Computer Systems Science & Engineering K Tech Science Press

DOI:10.32604/csse.2022.018112
Article

Exploring and Modelling IoT Offloading Policies in Edge Cloud Environments

Jaber Almutairi’ and Mohammad Aldossary*”

"Department of Computer Science, College of Computer Science and Engineering, Taibah University, Al-Madinah, Saudi Arabia
“Department of Computer Science, College of Arts and Science, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
*Corresponding Author: Mohammad Aldossary. Email: mm.aldossary@psau.edu.sa
Received: 25 February 2021; Accepted: 19 April 2021

Abstract: The Internet of Things (IoT) has recently become a popular technology
that can play increasingly important roles in every aspect of our daily life. For col-
laboration between IoT devices and edge cloud servers, edge server nodes provide
the computation and storage capabilities for IoT devices through the task offload-
ing process for accelerating tasks with large resource requests. However, the
quantitative impact of different offloading architectures and policies on loT appli-
cations’ performance remains far from clear, especially with a dynamic and unpre-
dictable range of connected physical and virtual devices. To this end, this work
models the performance impact by exploiting a potential latency that exhibits
within the environment of edge cloud. Also, it investigates and compares the
effects of loosely-coupled (LC) and orchestrator-enabled (OE) architecture. The
LC scheme can smoothly address task redistribution with less time consumption
for the offloading sceneries with small scale and small task requests. Moreover,
the OE scheme not only outperforms the LC scheme in the large-scale tasks
requests and offloading occurs but also reduces the overall time by 28.19%. Final-
ly, to achieve optimized solutions for optimal offloading placement with different
constraints, orchestration is important.

Keywords: Internet of things; application deployment; latency-sensitive; edge
orchestrator

1 Introduction

In this digitized era, the number of sensor-enabled objects and devices connected to the network has
significantly increased, where this number was doubled five years ago (i.e., between 2014 and 2019) [1].
This revolution has led to a new era of technology called the Internet of Things (IoT), that has gained
well consideration from both industry and academia. Generally, IoT technology is well-defined as “the
infrastructure of a global network with self-configuring and dynamic capabilities on the basis offset of
interoperable communication and standards protocols. Additionally, the identities and attributes of
physical and virtual IoT things are capable to use intelligent interfaces and can be integrated as a network
of information” [2]. Further, through the IoT technology, physical objects, such as vehicles, buildings,
and sensors, are interconnected and created a virtual environment, which leads to increase the integration
of cyber-physical objects.
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Furthermore, in nature, these “things” are considered as mobile, which demand data from other sources,
however their computational resources are limited. Therefore, cloud and edge computing support these
devices with computational and storage capabilities to address the challenges related to energy and
performance and to guarantees loT service provisions, primarily through task offloading process.
Specifically, in the task offloading process, the computations are transferred from resource-limited devices
(i.e., IoT devices) to resource-rich nodes (cloud servers) for improving the performance of mobile
applications and total usage of power. Consequently, the task offloading concept is utilized in various
domains and industries including transportation, e-health care, smart homes, and factories [3]. Moreover,
it is particularly useful for streaming-processing applications, online gaming, virtual reality, and video
conferencing [4], that are latency-sensitive services with high-quality demand. In such scenarios, the
offloading process and data transmission between loT devices and cloud nodes are going together that
may be different among applications. For example, some applications demand low communication and
high computation resources, or vice versa. Furthermore, due to the mobility feature of these devices, their
number exponentially increases in some areas, and thereby exacerbates network issues [5].

Usually, the workloads of IoT include streaming of data and controlling the flows across different
regions are required to be processed and analyzed in real-time. Therefore, the most effective way to meet
these requirements is using small-scale access points at the network edge to complement cloud services.
Such access points, such as computers or clusters of mobile users, can provide resource-rich
communication intermediates with a small-scale. For instance, the architecture of multi-layered, including
cloudlets [6], CloudAP [7], and other systems [8,9], not only aims to underpin delay-sensitive
applications but also minimizes the overall service time. However, because of the lack of effective
orchestration and integration among cloud and cloudlets, the quality of service cannot be entirely
guaranteed. To this end, the intelligent task offloading across edges and cloud nodes can be improved
through adopting various algorithms of orchestration [10,11]. In this regard, the quantitative impact of
different offloading architecture and policies on IoT applications and services’ end-to-end performance,
primarily given a dynamic pattern of resource and task characteristics manifests.

