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Abstract: Wireless sensor networks (WSN) have become a hot research area
owing to the unique characteristics and applicability in diverse application areas.
Clustering and routing techniques can be considered as an NP hard optimization
problem, which can be addressed by metaheuristic optimization algorithms. With
this motivation, this study presents a chaotic sandpiper optimization algorithm
based clustering with groundwater flow optimization based routing technique
(CSPOC-GFLR). The goal of the CSOC-GFLR technique is to cluster the sensor
nodes in WSN and elect an optimal set of routes with an intention of achieving
energy efficiency and maximizing network lifetime. The CSPOC algorithm is
derived by incorporating the concepts of chaos theory to boost the global optimi-
zation capability of the SPOC algorithm. The CSPOC technique elects an opti-
mum set of cluster heads (CH) whereas the other sensors are allocated to the
nearer CH. Extensive experimentation portrayed the promising performance of
the CSPOC-GFLR technique by achieving reduced energy utilization, improved
lifetime, and prolonged stability over the existing techniques.

Keywords: Clustering; routing; wireless sensor networks; energy efficiency;
network lifetime; metaheuristics

1 Introduction

The current development in the area of wireless communications, MEMS (microelectromechanical
system), and digital electronics have led to the growth of microsensors. This small sensor comprises
multifunction, transfer easily on shorter distance, requires lower power, and inexpensive [1]. The sensor
nodes are accountable for sensing, processing, and delivering data to the base station (BS). They must
operate together to create a wireless sensor network (WSN). A WSN comprises a huge amount of sensor
nodes that are manually/arbitrarily placed in a provided coverage area. The nodes collect the local
physical data, aggregate, and transmit them to BS named sink. For public notable events, the BS is linked
to the internet. Rather than transmitting raw data to the node accountable for data fusion, the sensor node
could utilize their functioning capabilities to execute evaluation, and fusion operation is to transfer the
required data [2]. This feature of wireless sensor allows utilizing in several fields particularly for
monitoring and surveillance.
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Related to conventional methods of environmental observing, WSN method is a significant green
technique for the upcoming detection effectively in the environment variations. The WSN for monitoring
environments comprises of huge amount of lower cost battery powered sensor nodes, closely placed
through a remote/inaccessible physical space [3,4]. But the major problem is the restricted power assets
of sensor nodes. It isn’t real-world for recharging the nodes battery/interchange them once whole
depletion of their energies are placed in hostile environment. Thus, when conventional network aims to
attain higher level QoS, the sensor network protocol should emphasize mainly energy conservation for
maximizing network lifespan. Implementation of energy efficient clustering and routing methods is one of
the significant challenges between them. Clustering in WSN comprises combination of effective sensor
nodes to different clusters; every cluster has single leader named cluster head (CH). The CH collects the
information from every equivalent member, processes it, and sends them to BS. Every sensor node
belongs to single cluster and communicates with CH. Then, CH selection requires to be accurately
tackled to balance the energy consumption of CH; or else, they will pass away fast because of additional
workload to information forwarding and aggregations. Each cluster based routing technique selects
primarily the CH arbitrarily or likelihoods and later creates the cluster. But every CH could be placed in a
smaller network area and few regular nodes would be separated that might affect network dysfunctions.

Hierarchical routing is an effective manner to reduce energy consumption with the cluster and execute
data aggregation. It enables combining tasks for reducing transmit packet amount to the sink [5,6]. An
accurate protocol should contain mechanism to save energy in the node as recharging their battery is
typically hard, impossible, or risky. Each aspect of the node from the hardware to their executed
operation would assist in distributing energy load. Due to hierarchical routing have various parts to assist
distinguished possible phases in protocol operation, the presence of 2 operations modes in the sensor
could predict high energy costs. But, various communication modes like CH and standard sensors could
be useful when executed in all layers. Alternatively, metaheuristic approaches are the optimization
systems that can resolve the difficult system. These methods are stimulated by this precise knowledge of
biological/social processes that form an abstraction level that could be assumed as search approaches.
Few instances of common metaheuristic approach include Genetic Algorithms, Particle Swarm
Optimization (PSO), Differential Evolution (DE), Artificial Bee Colony (ABC), Flower Pollination
Algorithm (FPA), and Gravitational Search Algorithm (GSA). The Metaheuristic system doesn’t
continuity differentiability, require convexity, or particular early condition that corresponds to significant
benefits related to other methods. In spite of stimulating outcomes, these search approaches preserve
various problems while they are employed to higher multi modal optimization problems [7–9].

