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Abstract: One of the severe health problems and the most common types of heart
disease (HD) is Coronary heart disease (CHD). Due to the lack of a healthy life-
style, HD would cause frequent mortality worldwide. If the heart attack occurs
without any symptoms, it cannot be cured by an intelligent detection system.
An effective diagnosis and detection of CHD should prevent human casualties.
Moreover, intelligent systems employ clinical-based decision support approaches
to assist physicians in providing another option for diagnosing and detecting HD.
This paper aims to introduce a heart disease prediction model including phases
like (i) Feature extraction, (ii) Feature selection, and (iii) Classification. At first,
the feature extraction process is carried out, where the features like a time-domain
index, frequency-domain index, geometrical domain features, nonlinear features,
WT features, signal energy, skewness, entropy, kurtosis features are extracted
from the input ECG signal. The curse of dimensionality becomes a severe issue.
This paper provides the solution for this issue by introducing a new Modified
Principal Component Analysis known as Multiple Kernel-based PCA for dimen-
sionality reduction. Furthermore, the dimensionally reduced feature set is then
subjected to a classification process, where the hybrid classifier combining both
Recurrent Neural Network (RNN) and Restricted Boltzmann Machine (RBM)
is used. At last, the performance analysis of the adopted scheme is compared over
other existing schemes in terms of specific measures.

Keywords: Heart disease prediction; ecg; recurrent neural network; pca; restricted
boltzmann machine

1 Introduction

Recently, CVDs (Cardiovascular Diseases) is one of the diseases that cause death in millions of people
worldwide. Moreover, the normal CVDs consist of heart valve problems, heart failure, ischemic stroke, heart
attack, various types of arrhythmia, and hemorrhagic stroke, etc. The heart condition becomes almost an
abnormal state due to the CVD; the irregularities in the nervous system and several sinus arrhythmias are
detected from the patient's ECG (Electrocardiogram) signals. The diagnostic approach that records and
measures the electrical activity of the heart muscles is known as the ECG signal. For attaining the ECG signal,
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the standard 12 lead system was used frequently. To diagnose the CVD in the patient, the signal processing
techniques or frequency domain and time domain were used to reveal the ECG signal's inherent features.

ECG is used widely in various medical researches to identify and interpret heart disorders [1,2]. CHF
(Congestive Heart Failure) is one of the heart disorders that is a severe cardiac condition linked with
morbidity rates and high mortality rates. Moreover, some of the symptoms of CHF are easy fatigue,
generalized swelling, and breathlessness. The blood is not adequately pumped from the heart to the particular
organs with nutrients, oxygen, etc. As per ESC (European society of cardiology), around 26 million persons
are diagnosed with heart disease, whereas, every year, 3.6 million people are diagnosed newly.

Further, of the patients diagnosed with CHF, nearly 17–45% will die in the first year, and then the rest of
patients in five years. Still, the early diagnosis of CHF can treat and so the death rates will be lowered. The
ARR (Arrhythmia) is a severe disorder due to the improper heart rate that may cause sudden death of the
patient [3]. There are two major classes of ARRs; they are supraventricular and ventricular. In addition,
the Ventricular ARRs is occurred in the ventricles (i.e.), the lower chamber of the heart.

In contrast, the supraventricular ARRs occur in the atria (i.e.,), upper chambers of the heart present.
Here, the diagnosis of CHF and ARR using the ECG signal required uniform and accurate evaluation by
skilled cardiologists, which is time-consuming and tedious. Thus, novel efficient CAD (Computer-aided
diagnosis) systems are developed to enhance the diagnostic reliability in the ECG recordings.