Motivated by such consideration, in this study, we investigate the effectiveness of various architectures
of edge cloud offloading on the total IoT service time throughout the process of task offloading and study
how the demands of various application parameters, such as communication and computation, can
influence on the holistic efficiency. Specifically, we investigate two kinds of basic three-tier offloading
architectures namely loosely-coupled (LC) and orchestrator-enabled (OE). In addition, the impact of LC
and OE schemes on the execution of IoT service are compared through performance-driven modeling, in
which computation resources’ allocation and the latency of communication that derivatized from various
connections of network among tiers are jointly considered. Experimental results showed that the
computation requirement has more impact on IoT applications’ performance than the requirement of
communication. However, with scaling IoT devices’ numbers up, the bandwidth of communication will
be the leading resource and become the main factor that can directly impact the total performance.

Furthermore, for small-scale and small tasks offloading scenarios, the LC scheme can smoothly address
task redistribution with shortened time consumption for the offloading scenarios with small scale and small
tasks requests, but when the resource requests of [oT tasks become bigger or when offloading is frequent, the
OE scheme outperforms LC and can reduce overall time by 28.19%.

The main contributions reported in this paper are summarized as follows:
e A performance-driven scheme is proposed to evaluate the effectiveness of IoT services considering
computational and communication resources.

e A performance analysis is then conducted to study the behavior of the system under LC and OE
offloading schemes.



CSSE, 2022, vol.41, no.2 613

e Several meaningful findings are concluded from our simulation-based evaluation, which can be used
in a joint cloud environment to improve the task offloading efficiency and to achieve well-balanced
management of resources.

The remainder of this paper is organized as follows: related work is summarized in Section 2. Section
3 presents the research problem and challenges. Section 4 analyzes mainstream architectural schemes for IoT
task offloading. Section 5 describes the modeling and measurement of performance. Simulation experiments
are conducted in Section 6, followed by results and discussion. Finally, the conclusion along with a future
work discussion are presented in Section 7.

2 Related Work

In recent years, research has received considerable attention to deal with the problem of service time in
the environment of edge cloud computing, in which addressing the computation and\or the communication
delay is the main concern. In this section, a brief overview of the main studies addressing the service time
with other objectives including cost and energy will be introduced.

In [12], a new framework is suggested for offloading the computation tasks from mobile devices to
multiple edge nodes with the objective of minimizing the computational latency and power consumption.
Meanwhile, Du et al. [13] designed a new algorithm for ensuring a reasonable delay of computation in a
fog-cloud system. Furthermore, Liu et al. [14] developed a new algorithm for task scheduling with the
aim of reducing the overall latency, in which queuing state and execution are jointly considered.
Whereas, in order to minimize the latency of end-to-end devices, Rodrigues et al. [15] introduced a new
hybrid method focusing on the migration and transmission delay of virtual machines through enhancing
the computational process and communication resources. Wei et al. [16] developed an algorithm with the
objective of minimizing the latency, in which the transmission power and processing frequencies are
jointly considered. Yang et al. [17] presented a delay-sensitive applications’ approach that can maintain
the maximum allowable time and reduce the operational cost. Zeng et al. [18] designed a novel algorithm
for minimizing the tasks’ completion time where the load balancing and task images’ allocation are focused.

From the application side, a limited number of papers have addressed the service time minimization with
different application’s types which are maintained by the edge cloud system. Since the variation of the
computational and communication requirements of loT applications [19] and their dynamic demands [20],
a new approach is proposed in [21] to address the communication and computational delays, in which the
offloaded tasks are allocated to the suitable resources at the edge cloud system concerning the application
type. Roy et al. [22] suggested a strategy based on application specifications to select the target edge
node with the object of minimizing the delay and power consumption. Although IoT applications with
latency-sensitive were studied, the effects of various deployments of edge cloud in terms of service time
minimization have not adequately been addressed.