This study presents a chaotic sandpiper optimization algorithm based clustering with groundwater flow
optimization based routing technique (CSPOC-GFLR). The CSOC-GFLR technique aims to construct
clusters and choose optimal set of routes with an intention of achieving energy efficiency and maximizing
network lifetime. The CSPOC algorithm is derived by incorporating the concepts of chaos theory to
boost the global optimization capability of the SPOC algorithm. The CSPOC technique elects an
optimum set of cluster heads (CH) whereas the other sensors are allocated to the nearer CH. A
comprehensive set of simulations take place to exhibit the significant performance of the CSPOC-GFLR
technique interms of different measures.

2 Literature Review

Gupta et al. [10] proposed genetic algorithm (GA) based method to cluster and routing in WSN. The
clustering is depending upon residual energy of gateway and distance from sensor node to their matching
CH. The routing system is depending upon residual energy of gateway together with trade off among
communication distance and number of forwards. They execute broad simulation of presented method
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and relate the simulations outcome with the present technique. Shankar et al. [11] utilize distinct PSO-
LEACH and Harmony Search Algorithm (HSA) methods. This technique contains exploitation and
exploration trade off with local search HSA limitation. To attain a global search with quicker
convergence, hybrid of PSO and HSA methods are presented for selecting energy efficiency CH. The
introduced technique demonstrates higher search effectiveness of HSA and dynamic capability of PSO
enhances the lifespan of sensor nodes. The efficiency of hybrid method is calculated by the number of
alive nodes, residual energy, amount of dead nodes, and throughput.

Oladimeji et al. [12] proposed a new Heuristic Algorithm for Clustering Hierarchy (HACH) that are
consecutively executes selection of inactive and CH nodes at all rounds. The inactive node selection
utilizes a random sleep scheduling method for determining the node selection which could be placed to
sleep mode without harmfully influencing the network coverage. Similarly, the clustering method utilizes
a new heuristic crossover function for combining 2 distinct solutions to attain an enhanced solution which
improves the distribution of CH nodes and manages energy consumption in WSN. Mann et al. [13]
proposed an improved Artificial bee colony (iABC) metaheuristic, with an enhanced search formula that
is capable of searching for an optimum solution to develop its exploitation capacity and population
sample by utilizing initial type of compact Student’s t-distribution for enhancing global convergences of
the presented metaheuristic. Additionally, to exploit the capacity of the presented metaheuristic, an energy
efficient bee clustering protocol (EEBC) dependent iABC metaheuristic was established that select
optimum CH with energy efficiency method in WSN.

Zachariah et al. [14] presented HECK and HOCK a new energy efficient clustering method for
increasing the network lifespan for heterogeneous and homogeneous platforms, correspondingly. This
method is created by Cuckoo search and Krill herd. When the optimum cluster centroid locations are
calculated by the Krill herd method, and the Cuckoo search is employed for selecting the optimum CH.
The efficiency of HOCK method is calculated by the variation of BS position and node density. For
evaluating HECK method, 2 and 3 levels of heterogeneity are deliberated. In Idrees et al. [15], a protocol
named distributed GA for lifetime coverage optimisation (DiGALCO) is recommended for preserving the
coverage and improve the lifespan of WSN. The DiGALCO integrates 3 energy efficiency systems:
virtual network section to sub domains, distributed CH selection in every subfield, following sensor
activity scheduling based genetic algorithm (GA) optimisation executed by every CH. The DiGALCO is
working to round. Every round comprises 3 stages: sensing, CH selection, discovery, and GA decision.

