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Abstract: Recommendation systems are going to be an integral part of any
E-Business in near future. As in any other E-business, recommendation systems
also play a key role in the travel business where the user has to be recommended
with a restaurant that best suits him. In general, the recommendations to a user are
made based on similarity that exists between the intended user and the other users.
This similarity can be calculated either based on the similarity between the user
profiles or the similarity between the ratings made by the users. First phase of this
work concentrates on experimentally analyzing both these models and get a deep
insight of these models. With the lessons learned from the insights, second phase
of the work concentrates on developing a deep learning model. The model does
not depend on the other user's profile or rating made by them. The model is tested
with a small restaurant dataset and the model can predict whether a user likes the
restaurant or not. The model is trained with different users and their rating. The
system learns from it and in order to predict whether a new user likes or not a
restaurant that he/she has not visited earlier, all the data the trained model needed
is the rating made by the same user for different restaurants. The model is
deployed in a cloud environment in order to extend it to be more realistic product
in future. Result evaluated with dataset, it achieves 74.6% is accurate prediction
of results, where as existing techniques achieves only 64%.

Keywords: Deep learning; restricted boltzman machine; profile based similarity;
rating based similarity; item based similarity

1 Introduction

E-commerce has extended its horizon to provide different types of services and products to the end
customers. Recommendation systems act as an integral part of the modern e-commerce sites and
applications. Whatever the products may be, the sellers use recommendation systems for making their
products reach their customer. The products range from music [1], movies [2] and even job portals are
recommending jobs to their registered users [3].
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The objective of this work is to analyses the recommendation systems based on user similarity both
profile based and rating based. In addition to this a deep neural network model based on restricted
boltzman machine is also developed and the performance is measured. The experimentation is done with
the small dataset which could be helpful for the restaurants with small number of customer ratings.

The models implemented in this work, are as follows

▪ Recommendation of restaurants to the user based on similarity between the users in the context of
profile-based similarity.

▪ Recommendation of restaurants to the user based on similarity between the users in the context of
rating-based similarity.

▪ Recommendation of restaurants to the user based on the rating made by the same user with deep neural
network.

In order to provide an impact of real time implementation, the details of the restaurants and the
corresponding rating are deployed as the web services in the Google cloud environment. When a
particular user is needed to be recommended with a set of restaurants, the ratings and the details of the
restaurants are obtained from the web services and further processed. For ease of implementation, it has
been considered the profiles of the users are stored in a separate web service. The model is depicted in
the following Fig. 1.

The paper is organized as follows. The second section explains the state of art model that are in practice,
the third section discusses in brief the various models implemented, the fourth section gives the results and
the final section provides conclusion and the future work.

2 Related Work

The various approaches for recommendation system are depicted in the following Fig. 2. Content based
recommendation models are the one that recommends items to the users based on the profile of the user's
interest and the features that describes the item. This kind of model requires both user profile and the
item profile in one or other form. Content based similarity model uses the similarity between the users
and the similarity between the items. Knowledge based recommender systems are the one that makes
some queries to the users and based on the replies made by the user, the products are recommended.
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Figure 1: System model
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Collaborative filtering is the commonly followed approach in recommendation systems. State of art
models employ this kind of approaches for recommending items to the users. Collaborative filtering can
be classified in to two types as shown in the below Fig. 3.

The study made in this includes the various collaborative filtering approaches and their variants in terms
of the way similarity measures are calculated and other such criteria.

Achrafand Lotfi et al. [4] discuss the various similarity measures that are commonly used for finding the
similarity between the users and also between the items. They have listed the drawbacks that occur with those
similarity models. They have proposed a new similarity model. The similarity measure is defined in such a
way that it satisfies the specified qualitative conditions and institutive conditions. the similarity model is
formulated in to mathematical equations and resolved to frame a kernel function. It has been observed
from the results that the employment of this similarity model produces comparatively higher accuracy
with the benchmark datasets. The dataset employed in this is the Movie-lens dataset.