It is observed from the literature studies that while the service time delay with different applications’
requirements has been considered in some research, there is a lack of scientific understanding of the
effectiveness of different architectures of edge on the system performance, especially total service time.
Consequently, numerous edge computing systems-based architectures were described in [5,9,23] in which
pushing computational resources nearest to end-users is the main goal. However, there are key differences
between edge nodes and an edge network, including deployment, network technology, and the size and
location of an edge and the communication way with the central cloud, which lead to overall latency
minimization when they are efficiently considered through the application owner and the service provider.
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3 Research Problem and Challenges
3.1 Problem Statement

The advances in mobile devices lead to be more adapted to function IoT services. However, mobile
devices’ limited resources (i.e., computation and storage) and battery capabilities further restrict the
execution of resource-demanding applications (e.g., Artificial Intelligence (Al), assisted multimedia
applications, and Augmented Reality (AR)), in which low latency and the throughput of broad bandwidth
are urgently required. To alleviate these limitations and meet the applications’ requirements, various
architectures based on cloud and edge resources have been proposed, where these architectures can
perform the coordination roles between these devices and edge and cloud resources.

The key requirement for coordination is generally agreed that these resources should be added at the
network edge (i.e., move the computation, storage and bandwidth resources more closed to these devices)
to reduce the traffic of the network and minimize the latency response. In contrast, resource-demanding
tasks are offloaded and parallelly processed at a centralized cloud for acceleration.

Noting that, the task offloading’s effectiveness and efficiency can be affected by many factors, either
directly or implicitly. Consequently, quantified modeling and analysis of their performance impacts as
well as comparisons between different policies of offloading are necessary required. Moreover, the
computation and communication requirements, as well as the existing resource supply of IoT
applications, are variant by nature.

Motivated by such consideration, in this paper, we evaluate the behavior of different workloads of IoT
devices through adopting different policies of task offloading. Moreover, the result of this evaluation can be
utilized to enhance the service quality, where service time will be reduced.

3.2 Emerging Challenges
Several obstacles appear due to the proliferation of IoT applications and their variation such as:

e Scale and complexity: As the development of heterogeneous sensors and smart devices is increasing,
it becomes difficult to select optimal resources for [oT tasks in a collaborative cloud environment with
a wide variety of personalized needs and customized hardware configurations. For example, some
tasks require specific hardware architectures (e.g., ARM, Intel) or operating systems for execution,
where others (e.g., security-based tasks) need specific hardware and working protocols. Thereby,
orchestration is considered the best solution which not only meets these functional requirements,
but also can respond to the growth in workflows that are dynamically changing. The orchestrator
must determine whether the complex services can be provided correctly and efficiently through the
assembled systems which consist of end-user devices, edge nodes, and cloud resources tied with
geographic distributions and constraints. Particularly, the scalability bottlenecks caused by the
increasing application scale must be predicated, detected and resolved automatically using an
orchestrator.

e Dynamicity: One of IoT applications’ key features is that the topology or diversity of resources may
change dynamically. With software upgrades or frequent join-leave network object behavior, this can
be a particular problem. The cloud’s internal properties and output may be modified, thereby lead to a
change in the overall workload pattern. Specifically, fluctuations in connectivity, bandwidth, and
device mobility fluctuation may affect the communication links. There can also be unpredictable
requirements of resource allocation and task offloading across the combination of cloud and edge
nodes.

e Scalability: Scalability is considered as another point of a challenge, in which the management of the
explosive IoT applications’ number and the dynamic changes in the resources are difficult in the
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present context. In addition, the attributes of IoT tasks can be changed dynamically, thereby the
execution time may be different for each task’s procedure. Besides, the mobility of IoT devices
leads to over-crowd them in some areas, which then can increase the workload for the connected
edge node and thereby the service performance will be degraded.

To summarize, the central stratagem of a resource manager is responsible for allocating the physical
resources to loT tasks, in the system of edge cloud. Offloading the IoT tasks to the best destination
regarding the state of the runtime system can improve the performance of applications. This study
examines the efficiency and effectiveness of task offloading through various systems of edge cloud
systems with different environmental parameters, where the above-mentioned challenges are considered.