In Bhushan et al. [16], a method called fuzzy attribute based joint integrated scheduling and tree
formation (FAJIT) approach for tree formation and parent node selection by utilizing FL in heterogeneous
networks was projected. The FAJIT is mostly concentrating on tackling the parent node selection problem
in heterogeneous networks to aggregate various kinds of data packets for improving energy efficient. The
parent node selection is executed depending upon candidate node with least amount of dynamic
neighbors. The FL is employed in the event of an equivalent amount of dynamic neighbors. In the
presented method, FL is initially employed to WSN, and later min and max normalization are utilized for
retrieving the normalization weight (i.e., membership value) for the provided graph edge. This
membership value is exploited for representing the degree of a component belonging to a group. Thus,
the node with least number of weights is assumed by the parent node. Though several models are existed
in the literature, there is still needed to design a new technique to accomplish improved energy efficiency
and network lifetime. Therefore, this paper designs the CSOC-GFLR technique aims to construct clusters
and choose optimal set of routes with an intention of achieving energy efficiency and maximizing
network lifetime.
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3 System Model

In this study, the sensor nodes are arbitrarily distributed in a 2D region; The BS is available in the center
of the monitoring region and has limitless power; each sensor node and BS are fixed; all nodes could alter
their transmission range and calculate distance [17]; all sensor nodes have single ID and recognize its
individual position; every sensor nodes have restricted power; all clusters have 2 CHs, named vice and
main heads; the main CH of all clusters involves in multi hop routing; the vice CH gathers information
from CM and conveys the processed information to the main CH : A huge amount of energy is consumed
by the transmission, hence the processing and sensing are ignored in this study. The procedure of
receiving, and transmitting communication consumes high energy compared to sleeping and monitoring.
Thus, it assumes receiving and transmitting as communication. The radio module in this study is similar
as defined in Soro et al. [18] The energy consumed via the transmission of one-bit data is estimated by
Eq. (1)

ETX l; dð Þ ¼ lEelec þ lefsd2; d � d0
lEelec þ lempd4; d � d0

�
(1)

where Eelec represents energy consumption to send/receive one-bit data, it denotes data transmission length,
efs indicates coefficient of energy consumption to amplify radio at free space mode, emp represents coefficient
of energy consumption to amplify radio at multi fading mode, d indicates transmission distance, and d0
denotes threshold value, d0 ¼ ffiffiffiffiffi

efs
p

=emp:

Consumed energy of getting m bit data is estimated in Eq. (2)

ERX mð Þ ¼ mEelec (2)

where Eelec represents energy consumption for receiving/sending one bit data, and m indicates data length. In
this study, they consider every node send similar data of the length to its CH , and its process data to a fixed
length packet.

4 The Proposed CSPOC-GFLR Technique

The workflow involved in the CSPOC-GFLR technique is demonstrated in Fig. 1. Usually, the sensor
nodes in WSN are randomly positioned in the target area and the nodes get initialized to aware of the
neighboring nodes [19–22]. Followed by, the CPSOC based clustering technique is applied to cluster the
nodes and elect an optimal set of CHs. Then, the GFLR based routing technique is involved to choose
optimal route for inter cluster transmission. When the routes are elected, the CMs send the sensed data to
CHs and the CHs forwards it to BS via the intercluster communication.

4.1 CPSOC Based Clustering Technique

At this stage, the CPSOC algorithm is executed to determine an optimal set of CHs and organize clusters.
Sandpipers are seabirds that could be made around the world. There are extensive sandpiper species with
distinct lengths and masses. They consist of fish, earthworms, amphibians, reptiles, omnivorous, and eat
insects, etc. They are highly sharper birds. They used bread crumbs for hunting fishes and experts in
making rain like sounds by their feet to hunt for underground earthworms. Furthermore, it contains an
uncommon pair of glands right above their eyes that assist to flush the extra salt from their system.
Commonly, they live in groups. They utilized their knowledge for finding and attacking the prey [23]. An
essential thing regarding sandpipers is their attacking and migrating behaviors. The Migration is
determined by cyclic motion of sandpipers from one place to other for locating rich food and source that
would give enough energy. It is given by:
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� In migration, they travel in a group. The early location of sandpipers is distinct to prevent the collision
among them.

