subsequently the videos can be learned through this model in an unsupervised manner. AE tends
to learn a latent or compressed representation of the input video, for which the reconstruction error within
the input at the encoding layer and the respective reconstruction at the decoding layer is minimized.

Figure 1: Illustration of a single-layer CNNAE, neurons with cross denote the corrupted input neural units
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In the encoding phase, an input vector x0 2 v � <t0 is processed, where a linear deterministic mapping
and a nonlinear activation function l have been applied as given by Eq. (11),

ai ¼ f xi; hð Þ ¼ l W0;1x0;i þ b0;1
� �

(11)

in which a weight matrix with N layer is denoted by W0;1 2 <Nxt0 ; the encoding bias is represented by
b0;1 2 <t0 . A Leaky Rectified Linear Unit (LReLU) activation function is taken for signal x0. In the
domain of deep learning, application of LReLU is proved to be significant as it provides optimal
performance [22–24], as given in Eq. (12),

y ¼ x0 if x0;i � 0
xx0 if x0;i � 0

�
(12)

The slope x of the LReLU is fixed as 0.01 [25]. Subsequently a vector is decoded by applying further
linear decoding matrix in Eq. (13),

hi ¼ W0;2ai þ b0;2
� �

(13)

Here, a decoding weight matrix is denoted byW0;2 2 <t0xN and a bias vector is represented by b0;2 2 <t0.
The reconstruction error of the cost function in Eq. (14) is reduced to learn signal extractors. In the cost
function, the first term signifies the error term whereas the second term indicates a regularization term/
weight decay term.

L x0; hð Þ ¼ 1

2

Xm
i¼1

x0;i � h0;i
�� ��2 þ �

2
W0;t

�� ��2 (14)

The training video signal is signified by x0,i and reconstructed noise that removed video signal is
denoted by h0,i. For constraining the anticipated activation of hidden nodes, the method [26] is
presented due to the sparseness of hidden units. By adding the Regularization term, the hidden unit
values are penalized, through which solely some of them get bigger than parameter ρ. Consequently
many values of hidden units get lower than ρ. By denoting the sparse penalty term as KL qjjq̂ð Þ it can
be formulated by Eq. (15),

KLðqjjq̂Þ¼q log
q
q̂
þ 1�qð Þ log 1�q

1�q̂
(15)

Here, Kullback–Leibler divergence is represented by KL(·). The activation of hidden units in auto-
encoder is notated by a which is discussed in Eq. (16),

q̂ ¼ 1=mð Þ
Xm
i¼1

a ið Þ
h i

(16)

As the average activation of a that is average on the training set xt0�N , then the objective function in the
sparse auto encoder learning can be notated by Eq. (17),

Loss ¼ L x0; hð Þ þ b
XN
j¼1

KL qjjq̂ð Þ (17)

A large average activation of a is penalized over the training samples by assigning ρ small, for which the
KL divergence is introduced i.e., weighed by a sparsity penalty parameter b in the objective function.
Consequently activation of many hidden units has been driven by this penalization to be equal or near to
zero, which leads to sparse connections within layers. Solely two states are involved in the neurons in P,
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i.e., with zero output or replicating input. Although the CNNAE based channel estimation proves to be
efficient from theoretical point of view, it is being analyzed infrequently. CNNAE estimator learns a set
of training data Zm that is brought from particular statistical framework. For measuring the variation of
the estimated channel f(x0, h) and the true one h, the DL estimator requires a non-negative loss function
n f x0; hð Þ; hið Þ. The following Eq. (18) is formulated by adopting the square error as loss functions,

Jemp ¼ 1

m

X
Zi2Zm

n f x0; hð Þ; hið Þ ¼ 1

m

X
Zi2Zm

hi � f x0;i; h
� ��� ��2

2
(18)

The empirical loss is described by Eq. (19),

JCNNAE ¼ EZfnðf x0; hð Þ; hg ¼
Xt

i¼1

E h� f x0; hð Þk k22jx0 2 vi
n o

w við Þ (19)