The concept of multi criteria rating model is combined with deep neural networks in [5]. The dataset
employed here is Trip-advisor's dataset which contains seven different criteria and their corresponding
rating. First, the deep neural network designed for predicting the criteria rating are fed with the user Id
and the Id of the item. The model would predict the rating of the different criteria. These criteria rating is
normalized and given as input the deep neural network model for predicting the overall rating which in
turn gives the recommendation. Mean absolute error is identified for the rating made for the individual
criteria.

Valdiviezo-Diaz et al. [6] have built a recommendation engine based on naive bayes classifier. The
computation is made by predicting the probability that a particular item will be given a particular rating
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Figure 2: Classification of recommendation system model
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Figure 3: Classification of collaborative filtering based recommendation systems
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by a specific user. This probability values are calculated with the ratings that already exist in the considered
dataset. The process of calculating this probability includes the naive bayes classification model..

A new similarity measurement technique is proposed in [7]. Commonly used Pearson correlation and
cosine similarity is replaced with intuitionistic fuzzy reasoning. The process of recommendation is done
with finite prior ordering method. In addition to the user-based similarity and the item-based similarity
that are followed in the traditional collaborative filtering-based recommendation models, Jawarneh
et al. [8] have used the contextual information. The model proposed is called as the context aware neural
collaborative filtering. The main step of the work proposed by the authors is the incorporation of item
splitting which is used for including the context information in to the items.

Event recommendations are made in [9] with the help of the context aware hybrid collaborative filtering
model which also includes semantic content analysis. For every user, with the help of his/her history of event
registration, two interest models are created by the authors, short term and long-term models. In order to
include the various impacts of the events on users, weight is also assigned called as influence weight. For
selecting the similar neighbors long term influence model is used and for making user event matrix, short
term influence model is used. From the similar user ratings, event ratings are predicted.

The number of web services pertaining to a particular application is increasing day by day; Botangen
et al. [10] have designed a recommendation system that considers geographical location in recommending
web services. The view of the authors is that the geographical location feature would have a great impact
in applications related to Internet of Things. A probabilistic matrix factorization is also employed by the
authors for making preferences taking into consideration the geographical location. The precision of the
recommendations made increases with the inclusion of this feature as per the results obtained by the authors.

While most of the recommendation systems concentrates on recommending products to individuals,
Pujahari and Sisodia et al. [11] have concentrated on recommending items to a group of users. In order to
address the challenges created by the different preferences, and make suitable recommendations, matrix
factorization with respect to preference relation is employed. It is followed by graph aggregation for
aggregating the users based on preferences. The result indicates that the model performs well for group
recommendations.

Marchand et al. [12] have put effort to give the reason behind the recommendations made. They believe
that more precise recommendations with the reasons would help in building the trust of the customers by the
online retailers. The collaborative filtering model and the content-based model are combined together to
achieve this objective. The key part of the work is to consider the attribute-based preferences of the users
and the attributes of the items and finding the interaction between them for modelling the rating.

According to Afoudi et al. [13] collaborative filtering models does not perform well when the
contextual data is included. Sparsity problem also degrades the performance of collaborative filtering
models. So, authors have incorporated content-based models. The recommendation system is built with
two parameters; first, the contextual information extracted from the profile of the users and seconds the
features of the restaurant.

The complexity of the problem increases in this kind of models. Finding neighborhood is also a tedious
task in scenarios like this. Cai et al. [14] deals with this kind of model and the main finding of the authors are
that in the traditional recommendation models, the nature of the neighborhood is asymmetric in nature which
leads to problems in neighborhood. This problem is overcome with the employment of reciprocal
neighborhood. Based on this, a new recommendation algorithm is proposed called as the K-Reciprocal
nearest neighborhood algorithm. The results obtained are better than the related algorithms.