� In a group, sandpipers could be traveling to the path of an optimum survival fittest sandpiper that is a
sandpiper fitness value1 is lower than other.

� According to fittest sandpiper, another sandpiper could upgrade their early location.

It often attacks the migrating birds on sea while they migrate from one side to the other. They could
create spiral natural shape motion in attacking. Such behavior is equated in this manner related to
decision criterion should be improved. This creates it probable to equate a novel technique. Fig. 2
illustrates the flowchart of SOA. The scientific module of attack and migrating behaviors are deliberated
below.

4.1.1 Migration Behavior (Exploration)
This method examines the set of sandpipers that moves from one place to other in migration. In this

phase, a sandpiper must fulfill the succeeding 3 scenarios:

Collision avoidance: Further parameter CA is utilized for computing novel search agent places to prevent
collision avoidance among their adjacent sandpipers.

Csp
�! ¼ CA � Psp

�!
zð Þ (3)

where Csp
��!

indicates location of search agent that doesn’t collide with another search agent, Psp
�!

determines

Figure 1: The working process of CSPOC-GFLR model
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present location of search agent, z denotes present iteration, and CA determines motion of search agent in a
search space.

CA ¼ Cf � z� Cf =Maxiterations
� �� �

where,

z ¼ 0; 1; 2; . . . ; Maxiterations (4)

where Cf denotes control frequency to alter parameter CA that is linearly reduced from Cf to zero. For
example, when variable Cf is fixed to two, the parameter CA is always reduced from two to zero. The
value of Cf is fixed to two in this study. The word fitness value is determined as an aggregate that
calculates the population and provides a fitness/score. While the aggregate is a process that evaluates the
quality of denoted solution.

Converge in the direction of an optimum neighbor: In collision avoidance, the search agent converges
(move) to the direction of optimum neighbor.

Msp
�! ¼ CB � Pbst

�!
zð Þ � Psp

�!
zð Þ

� �
(5)

where Msp
�!

denotes positions of search agent Psp
��!

to an optimum fittest search agent Pbst
��!

(fitness value is
lesser). CB indicates arbitrary parameter that is accountable for an optimum exploration. The CB

calculated by:

CB ¼ 0:5� Rand (6)

where Rand denotes arbitrary amount in the range of zero and one:

Figure 2: Flowchart of SOA
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Upgrade regarding optimism search agent: Lastly, the search agent/sandpiper could upgrade its location
equivalent to optimum search agent.

Dsp
�! ¼ Csp

�!þMsp
�!

(7)

where Dsp
�!

determines the gap among search agents and optimum fittest search agents.

4.1.2 Attacking Behavior (Exploitation)
In migration, sandpipers could always alter their angle and speed of attack. They utilize their wings for

increasing altitude. It creates the spiral behavior, when attacking prey, in the air. This behavior in three-
dimension plane is given by.

x0 ¼ Radius � sin ið Þ (8)

y0 ¼ Radius � cos ið Þ (9)

z0 ¼ Radius � i (10)

r ¼ u� ekv (11)

where Radius represents radius of every turn of spiral, i indicates parameter in the range of 0 � k � 2p½ �: u and
v indicate constant to determine spiral shape, and e represents base of natural logarithm. Consider the
constant values of u and v as one. If the constant values are greater compared to one, the shape of spiral
is highly complicated. Thus, the upgraded location of search agent is calculated by Eqs. (8)–(11).

Psp
�!

zð Þ ¼ Dsp
�!� x0 þ y0 þ z0ð Þ

� �
� Pbst

�!
zð Þ (12)

where Psp
�!

zð Þ upgrades position of another search agent and saves an optimum solution.