4 Analyzing Mainstream Architectural Schemes for IoT Task Offloading

In this section, we present the offloading schemes and their relevant factors of performance, including
communication and computing delays, that we chose to tackle.

Generally, for supporting IoT applications, edge cloud systems are composed of three different tiers, in
which the edge tier is placed in the middle and consists of a set of edge server nodes that are geographically
distributed and connected to the upper tier (i.e., cloud data center) through the core network. Besides, loT
devices are interconnected to the nodes of the edge directly via a wireless channel. It should be noted that
the bandwidth of the network and efficiency of the communication among edge and cloud nodes are
considered the main aspects that determine IoT devices’ performance.

This study aims to evaluate the task offloading influence within an edge cloud system on IoT service
performance by measuring the end-to-end service time for each task in the LC and OE architectures.

We summarize mainstream edge-cloud-based loT supporting systems as belonging to two categories, as
illustrated in Fig. 1.
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Figure 1: Two paradigmatic schemes for cross-cloud IoT services: (a) Loosely-coupled three-tier scheme
(LC); (b) Orchestrator-enabled three-tier scheme (OE)
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4.1 Loosely-Coupled Three-Tier Scheme (LC)

In the LC scheme, the applications of IoT are deployed over the nodes of edge and cloud datacenter
which are connected. This means that task offloading can only be executed in the connected edge or the
central cloud. Various studies have adopted this scheme in theirs work (e.g., [24—26]). In reality, mobile
devices’ workload is only allowed to be offloaded to one destination for sequential execution or to
multiple servers for parallel execution. The main shortcoming of this scheme is that it does not allow
collaboration between different edge infrastructures. This mechanism leads to static partitioning and
delivery of tasks. Once offloaded onto a node, the tasks cannot be adjusted at runtime.

4.2 Orchestrator-Enabled Three-Tier Scheme (OE)

In the OE scheme, the applications of IoT are deployed across set of different edge nodes that are
managed and controlled by an edge orchestrator and the central cloud, where this orchestrator can bind
each IoT task to the appropriate resource of edge nodes. A task placement algorithm plays a significant
role in selecting the offloading destination. Regarding the mathematical formulation and optimization
models and guided by the intuition in [27], the offloading algorithms are classified into five different
categories namely 0—1 integer linear programming, K-dimensional bin parking convex optimization,
Markov decision process, and Lyapunov optimization problems, where most of them can be applied to
solve an NP-hard problem type. Therefore, the solution accuracy and time complexity trade-off are
considered as a main point that needs to be struck with the consideration of different scale types of
workload. This scheme has been utilized in several works for supporting their applications of IoT, such as
[28-30].

4.3 Comparison (LC vs. OE)

In effect, LC accomplishes the offloading process just by linking loT devices with a close edge node,
where the task is only allowed to be offloaded to the connected node. In addition, in the case of no
available node for holding the tasks, the LC system will wait till the edge node release more resources in
order to cover the pending tasks. Otherwise, the offloaded tasks will be directed to the cloud. The task
offload is unidirectional and cannot be balanced collaboratively between various infrastructures of edge.

On the other hand, in the task-offloading procedure in OE, tasks will be received by an edge orchestrator
through the connected host edge, which then the offloading algorithm is responsible for allocating them to the
suitable set of different constraints, including the availability of resources and expected delays. Therefore, an
edge orchestrator can easily address the dynamic offloading at runtime and partition the tasks and parallelly
offloading them to a set of destinations including several edge cloud nodes. Also, orchestrators can
coordinate the infrastructures of individual edge.

5 Modelling and Measurement of Performance
5.1 End-to-End Service Time

In this section, the total service time of the end-to-end device is split into separate measurable segments.
In general, as shown in Fig. 1, the edge-cloud system is composed of a set of IoT devices, a set of edge nodes,
and a single cloud server node. In addition, there are two types of assignable resources which are
computation (e.g., GPU and CPU, etc.) and the bandwidth of the communication network.