In [15], user based collaborative filtering model is enhanced with neural networks for differentiating the
user's importance in the learning process. Though there exist various methods for addressing the sparsity
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problem in collaborative filtering, the complication increases with the increase in the size of the sparsity data.
This problem is addressed in [16] where the linear relations and the nonlinear relations between the users are
extracted, with the help of which multi factor similarity measure is calculated.

Recommendation of lists has become popular with applications such as generation of play lists.
When the traditional collaborative filtering model considers only individual items when predicting the
preferences, a mechanism is needed for considering a list of items instead of a single item. Such a model
is proposed in [17]. The foremost process in this model is the learning made by a neural network enabled
with attention mechanism and gate mechanism on list embedding, item embedding and the user
embedding. This is followed by learning of three types of interactions by an interaction network; this
includes interaction between the user and the item, interaction between the user and the list and finally
interaction between the user and the item. The accuracy of the model in terms of recommending items as
well as recommending lists are high than the other models.

3 System Design

The dataset employed in the work is obtained from UCI repository and it contains 138 users and
130 restaurants. It also contains the details of the individual users and the details of the individual
restaurants. The user details are latitude, longitude, drink level, dress preference, ambience, transport,
marital status, birth year, interest personality, religion, activity, color, weight, budget and height. In case
of the restaurants, the details are latitude, longitude, name, address, city, state, country, fax, zip, alcohol,
Smoking area, dress code, accessibility, price, URL, ambience, franchise, area and other services.

Similarly, the dataset also contains the rating made by the users for different restaurants. The ratings
include overall rating, rating made for food and rating made for service.

Three models are designed,

▪ The first one employs the features of the users and to find the similarity and followed by the
collaborative filtering way of recommending the items.

▪ The second model uses the user's rating for finding the similarity and make recommendation.
▪ The third model is based on restricted boltzman machine. The third model is also based on the rating
and hence it can be applied in the various applications such as E-commerce, live streaming product
recommendations.

The pre-processing steps included in the first model is as follows

� Handling missing/null values

� Handling categorical data

� Splitting the dataset into train set and test set

The dataset is split into training set and test set. 90% of the data is allocated for training set and 10% is
used for test set. The models built are explained in the following sub sections.

3.1 Recommendation with User Profile-Based Similarity

The Fig. 4 represents the architecture of this model. The process of building the model is explained with
a help of a single user, the first process is to find the similarity between the users. The percentage of similarity
between the taken users and the other users are identified by constructing the KDTree provided in the scikit-
learn library [18], KDTree employs Euclidean distance given in Eq. (1) to find the distance between the users
from which the percentage of similarity is calculated.
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dðX ðiÞ; X ðjÞÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
f

ðxðiÞf � xðjÞf Þ2
s

(1)

For instance, for a particular user with user ID U1029 the top 5 similar users are U1021, U1053, U1063,
U1116, U1131. The percentage of similarity of the particular user to the top 5 similar users is given in the
following Tab. 1.

The restaurants that are rated by these top users are consolidated and the ratings are averaged and
restaurants with top average ratings are recommended to the user U1029. It can be observed the list is not
in the right order as shown in Tab. 2. For instance the overall rating of the restaurant 135059 made by the
user U1029 is 2 which is higher than the other restaurants. But in the list the particular restaurant
occupies position behind all other restaurants rated lower by the same user is listed in Tab. 2.

Dataset

Convert Categorical Data to 
Numerical Data

Split the Dataset in to two 
sets set1, set2 in 90:10

Set 1 

Construct KD-Tree

Single user Ur from 
set 2 to whom 

recommendation 
should be made

KD Tree

Find the similarity 
between user Ur and 
other users in set 1

Find top 5 similar users

Find the Restaurants rated 
by these users and average 

of the ratings

Make recommendation

Figure 4: Architecture of user profile-based similarity model
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The restaurants that are rated by U1029 are listed in the Tab. 3 given below and the ratings provided by
them are also given. The Tab. 3. also includes rating provided by the similar users for the same set of
restaurants if they have rated it.