4.1.3 Design of CSPO Algorithm
In order to improve the performance of the SPO algorithm, chaos concept is integrated into it. Chaos is

an unstable condition/dynamic behavior that is highly sensitive in early conditions. It has been employed in
several optimization techniques for avoiding traps in local optimal and enhance the quality of solution. The
metaheuristic technique is depending upon 2 methods: exploration and exploitation. By exploitation, the
search is created for an optimum solution, where the exploration enables search for an effective solution
[24]. The chaos is introduced to metaheuristic technique for striking a balance among exploitation and
exploration, hence it efficiently attains an optimum solution. The chaos is included in GFLR method for
obtaining enhanced features for exploitation and exploration in every search space and improves the
efficiency of the recommended method in detecting an optimum global solution. The Chaotic map is
utilized in determining the location of xki , while the variable θ is replaced with an obtained value via
chaotic map is given by

xkþ1
i ¼ xki þ Cnap � xBH � xki

� �
; i ¼ 1; 2; . . . ; Nr (13)

where xki and xikþ1 represents position of ith star at iterations k and k þ 1, correspondingly. xBH indicates
location of BH in the space, Cmap denotes chaotic map, and Ns indicates number of stars. The 10 chaotic
maps have been utilized for manipulating the value of arbitrary variables in SPO, and the early value of
every map was fixed to 0.7.

4.1.4 Process Involved in CSPO Based Clustering Technique
Let N nodes in WSN are used as K clusters with MðK << MÞ candidate CH. Following, the method

with Ck
n feasible clustering techniques and elect better clustering model is a challenging optimization
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problem. Utilizing the fitness function (FF) of CSPOC solves the problem from clustering model, and
framework of FF is considered as distance to neighboring nodes (DNN), distance to BS (DTBS), and
residual energy (RE). Initially, BS estimates the high power of nodes based on the energy accessible in
network. The node with superior RE is considered that the candidate CH. Then, BS executes CSPOC to
carry out clustering by FF as demonstrated in Eq. (14).

f xð Þ ¼ e1 f1 pj
� �þ e2 f2 pj

� �þ e3 f3 pj
� �þ e4 f4 pj

� �
(14)

The local density qi of CH is utilized in kernel function as expressed in Eq. (15)

qi ¼
X

j2IS e
�

dij
dc

	 
2

(15)

where S ¼ faigki�1 implies a CH set in WSN, dc refers a truncation distance, and d ai; aj
� �

denotes the
distance among CH ai and aj: f1 refers the DNN value. When the neighboring distance is maximal, next
CH with and with no local densities are distributed to particular extent. Also, dispersal of CH is obtained
by diminishing the adjacent distance of CH. The term f1 is determined as Eq. (16).

f1 ¼
min
j2I iS

dij
� �

; I iS 6¼ [

max
j2I iS

dij
� �

; I iS ¼ [

8><
>: (16)

I iS ¼ fk 2 IS : fk > fig;
where f2 shows a CCEF and low average distance among the node as well as CH is defined as Eq. (17).

f2 ¼ 1

maxK¼1;2���K
P8ni 2 CPj;K

d ni;CHPj;K

� �
CPj;K

 
( ) ; (17)

where d ni;CHPj;K

� �
stands for distance in node ni and CH, and CPj;K

  indicates the number of nodes from
cluster CK : Lastly, f3 signifies the CH, RE factor, NC refers the network center, and CH place is established
utilizing Eq. (18).

f3 ¼ K � d BS;NCð ÞPK
i¼1 d BS;CHpj;k

� � (18)

The weight coefficient of evaluated factor fulfills e1 þ e2 þ e3 ¼ 1. Based on the FF, maximal FF score
is appropriate to meet the provided condition like considerable CH dispersion, maximum CH power, and CH
is nearer to sink node. In addition, the cluster utilized by FF implements minimum energy and holds many
CHs; so, small clusters are recognized from vicinity of sink and overcome the power dispersion in all
clusters.