More specifically, there are a set of [oT devices that are connected with edge nodes via the Wide Area
Network (WAN). A Wi-Fi access point typically covers each spot, and these devices are interconnected to
associated WLAN (Wireless Local Area Network), which can continue to send a set of requests to edge
server nodes when they have entered the relevant zone. Afterward, the WAN or Metropolitan Area
Network (MAN), provided through the Wi-Fi access point, will eventually be utilized, once the request is
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picked up and moved to nodes of edge or cloud. Noting that, the transferred (i.e., upload and download) and
being processed (i.e., input and output) data may have different sizes with unpredictable lengths. For
example, workloads will probably vary, depending greatly on the functional requirements of the IoT
tasks’ demands, such as CPU core numbers, power supplier, communication bandwidth amount, and non-
functional demands including access control and security.

5.2 Measurement

In this study, the service time for each task is assumed to be roughly computed based on the summation
of communication and computation time, where the computation time is expressed by the queuing time Q
and the actual processing time P for each task. Then, the queuing time is composed of queuing in edge
node, edge node in-between, and cloud node: O «— (Qedge7 Oredges chaud), and the actual processing
time is expressed by P (Pegge, Predges Petoud)-

Furthermore, the communication time is calculated based on the summation of transmission and delay of
propagation for data (i.e., upload and download). More specifically, the delay of transmission can be
represented by the needed time for pushing the data through the link, whereas the propagation delay is
represented by the required time for transferring the data between the sender and receiver. Moreover,
from the point of view of uploading and downloading, the consumption of communication time is
defined as a composition of uploading time U «— (Upray, Uman, Uwan) and downloading time
D — (Dyran, Duyan, Dwan) to describe the total delay produced between edge cloud architecture’s
three tiers.

Although the edge nodes have a limitation of computation resources, they can provide minimal
networking delays via network connections. Whereas, the pool of cloud resources can be utilized to
address and process big data, thereby leading to minimize the processing time. Moreover, the
communication time required for offloading and then processing the task depends upon the location of
the server node, wherever collaborative edge nodes, edge node, or cloud node, in which the cloud node
takes a longer time than the closet edge nodes due to the existing of WLAN network protocol.

Therefore, in the edge cloud system, the location for processing each task (i.e., cloud, another nearby
edge, or connected edge) needs to be determined to model the time of computation and communication.
Noting that, each edge node provides small computational resources with the same functionality, which is
proximity to end devices and differs from the cloud resources in their capacity. Thus, the task
offloading’s service time latency in the edge cloud system can be computed as follows:

e Latency to local edge: the overhead of service time for executing the computation tasks at the
connected edge node within a WLAN can be computed based on the summation of uploading,
queuing, processing and downloading time which is expressed as:

Ledge = Z UWLAN + Qedge + Pedge + DWLAN (1)

e Latency to collaborative edge: the overhead of service time for executing the computation tasks at
the collaborative edge nodes can be computed based on the summation of uploading time between
end device and local edge through WLAN and between end device and the collaborative edge
nodes through MAN. Besides, the queuing, processing and downloading time through MAN and
WLAN, which is expressed as:

Lxedge = Z UWLAN + UMAN + Qxedge + Pxedge + Dyun + DWLAN (2)
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e Latency to central cloud: to calculate the total overhead of service time for executing the
computation task at the cloud server node, the delay of the network via WLAN, MAN, WAN and
the queuing and processing time should be considered as follows:

Letowd = Y Unzan + Untan + Uwan + Qetoud + Petoud + Dwan + Dysav + Dwray €)

6 Evaluation
6.1 Experimental Setup

Empirically testing different edge computing architectures is not a simple procedure because of the
variety of frameworks and applications and the different devices, computing services, and communication
protocols therein. EdgeCloudSim [31] is an environment that simulates the desirable architectures by
adjusting the CloudSim [32]. EdgeCloudSim can provide extra models for representing some sub-
processes and can be used to account for characteristics of the edge computing node and the IoT devices’
services. An extra model of queuing was presented to denote the delay in the WLAN, MAN, and WAN
and a mobility model and a CPU utilization model for Virtual Machines (VMs). This motivates us to use
this simulation in order to investigate and evaluate the service time for a two-tier architecture with or
without edge orchestrators for several IoT workloads.