Table 1: Top 5 similar users and percentage similarity

Si.No User ID Percentage of similarity

1 U1021 99.39867136999888

2 U1053 98.9496556930428

3 U1063 98.88673572911277

4 U1116 98.9496556930428

5 U1131 100.0

Table 2: Ranking of restaurants based on the user profile similarity

S.
No

PlaceID Name Latitude Longitude Recommendation
percentage

1 132866 Chaires 22.14122 −100.931 100

2 132870 Tortas y hamburguesas el gordo 22.14308 −100.935 100

3 132869 Dominos Pizza 22.14124 −100.924 100

4 132851 KFC 22.13687 −100.935 100

5 135054 Restaurante y Pescaderia Tampico 22.14063 −100.916 100

6 135082 la Estrella de Dimas 22.15145 −100.915 100

7 132668 TACOS EL GUERO 23.73821 −99.152 99.39867137

8 132715 tacos de la estacion 23.73242 −99.1587 99.39867137

9 132740 Carreton de Flautas y Migadas 23.7522 −99.1666 99.39867137

10 135032 Cafeteria y Restaurant El Pacifico 22.15248 −100.973 98.94965569

11 132754 Cabana Huasteca 22.14774 −100.991 98.94965569

12 135081 El Club 22.16484 −100.96 98.94965569

13 135062 Restaurante El Cielo Potosino 22.1537 −100.979 98.94965569

14 135027 Restaurant Orizatlan 22.14715 −100.974 98.94965569

15 135085 Tortas Locas Hipocampo 22.1508 −100.983 98.94965569

16 132834 Gorditas Doa Gloria 22.15647 −100.986 98.94965569

17 135047 Restaurante Casa de las Flores 22.15092 −100.994 98.94965569

18 135052 La Cantina Restaurante 22.15098 −100.977 98.94965569

19 132825 puesto de tacos 22.14739 −100.983 98.94965569

20 135038 Restaurant la Chalita 22.15565 −100.978 98.94965569

21 135063 Restaurante Alhondiga 22.15672 −100.976 98.94965569

22 135059 Restaurant Bar Hacienda los Martinez 22.14511 −100.99 98.94965569
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The average rating of the other users and the average rating of the intended user is compared in the
following Fig. 5.

Though it is known that comparison of rating made by two different users is not a good idea, it is made to
get an idea of how efficient the recommendations are. It has also been observed from the results when ordered
according to the average rating of the similar users also does not show better results. This is not the case with
a single user, the model has been tested with 18 users and the average rating between the intended user and
the similar users are compared and the root mean square is calculated, the value of which is
0.7912287009094507.

It has been inferred from this user similarity based recommendation model is that it could be used in
cases where the users have not made any previous ratings. This can even helps in addressing the cold
start problem that prevails in the recommendation systems. But, since the similar users are identified with
the profile of the user rather than the rating made by the users, there is a scope for enhancing it which
forms the second model.

Table 3: Rating made by target user and similar users

Restaurant U1029 U1053 U1116

Overall rating Food rating Service rating OR FR SR OR FR SR

135047 1 1 1 2 2 2

135059 2 1 1 0 2 2

132937 1 1 1

135085 1 1 1 2 2 2

132834 0 1 0 2 2 2

132754 0 0 0 1 2 1

132825 1 1 0 1 2 0 2 2 2

132921 1 1 1

132862 1 1 1

132922 1 1 1

0

0.5

1

1.5

2

2.5

135047 135059 135085 132834 132754 132825

U1029

Othe users

Figure 5: Comparison of rating made by the target user and similar user

910 CSSE, 2022, vol.41, no.3



3.2 Recommendation with User Rating-Based Similarity

In the second proposed model, the similarity between the users is calculated on the basis of the rating
made by them on different restaurants. Given a user, the objective of the model is to recommend a set of
restaurants are shown in Fig. 6. The steps of the model are given in Tab. 4.