For the expected loss in which the probability w við Þ that x0 falls into vi. The parameters of P can be
optimized by the CNNAE estimator by considering the CNNAE based channel estimation as a regression
problem for which the empirical loss in Eq. (18) is minimized for, provided Zm and the channels from
newly received signals are predicted through the optimized CNNAE estimator. Generally by applying the
following statistical framework, the theoretical system in nonlinear communication systems is described
by Eq. (20),

x0 ¼ fNL shþ nð Þ (20)

The nonlinear distortion imposed on the received signal is represented by fNL(.); conversely if fNL(.) is a
linear function, the nonlinear model reduces to the linear model, Eq. (1) as expressed in Eq. (20). Consider Ai

as the set of sample index that fall in to vi. Remember that (|A1|, … |Aυ|) is an i.i.d. multi nominal random

variable with probability w v1ð Þ; . . . ;w vmð Þð Þ and the constraint
Pm
i¼1

Aij j ¼ m. In the context of inaccurate

training data, the calculation over the estimation MSE of the CNNAE estimator can be divided into two
cases as described below,

Case 1: In this case, let her be the channel of inaccurate training data, then it distributes in a broader
range than h and the associated statistical model of the training data can be expressed as the following
Eqs. (21)–(22),

her ¼ hþ e (21)

xer ¼ sherþn (22)

Here, the t0 � t1 zero mean random error vector is represented by e (which is independent of h) that
includes covariance matrix �e ¼ E eeTf g.

Case 2: Assume that the training data’s input-output pair is produced from the statistical framework, as
described in the Eqs. (23)–(24),

h ¼ her þ e (23)

xer ¼ sherþn (24)

Since x0 distributes in a broader range than xer, the probability that x0 locates at regions deprived of the
necessity of training samples are higher than Case 1. If the discrepancy within h and her is large enough, the
estimated channels of the CNNAE estimator related to the inputs at empty regions are completely arbitrary
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and undesirable. In such a scenario the CNNAE estimator lacks in providing a consistent estimate due to the
difficulty of obtaining the estimation MSE in the form of analytic.

4 Results and Discussions

The entire implementation of the proposed channel estimation method in MIMO-OFDM with 8� 8 has
been carried out in MATLAB simulation and the performance has been measured based on the parameters,
such as MSE, SNR, Symbol Error Rate (SER) and BER. During the analysis 16-QAM modulation is
involved, where the phase offset zero is taken as the symbol order in binary. Since video signals have
been exploited during the simulation of this work, they transfer an integer through the channels of
Rayleigh, Rician and Nakagami by considering it as an input. Thus, the channel estimator implementation
is determined by comparing the proposed and other LS and LMMSE methods, through that reduced MSE
is ensured by the proposed method. Tab. 1 discuss about the details of simulation parameters used for
evaluating the channel estimation methods.

4.1 Simulation Results

In this section the simulation outcomes of different channel estimation techniques have been depicted as
three individual fading channels. With regard to error analysis, the channel estimation results have been
measured using each of the metrics. The simulation outcomes of channel estimation approach for
Rayleigh channel are presented numerically in Tab. 2, Nakagami channel are presented numerically in
Tab. 3 and Rician channel are presented numerically in Tab. 4.

Table 1: Simulation parameters

Parameters Values

MIMO-OFDM 8 � 8

IFFT/FFT size 2048

Modulation level 16-QAM

Channel Rayleigh, Rician and Nakagami fading channel

Mutiplexing Spatial mutiplexing

Channel estimation algorithm LS, LMMSE, FCDNN, DNN estimation

Channel bandwidth B = 20 MHz

Input file Video

Number of iterations 100

Table 2: Results analysis for Rayleigh channel

SNR (dB) BER vs. Rayleigh

LS LMMSE DNN FCDNN CNNAE

0 0.017822 0.0157 0.00268610 0.0025300 0.00285130

5 0.016602 0.0145 0.00196660 0.0019754 0.00198900

10 0.014404 0.0123 0.00129800 0.0012100 0.00115230

15 0.013184 0.0111 0.00048987 0.0005100 0.00052336

20 0.011719 0.0101 0.00023740 0.0002014 0.00018394
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Table 2 (continued).