4.2 GFLR Based Routing Technique

The GFL algorithm is based on the movement of groundwater from recharging regions to discharging
regions stimulating the concept of Darcy’s law. A major idea of GFL algorithm is the flow of ground water is
mainly directed by Darcy’s law [25]. Earlier works explored that the velocity of the groundwater flows highly
based on height difference and gap in position. Once the function undergo initiation, the candidate solution
can be defined by
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Gmn ¼ LBn ið Þ þ Rn 1ð Þ	 UBn ið Þ � LBn ið Þ
� �

(19)

m ¼ 1; 2; . . . i (20)

n ¼ 1; 2; . . .Dim (21)

where Gmn denotes the value of m the candidate solution in n dimension, UBn ið Þ and LBn ið Þ are the maximum
and minimum bounds of function i correspondingly and Rn is an arbitrary number lies in the range of 0–1. All
the candidate solutions are supported by a velocity element, and it can be defined by

veln
��!

0ð Þ ¼ 0 (22)

where (0) defines the initial velocity of the candidate solution. Next to the initialization process, the position
update takes place using the groundwater flow rules and Darcy’s law. Groundwater is majorly supported by
height difference (Δh) and gap length (L). Then, the present candidate solution can be mathematically
represented using the present functional values, as defined in Eq. (23):

Dis An
�!

ið Þ ¼ RðDis A1
�!

ið Þ; Dis A1
�!

tð Þ . . . Dis An
�!

tð Þ (23)

where D is denotes the chosen Discharged region. R and t signify the discharge area water flow and ground
water flow correspondingly. The discharge velocity is directly proportional to the Hydraulic gradient (hg), as
defined in the following

hg
DA
�! nð Þ ¼

Dhg
DA
�! nð Þ

L
DA
�! nð Þ

hg
Gw
�! nð Þ ¼

Dh
GW
��! nð Þ

L
GW
��! nð Þ

vel
DA
�! nð Þ ¼ P	 hg

DA
�! nð Þ

vel
GW
��! nð Þ ¼ P	 hg

GW
��! nð Þ

The production of hg with a discharge velocity velð Þ based on the discharge region and ground water for
all individuals are determined. In addition, the P is called as the coefficient of permeability. Vel is the
discharge velocity. So, the total time complexity (TC) is defined by

Fitness computation ¼ Tc GW � Itern � dimð Þ (24)

where GW is the number of ground water, Itern represents the number of rounds, dim indicates the
dimensionality count in the objective function. Fig. 3 demonstrates the flowchart of GFL.

The main principle of GFLR is for finding new route from CHS to BS. The new path is recognized by
utilizing GFLR as FF metric that is included of RE, distance to BS (DTBS), and NDE.

At the initialization stage, all FFs determine fittest solution to implemented problem. In routing, all FFs
imply the data forwarding route in CH to sink node. The importance of FF is related to CH accessible from
the network, and additional location is added to sink. The supremacy of FF is similar to mþ 1, where m
signifies the number of CH contained from the system. Let, Fi ¼ Fi;1 tð Þ; Fi;2 tð Þ . . .Fi;mþ1 tð Þ� �

be ith FF,
and the positions Fi;d; 8i1 � i � mþ 1;8d1 � d � mþ 1; determines next-hop to send data to
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BS: It can be extremely focused on deciding optimum route from CH to sink. It can be obtained by utilizing
FF in several sub objectives namely RE, Euclidean distance, as well as NDE. In order to deliver data,
consecutive hop obtains the data and transmitting to BS. So, maximal RE of next-hop is prioritized
prominently. Moreover, primary sub objective by means of RE f 1 is improved by,

f 1 ¼
Xm
i¼1

ECHi (25)

Euclidean Distance can be represented as distance among CH to next hop and sink. If the distance is
minimal after the power utilization rate is also decreased. The second objective is for minimizing the
distance amongst CHs to sink measured by,

f 2 ¼ 1Pm
i¼1 dis CHi;NHð Þ þ dis NH;BSð Þ (26)

ND It implies the count of nodes in next-hop. When next-hop is contained of restricted CH members,
after it utilizes minimum energy in gained data in neighboring members and stays alive to longer duration.
Then, the next-hop with restricted node degree is elected prominently. Lastly, NDE is determined interms of
node degree of f 3 and written as,

f 3 ¼ 1

�m
i¼1Ii

(27)