Using the simulator tool, we did several experiments to examine the two architecture models. The key
experiment parameters are shown in Tab. 1. Moreover, for each architecture model, there are three nodes of
edge which are distributed and connected to a centralized cloud. In addition, every edge node serves a set of
IoT devices in its zone. Further, to examine and investigate the service time performance for each
architecture, the total devices’ number is increased from 100 to 1000 in increments of 100. Finally, each
IoT device can generate a set of tasks that can be used to represent the workload of IoT. Therefore,
increasing the number of IoT devices will result in an increase in the number of tasks.

Table 1: Simulation key parameters

Parameter Value
Simulation time (h) 2
Warm up period (s) 3
Repetitions number 5
Edge nodes number 3
Hosts’ number per edge nodes 2
VMs’ number per edge server/cloud 4/not limited
VM speed (MIPS) per edge server/cloud 10000
End devices’ minimum number 100
End devices’ maximum number 1000
Active/idle for end devices period (s) 45/15

6.2 Methodology

There is a variation in IoT workload, where the applications’ demand is ranging from low
communication and computation (e.g., healthcare) to high communication and computation (e.g., online
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gaming). The numerical setup is considered a significant step. In the following steps, the uncertainty
associated with the unpredictable workload presented in [5] inspires and motivates us.

To deal with various applications that might be used, the bandwidth of communication requirement is
increased from 0.25 to 1 MB in increments of 0.25 MB, while the computation requirement is doubled
between 500 MIPS and 4000 MIPS. This configuration results in 16 different combinations, labeled
Appl to Appl6, as shown in Tab. 2. We tried to determine how those resource requirements proposed by
IoT tasks affect the total service time (See Section 6.3.1).

Table 2: Examples of workloads and their related CPU speed and bandwidth configurations

0.25 MB 0.5 MB 0.75 MB 1 MB
500 MIPS Appl App5 App9 Appl3
1000 MIPS App2 Appb Appl0 Appl4
2000 MIPS App3 App7 Appll Appl5
4000 MIPS App4 App8 Appl2 Appl6

Furthermore, to validate different schemes’ scalability and the sensitivity of performance to the edge
cloud environment, we tuned the number of end devices from 100 to 900 and examined the
corresponding performance (See Section 6.3.2). We also put them together and then presented the results
aggregated for the submitted applications to show the integral impacts of various performance parameters
(see Section 6.3.3).

6.3 Results and Discussion

6.3.1 Impact of loT Task Resource Requirements

As depicted in Fig. 2a, the service time will sharply increase when the CPU requirement per task grows.
The reason for this is that computation resources are relatively scarce. Once a large number of tasks ask and
compete for CPU clock cycles, the orchestrator usually takes a long time to coordinate among different
resource entities, resulting in an increased holistic time consumption. LC and OE’s difference will grow
enormously when all CPU cores are pinned and shared by co-located tasks.

100 End Devices 100 End Devices
. C

084 o Of 0.8 -
2 o074 g o071
c c
(=} o
o 0.6 9 0.6
o 2
(Y] [
£ 05 £ 05
F [
<v o
g 04 O 0.4
e c
& &
R o 034
o o
© o
g 0.2 1 g 0.2
< <

0.1 0.1 [t

e OE
0.0 . - : 0.0 . : :
13 14 15 16 4 8 12 16
Application Application
(a) (b)

Figure 2: The impact of computational vs. communication demands (a) Impact of varying CPU speed
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By contrast, as seen in Fig. 2b, if the bandwidth requirement of the task varies, the service time is only
slightly increased because bandwidth resources are easily found. Orchestrators can very quickly find suitable
bandwidth and allocate the isolated bandwidth by using heuristic or approximate algorithms.