SNR (dB) MSE vs. Rayleigh

LS LMMSE DNN FCDNN CNNAE

0 0.079102 0.0713 0.000158400 0.00017560 0.000199360

5 0.073242 0.0654 0.000145870 0.00010748 0.000063237

10 0.065186 0.0574 0.000125700 0.00004870 0.000019998

15 0.052734 0.0449 0.000107800 0.00002894 0.000006320

20 0.048828 0.0410 0.000011257 0.00001087 0.000001998

SNR (dB) SER vs. Rayleigh

LS LMMSE DNN FCDNN CNNAE

0 5.500 5.0000 0.5240 0.2870 0.071120

5 5.250 4.7500 0.4470 0.1390 0.027869

10 4.875 4.3750 0.4120 0.0952 0.011806

15 4.250 3.7500 0.1870 0.0547 0.004215

20 4.000 3.5000 0.1047 0.0198 0.001220

Table 3: Results analysis for Nakagami channel

SNR (dB) BER vs. Nakagami

LS LMMSE DNN FCDNN CNNAE

0 0.019043 0.0171 0.0025470 0.0021780 0.0019484

5 0.017822 0.0159 0.0030570 0.0025780 0.0011080

10 0.018066 0.0165 0.0014560 0.0009587 0.0005170

15 0.017822 0.0156 0.0010478 0.0005750 0.0001960

20 0.016113 0.0145 0.0009756 0.0001754 0.0000738

SNR (dB) MSE vs. Nakagami

LS LMMSE DNN FCDNN CNNAE

0 0.076416 0.0736 0.012450 0.0095470 0.0020000

5 0.076416 0.0704 0.011470 0.0054230 0.0006330

10 0.076416 0.0686 0.010690 0.0027890 0.0002000

15 0.072754 0.0796 0.008564 0.0004762 0.0000630

20 0.063721 0.0751 0.004875 0.0002743 0.0000199

(Continued)

CSSE, 2022, vol.41, no.1 179



Table 3 (continued).

SNR (dB) SER vs. Nakagami

LS LMMSE DNN FCDNN CNNAE

0 5.7500 5.2500 0.97500 0.247000 0.0544060

5 5.3750 4.9375 0.75410 0.098700 0.0169120

10 5.3750 4.8750 0.54680 0.010780 0.0055030

15 5.2500 4.7500 0.27410 0.007524 0.0016256

20 4.8750 4.4375 0.09875 0.001496 0.0004896

Table 4: Results analysis for Rician channel

SNR (dB) BER vs. Rician

LS LMMSE DNN FCDNN CNNAE

0 0.014404 0.0121 0.00349330 0.0027187 0.0021780

5 0.012451 0.0111 0.00265570 0.0021740 0.0018487

10 0.012207 0.0104 0.00194600 0.0015841 0.0012740

15 0.012939 0.0105 0.00146510 0.0011467 0.0009047

20 0.011475 0.0094 0.00095822 0.0007405 0.0005324

SNR (dB) MSE vs. Rician

LS LMMSE DNN FCDNN CNNAE

0 0.034912 0.0271 0.0019870 0.00147000 0.00020670

5 0.021484 0.0171 0.0018470 0.00124700 0.00006330

10 0.027100 0.0193 0.0014700 0.00117800 0.00002000

15 0.027100 0.0193 0.0010780 0.00055120 0.00000631

20 0.022705 0.0167 0.0008524 0.00001462 0.00000200

SNR (dB) SER vs. Rician

LS LMMSE DNN FCDNN CNNAE

0 3.1250 2.6250 0.0587000 0.0987400 0.00762970

5 2.5000 2.1250 0.0107500 0.0104120 0.00330000

10 2.6250 2.1250 0.0098700 0.0054210 0.00175000

15 2.6250 2.1250 0.0074560 0.0042170 0.00089364

20 2.3750 1.9375 0.0008524 0.0005124 0.00021622
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In Fig. 2 MSE and SNR values have been compared for varied fading channels by applying the existing
channel estimation methods like LS, LMMSE, DNN, FCDNN and proposed CNNAE method to evaluate
their performance. The graphs demonstrate the efficiency of the proposed CNNAE approach to
outperform the existing methods by providing the better result in each fading environment, as represented
in Figs. 2a–2c. Besides the multiplication, SNR helps reducing the Mean Square Error. As depicted in
Fig. 2c the CNNAE algorithm delivers the MSE of 0.0000199 for Nakagami Channel in SNR at 20 dB.
Whereas, the existing LS, LMMSE, DNN and FCDNN approaches provide 0.063721, 0.0751, 0.004875,
and 0.0002743, respectively, which are considerably in higher side of BER.