The model is based on the similar between the ratings made by different users. In general, various
normalization methods are followed to normalize the ratings of the user. This is done in order to address
the variations in the rating made by the users with respect to their tolerance and conservative nature. But
in the considered dataset the rating is made only with three values 0, 1, 2. So it is believed that
normalizing the value is not required as there cannot be much variation. As the first step, Cosine

Dataset
(Set of users with their 

rating on different 
restaurants)

Ur user to which
recommendation
should be made

Rest of the 
users and their 

ratings

Extract the set of 
Restaurants R that 
the user has rated 

and the 
corresponding rating

For the 
restaurants R 
find all other 

users who have 
rated it and the 
corresponding 

rating

R

Find the 
similarity 

between the 
users using 

cosine similarity 
based on the  
rating made

Extract the top 
30 similar users 

Calculate score of the 
restaurants based on the 
rating made by similar 
users and the similarity 

measure

Make 
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Figure 6: Architecture of user similarity-based model
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similarity is calculated between the given user and all other users, cosine similarity given in Eq. (2) .

Similarity ðA; BÞ¼ cosðuÞ ¼ A:B

kAkkBk (2)

where A and B are vectors and in the considered scenario, they are the ratings made by the user. With the help
of the cosine similarity, the top 30 users who are similar to the intended user are found. The rating made by
the similar users for a particular restaurant is extracted. With these values, a score is calculated based on
which the restaurants are recommended to the user. The score is calculated as per (3).

Score ¼
P30

i¼1 rismi

smi
(3)

where, ri is the rating made by the similar users, smi is the similarity measure between the users

Finding the score enables us to getter a better idea on the results unlike the earlier model.

The important thing to note in this model is only the overall rating is considered rather than the
considering all other ratings. The following Tab. 5. depicts it.

The comparison of the trend of change in the score with respect to the rating can be inferred from the
below Fig. 7. With this method of calculating the score, the scores of all the restaurants rated by the similar
users are calculated and the five restaurants with high score are recommended for the users. In both the
models, there are no direct model of evaluation is available. Next a deep learning model is developed for
recommending restaurants.

3.3 Item Similarity Based Model

The deep learning model employed in this work is restricted boltzman machine. The steps involved are
described below

Table 4: Procedure for recommendation system using user rating

1. Consider a set of users U = (u1, u2,….un)
2. Let R={R1, R2, R3,….Rn} be the set of restaurants
3. Let RR be the rated restaurants , RR = {RR1, RR2,…RRm} and RR 4 R
4. Each Ui ∈ U has rated RRi Where RRi = { R1, R2, R3,…Rm} and RRi4 R

5. Let ur be the user to whom the recommendation should be made and ur ∈ U
6. Consider Uo, where Uo = U – {ur}
7. Find RRj rated by Ur
8. Find UR, where UR = {u1, u2,…um} , UR 4 U and rated one or more Ri in RRj
9. For each e in UR
Find similarity between ur and e
10. Find top 30 similar users
11. Calculate score for each restaurant with rating made by individual users and the similar users.
12. Make recommendations
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3.3.1 Preparing the Dataset
The training set and the test set are in the separate files and they are loaded separately. Both the training

set and test set contains the same data as of the ratings file. The number of observations in training data is
636 and number of observations in test data is 508. It follows the classical train and test split.

The training set and the test set are converted into an array such that the rows represent the users and the
columns represent the restaurants. It has also been observed that the user rating is not common. The users are
common in training and test set but the restaurants and the corresponding rating are different. The training
and test set are converted into pytorch tensors and given as inputs to the boltzman machine. The train and test
contain ratings in the range of 0 to 2 it has to be converted in to binary classification 1 or 0.

3.3.2 Restricted Boltzman Machine
Restricted boltzman machines unlike other models contains only two layers, the input layer and the

hidden layer as shown in the following Fig. 8.