Figure 3: Flowchart of GFL

1182 CSSE, 2022, vol.41, no.3



Afterward, the weighted sum model is implemented to each sub objective and converted as single
objective as represented in Eq. (28). Now a1; a2 and a3 signifies the weights assigned to all sub
objectives, and aie 0; 1ð Þ and a1 þ a2 þ a3 ¼ 1:

Fitness ¼ a1 f 1ð Þ þ a2 f 2ð Þ þ a3 f 3ð Þ (28)

5 Performance Validation

This section examines the performance of the proposed CSPOC-GFLR technique with other existing
techniques. The proposed model is simulated using MATLAB R2014. The results are examined under
varying number of nodes. In addition, the performance of the CSPOC-GFLR technique is investigated
interms of network lifetime (NLT), total energy consumption (TEC), throughput, normalized overhead
(NOH), and end to end (ETE) delay. A brief comparative study of the CSPOC-GFLR technique with
state of art methods [26,27] takes place interms of NLT, TEC, and throughput as shown in Tab. 1.

Fig. 4 investigates the NLT analysis of the CSPOC-GFLR technique with existing ones under varying
node count. The figure demonstrated that the ATEER technique has offered an insignificant outcome with the

Table 1: Comparative analysis of the CSPOC-GFLR technique with state of art methods

Network Lifetime (s)

Number of Nodes ATEER OQoS-CMRP FUCHAR CSPOC-GFLR

100 20105 21145 23073 24284

200 17568 19290 21447 23754

300 15418 16927 19203 21299

400 13196 15244 18773 19949

500 12619 14981 17875 18852

Total Energy Consumption (J)

Number of Nodes ATEER OQoS-CMRP FUCHAR CSPOC-GFLR

100 7.00 6.35 4.85 3.14

200 10.12 7.01 5.245 4.33

300 13.95 11.58 8.32 6.37

400 16.24 15.21 11.56 7.30

500 17.58 15.867 12.12 10.14

Throughput (Kbps)

Simulation Time (s) ATEER OQoS-CMRP FUCHAR CSPOC-GFLR

200 39.00 35.28 47.75 56.36

400 46.45 42.65 52.35 61.96

600 51.24 46.72 56.23 64.59

800 54.21 51.19 60.75 70.27

1000 60.36 55.48 62.85 72.43
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minimum NLT over the other methods. Similarly, the OQoS-CMRP technique has showcased certainly
increased NLT over the ATEER technique. Likewise, the FUCHAR technique has portrayed somewhat
improved NLT over the previous methods. But the proposed CSPOC-GFLR technique has gained
maximum NLT over the existing methods under different node count. Particularly, the CSPOC-GFLR
technique has resulted in a higher NLT of 24284 s, 23754 s, 21299 s, 19949 s, and 18852 s under the
varying node count of 100–500.

An extensive TEC analysis of the CSPOC-GFLR technique with compared methods is provided in
Fig. 5. From the figure, it is apparently clear that the ATEER technique has appeared as a worse
performance which has obtained maximum TEC. At the same time, the OQoS-CMRP technique has
accomplished slightly decreased TEC over the ATEER technique. Simultaneously, the FUCHAR
technique has demonstrated competitive outcome with the moderately lower TEC. However, the CSPOC-
GFLR technique has resulted in a minimum TEC over the existing methods. Specially, the CSPOC-
GFLR technique requires the least TEC of 3.14 J, 4.33 J, 6.37 J, 7.30 J, and 10.14 J under varying
number of 100–500 nodes.

Figure 4: Network lifetime analysis of CSPOC-GFLR model

Figure 5: Total energy consumption analysis of CSPOC-GFLR model
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A detailed throughput analysis of CSPOC-GFLR technique with existing techniques takes place in
Fig. 6. The figure reported that the existing ATEER technique has attained lowest throughput under
varying simulation time. Moreover, the OQoS-CMRP technique has obtained slightly increased
throughput over the ATEER technique, but not than FUCHAR and CSPOC-GFLR techniques. Though
the FUCHAR technique has accomplished reasonable throughput, the CSPOC-GFLR technique shows
promising results by demonstrating maximum throughput. For instance, the CSPOC-GFLR technique has
achieved a higher throughput of 56.36 kbps,61.96 kbps, 64.59 kbps, 70.27 kbps, and 72.43 kbps under
varying simulation time of 200–1000 s.