6.3.2 Impact of End Device Number

In this section, we verify how the service time changes regarding the variation in [oT device number. As
observed from Fig. 3a, with a small number of resource requests using loT tasks (e.g., Appl), the total service
time is insensitive to the end devices’ number increasing. In reality, even if the offloading procedures
significantly increase, the available resources from edge nodes and cloud nodes are more than enough to
accept such offloaded tasks. The orchestrator can rapidly select a destination for the incoming tasks. In
comparison, LC and OE experience an enormous time when the end devices’ number is increasing,
especially for dealing with App16 (i.e., largest resource requests’ tasks). Moreover, under the OE scheme,
the orchestrator spends more time coordinating resources between edge and cloud nodes and
subsequently make the decisions of placement. Further, the same phenomenon can be observed for
App4 in comparison with App16, seen in Fig. 3b.
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Figure 3: The impact of application number under different offloading schemes (a) Appl vs. Appl6
(b) App4 vs. Appl6

In this analysis, the sensitivity to the device scale changes across different applications. Service
providers of IoT may require coordinating and then specify the appropriate resource that an IoT task can
leverage regarding the edge cloud infrastructure’s changing configuration.

Another important finding is that an LC architecture may be much more suitable with a small number of
IoT devices. However, with increasing resource request’s number (e.g., App-16 or more), the LC scheme
increases the consumption of time, probably because plain offloading to a single node cannot satisfy the
offloading requirements. This problem can only be solved by orchestration with complex constraints.

6.3.3 Putting it Together

We further examine the scalability of the system to investigate how LC and OE schemes impact service
time performance. Fig. 4 shows the detailed results with device numbers selected from 100, 400, and 900,
and the corresponding performance gaps between LC and OE. All kinds of applications mentioned in Tab. 2
are evaluated.
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Overall, there is an approximate upward trend in both CPU speed and bandwidth with overall service
time. Figs. 4a, 4c, and 4e all demonstrate that within each comparison group Application 1-4, 5-8, 9-12,
and 13-16, the service time increases linearly in both LC and OE. However, the discrepancy between LC
and OE incurred by the increased amount of CPU requests becomes higher due to the increased
difficulties in finding CPU resources from the edge cloud environment. The overall time consumption to
satisfy the changing bandwidth requirement remains stable.

Additionally, it is observable that OE outperforms LC only in certain cases. For instance, when the
device number is fixed at 100 and CPU speed is limited to 500 MIPS, the service times under different
bandwidths are stable and similar. In the OE scheme, the time can be reduced by an average of 24.1%
compared to the LC scheme. Another extreme case occurs when the CPU speed is increased to 2k and 4k
MIPS if the number of end devices is 900 and bandwidth allocation is 1 MB, in which the time in OE
can be reduced by roughly 28.19%. Indeed, the LC system can simply find a single node to perform the
task offloading, and then this task cannot be transferred to another node once it is offloaded to a specific
one. Also, in the case of no available node for holding tasks, the LC scheme will wait till the edge node
release more resources in order to cover the awaiting tasks. This operation spends more time with respect
to the OE scheme, that can address the dynamic offloading of task easily at runtime and partition the
tasks and parallelly offloading them to a set of destinations.

To sum up, the computation requirement spends an additional effect on the performance of IoT
applications in comparison with the communication requirement. However, in the case of IoT devices
scaled up, the bandwidth of communication will be the key factor that directly impacts overall
performance. On the other hand, for the offloading sceneries with small scale and small task requests, the
LC scheme can smoothly address task redistribution. Nevertheless, in the case of large-scale tasks
requests and offloading occurs, orchestration is importantly required to include optimized solutions for
optimal offloading placement under different constraints.

7 Conclusion and Future Work

Cloud and edge computing are increasingly progressing into the fundamental infrastructure, enabling the
potential connection of billions of IoT devices. Efficient collaboration schemes and algorithms of task
offloading can be utilized to allow edge cloud services and mobile devices to work cooperatively. To this
end, in this study, the quantitative impact of different offloading architectures and policies on different
IoT applications’ performance is analyzed and evaluated and discussed their effectiveness in the case of
increasing [oT devices” number and the requested resources.

Future research will investigate the possibility of independently determining the optimal deployment
mechanism for the proposed system. In addition, we will implement different offloading algorithms in a
customized offloading library that other real-world systems can quickly adapt.
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