In Fig. 3 in order to evaluate their performance BER and SNR values have been compared for different
fading channels by utilizing the existing channel estimation methods like LS, LMMSE, DNN, FCDNN and

(a) (b)

(c)

Figure 2: MSE vs. SNR using LS, LMMSE and proposed estimation for different fading environments (a)
MSE vs. SNR for Rayleigh channel (b) MSE vs. SNR for Rician channel (c) MSE vs. SNR for Nakagami
channel
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proposed CNNAE method. The graphs depict the proficiency of the proposed CNNAE method to surpass the
existing methods by providing the optimal result in each fading environment, as represented in Figs. 3a–3c.
However, the augmentation of SNR helps to minimize the Bit Error Rate. As demonstrated by Fig. 3c, the
proposed CNNAE provides the BER of 0.0000738 for Nakagami Channel in SNR at 20 dB. Whereas the
existing LS, LMMSE, DNN and FCDNN approaches provide 0.016113, 0.0145, 0.0009756, and
0.0001754 respectively, this has the higher BER than the proposed system.

Fig. 4 Compares the SER and SNR values obtained for different fading channels by exploiting the
existing channel estimation methods like LS, LMMSE, DNN, FCDNN, and proposed CNNAE method

(a)

(c)

(b)

Figure 3: BER vs. SNR using LS, LMMSE and proposed estimation for different fading environments (a)
BER vs. SNR for Rayleigh channel (b) BER vs. SNR for Rician channel (c) BER vs. SNR for Nakagami
channel
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for evaluating their performance. The graphs depict that the proposed CNNAE method is capable of
outperforming the existing methods by securing optimal result in each fading environment as represented
in Figs. 4a–4c. As illustrated by Fig. 4c the proposed CNNAE provides the SER of 0.00021622 for
Rician Channel in SNR at 20 dB. LS, LMMSE, DNN and FCDNN approaches has given higher SER of
2.3750, 1.9375, 0.0008524 and 0.0005124 respectively.

5 Conclusion and Future Work

In this study a Convolutional Neural Network Auto Encoder (CNNAE) based Channel Estimation
Algorithm is introduced for MIMO-OFDM System, accompanied by appropriately selected inputs. The
CNNAE is capable of utilizing the channel variation features from the previous channel estimates,
through which it reduces the signal noises. The proposed CNNAE channel estimation algorithm is
implemented to conventional estimations like LS and LMMSE for enhancing the channel estimation
performance. Channel estimation is obtained on the basis of the property namely CNNAE with LReLU
activation function, which is mathematically the same as the set of local linear functions. CNNAE

(a) (b)

(c)

Figure 4: SER vs. SNR using LS, MMSE and proposed estimation for different fading environments (a)
SER vs. SNR For Rayleigh channel (b) SER vs. SNR for Rician channel (c) SER vs. SNR for Nakagami
channel
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channel estimation is presented for learning a latent or compressed representation of the input signals by
which the reconstruction errors occurring within input at the encoding layers and corresponding
reconstruction at the decoding layer has reduced considerably. Subsequently for fading channels such as
Rician, Rayleigh and Nakagami, the CNNAE based channel estimation is carried out. The proposed
method optimizes the derived channel model by executing the conventional approaches of channel
estimation. During the experiments the implementation has been performed for 16-QAM, besides
completely simulated using MATLAB simulator. Empirical findings depict that the significant capability
of the proposed CNNAE based channel estimation approach, surpass the existing techniques as regards
various fading models of MIMO-OFDM. By considering the parameters such as MSE, SNR, SER and
BER, the performance of the proposed and prevailing methodologies are compared and evaluated. In
future, this study can be extended through exploring the possible ways of executing the advanced and
multifaceted stacking ensemble architectures like Recurrent Neural Network (RNN) and Convolutional
Neural Networks (CNNs) in the channel estimation operation of wireless communications.
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