Tab. 2 examines the NOH and ETE delay analysis of the CSPOC-GFLR technique under varying nodes
and simulation time. A comprehensive NOH analysis of the CSPOC-GFLR technique with existing
techniques takes place in Fig. 7. The figure portrayed that the ATEER technique has exhibited least
outcome and offered highest NOH compared to other methods. Eventually, the OQoS-CMRP technique
has depicted somewhat reduced NOH over the ATEER technique. Concurrently, the FUCHAR technique
has displayed reasonable performance with the considerably minimal NOH. But, the CSPOC-GFLR
technique has outperformed the other methods by offering the least NOH over the existing methods. For
instance, the CSPOC-GFLR technique requires the least NOH of 1.97, 2.56, 3.14, 4.79, and 3.51 under
varying number of 100–500 nodes.

Finally, a complete ETE delay analysis of CSPOC-GFLR technique is investigated in Fig. 8. From the
figure, it is noticed that the ATEER technique has resulted in a maximum ETE delay under different
simulation times. Meanwhile, the OQoS-CMRP technique has gained somewhat decreased ETE delay
over the ATEER technique except for FUCHAR and CSPOC-GFLR techniques. Though the FUCHAR
technique has resulted to considerably lower throughput, the CSPOC-GFLR technique achieves
significant performance with the least ETE delay under varying simulation times. For instance, the
CSPOC-GFLR technique has achieved the lowest ETE delay of 0.01314 ms, 0.02002 ms, 0.01983 ms,
0.01354 ms, and 0.01985 ms under varying simulation time of 200–1000 s. The experimental results
stated that the proposed model outperformed the existing techniques due to the following reasons:
CSPOC based clustering and GFLR based routing process. Besides, the CSPOC algorithm is derived by
incorporating the concepts of chaos theory to boost the global optimization capability of the SPOC algorithm.

Figure 6: Throughput analysis of CSPOC-GFLR model
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Table 2: Comparative analysis of the CSPOC-GFLR technique with state of art methods

Normalized Overhead (%)

Number of Nodes ATEER OQoS-CMRP FUCHAR CSPOC-GFLR

100 7.142 4.475 4.12 1.97

200 9.274 7.134 4.23 2.56

300 10.268 9.12 5.00 3.14

400 13.995 11.86 7.23 4.79

500 14.213 13.23 6.75 3.51

End-to-End Delay (ms)

Simulation Time (s) ATEER OQoS-CMRP FUCHAR CSPOC-GFLR

200 0.03755 0.0356 0.02885 0.01314

400 0.03545 0.02925 0.02515 0.02002

600 0.03695 0.03581 0.03185 0.01983

800 0.04185 0.03656 0.02913 0.01354

1000 0.04487 0.03987 0.03127 0.01985

Figure 7: Normalized overhead analysis of CSPOC-GFLR model
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6 Conclusion

This study has developed a novel CSPOC-GFLR technique to construct clusters and choose optimal set
of routes with an intention of achieving energy efficiency and maximizing network lifetime. The CSPOC-
GFLR technique involves two major phases namely CSPOC based clustering and GFLR based routing
process. The CSPOC algorithm is derived by incorporating the concepts of chaos theory to boost the
global optimization capability of the SPOC algorithm. A comprehensive set of simulations take place to
exhibit the significant performance of the CSPOC-GFLR technique interms of different measures. The
experimental outcomes portrayed the promising performance of the CSPOC-GFLR technique by
achieving reduced energy utilization, improved lifetime, and prolonged stability over the existing
techniques. As a part of future work, the CPSOC-GFLR technique can be deployed in a real time
physical environment. Besides, data aggregation and scheduling techniques can be introduced to boost
the overall network performance.
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