Table 5: Score of individual restaurants

Restaurant U1029

Overall rating Score

132825 1 1.2812499999999998

132937 1 1.4999999999999996

132862 1 1.3888888888888888

135059 2 1.6666666666666665

135047 1 1.0999999999999999

132834 0 0.9666878227378957

132922 1 1.838888183281475

132921 1 1.2607810762326521

132754 0 1.461538461538461

135085 1 1.3111250295293724

0

0.5

1

1.5

2

2.5
Overall rating
Score

Figure 7: Comparison of the trend of change in the score with respect to the rating
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The input layer is the one that has the value either 0 or 1. 1 represents that the particular user likes the
restaurant and 0 represents that the user dislikes it. Hidden layer represents the factors such as the Food,
Service etc. It is called as the latent factors which are used for describing the restaurant choices. The
system finds the latent factors hidden, based on the preferences of the user when the training set of that
user is given as input. Bernoulli distribution is used in the Restricted boltzman machine for identifying
the neurons in the hidden layer that would be activated. In the hidden layer the value from the input layer
is multiplied with a weight which is updated with contrastive divergence. The procedure of the model is
given in Tab. 6.

The restricted boltzman machine works in this fashion and the rating of the restaurant that has not been
yet rated by the target user is identified. Since the probabilistic values are used in the models it paves us a way
to measure the performance of the model. The values that are obtained with this model are given in the results
section.

Input Layer

Hidden Layer

Figure 8: Restricted boltzman machine

Table 6: Procedure for restricted boltzmann machine

Let
W= Weight Matrix , a = bias vector of visible units , b= bias vector of hidden units , v= momentum,
v1= visible units, Training vector of the model = v1.
For given number of epochs:
For each j in the hidden units:
Calculate Pðh1j ¼ 1jvÞ ¼ 1

1þeð�ðbiþwiviÞÞ
Sampling h1j ∈ {0, 1} from P (h1j V1)
For each i in the visible units:
Calculate Pðv2i ¼ 1jhÞ ¼ 1

1þeð�ðaiþwihiÞÞ
Sampling v2i ∈ {0, 1} from P(v2iV1)
For each j in hidden units:
Calculate Pðh1j ¼ 1jvÞ ¼ 1

1þeð�ðbiþwiviÞÞ
d =P (h1 =1V1)
d1= d * VT

1
e =P (h2 =1V2)
e1= e * VT

2
w = w + ∈ (d1−e1)
b = b + ∈ (d−e)
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4 Experimental Setup and Results

The implementation of the web services in the cloud context is made in the cloud environment. The
implementation of the interface between the recommendation system and the recommendation engine are
done in python. The result obtained with the designed restricted boltzman machine is given below. The
performance parameter used here is average distance which depicts the difference between the predicted
values and the true values. The Fig. 9 represents the loss occurred during the training phase and the
Fig. 10 represents the loss that occurs in the test phase.

From the average distance we can identify the percentage value of correct prediction. From the results
obtained the percentage of correct predictions made during training is 64% and the percentage of correct
prediction during test is 56%. It can be observed that the results obtained are low. But in general, the
property of the deep learning model is that the performance of the model increases with the increase in
the size of the dataset. The dataset employed here is a small dataset. The same model is tested with the
movie lens dataset and the percentage of correct prediction is 74.6%.

Figure 9: Training loss in terms of average distance between the predicted and the true values

Figure 10: Test loss in terms of average distance between the predicted and the true values
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5 Conclusion

Experimental analysis of the two recommendation models, one based on the similarity of the users based
on their profile relevant to the context of choosing a restaurant and another based on the similarity of the users
based on the ratings made by them is done. The advantages and the disadvantages of the models are analyzed.
With the inferences made with these two models, a deep learning model with restricted boltzman machine is
designed. This is designed to predict the rating of the restaurants that the user has not made earlier. The
predictions are made only with the ratings made by the user for other restaurants. The implementation is
made with the details of the restaurants, users and the corresponding rating as web services. This paves
way for the implementation of the model in real time in future. Future work would also include the
improvement of the percentage of correct predictions.
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