The DL (Deep learning) models have been popularly used towards the HD (Heart disease) classification
in recent times. In recent years, the premature ventricular contraction beat detection, ECG ARR detection,
atrial fibrillation detection, ECG disease classification, and myocardial infarction detection is compared to
healthy patients by ML (Machine learning) algorithms [4] or deep NN (neural networks) to predict the
heart disease [5,6]. The normal sparsed NN structure is introduced for the HD prediction using the ECG
signals to analyze and classify the cardiac ARR. The ECG based HD classification and detection were
boasted by the ECG signal features like standard deviation of a beat-to-beat interval, wavelet analysis,
VAT, maximum and minimum entropy, DTCWT (Dual tree complex wavelet transformation), R-peak
amplitudes, entropy calculation, the standard deviation of a beat-to-beat interval, R–R interval time, etc.
The main contribution of the adopted methodology is as follows:

� Proposes a multiple kernel-based PCA for feature space reduction, which concerns the ‘curse of
dimensionality.

� Introduces hybrid RBM+RNN classifiers for obtaining the predicted results.

The section of this proposed work is as follows: Section 2 addresses the related works. Section
3 proposed a heart disease prediction model with a hybrid classification system. Section 4 portrays the
proposed multiple kernel-based principal component analysis for feature dimensionality reduction.
Section 5 describes the hybrid restricted Boltzmann machine-a recurrent neural network for heart disease
prediction. Section 6 discussed the results and discussions of the presented work. Then, this paper is
concluded in Section 7.

2 Related Works

In 2020, Mazaheri et al. [7] had presented the CAD system for the accurate diagnosis and automated
classification based on the 7 types of cardiac arrest by the ECG signal. Several ML algorithms were used
for classifying the 6 abnormal cardiac functions and normal rhythm. Initially, the pre-processing was
performed in the ECG signal, and then the segmentation process would extract the different
morphological features, nonlinear indices, and frequency domain features. Specific optimization
algorithms have minimized the feature space dimension and remove the irrelevant or redundant features.
The proposed model has used the mixture of the extracted features as the NSGA II that provides the best
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performance. Finally, the performance of the presented method has shown minimum computational
complexity, improved recognition sensitivity, maximum precision, and eliminates the misleading data
than other conventional models. However, the proposed model did not consider the lower computational
time that occurred during the classification of a novel single ECG signal.

In 2020, Eltrass et al. [8] had proposed novel DL methods for the automatic identification of ARR and
CHF. The proposed method has implemented a novel ECG diagnosis algorithm combining CNN
(Convolutional neural network) with the CQ-NSGT(Constant-Q Non-Stationary Gabor Transform).
Moreover, the CQNSGT algorithm was examined to convert the 1-D ECG signal into a 2-D time-
frequency representation and then given to the pre-trained CNN approach AlexNet. Furthermore, the
AlexNet architecture with the extracted features was used as the relevant features distinguished through
the MLP (Multi-layer perceptron) technique into 3 various cases like ARR, NSR, and CHF, respectively.
At last, the simulation outcomes of the proposed model have proven better performance than other
existing models in terms of specific measures like sensitivity, specificity, and accuracy, correspondingly.
CNN with CQ-NSGT algorithm offers higher classification performance, shortest processing time, better
diagnosis performance, and faster convergence rate, but the deeper networks were not efficient for the
ECG classification.

In 2020, Butun et al. [9] developed an automatic CAD detection from the CapsNet (Capsule Networks)
ECG signals. Moreover, the DL-based approaches were more used in the CAD models, and the CapsNet was
the novel approach in the proposed model. In addition, a 1D version of CapsNet was used for the automatic
detection of CAD on five second-long and two-second ECG segments; however, it was obtained from the
7 CAD and 40 normal subjects. Here, the 1D-CADCapsNet approaches could automatically learn the
pertinent representations from the raw ECG data for helping the cardiologists with no hand-crafted
technique. In the end, the experimental outcomes of the proposed model have achieved increased
specificity, better accuracy, higher precision values, and improved sensitivity, respectively. Nevertheless,
the performance of the proposed method for the detection of other cardiac diseases was not tested.

In 2021, Panganiban et al. [10] have introduced the classification process for ECG arrhythmia that
utilizes CNN with images based on spectrograms with no ECG visual examination like P-peak or R-peak
detection. Additionally, the proposed CNN model disregarded the noise parameters as the ECG data
converted to 2D images. In contrast, the suitable characteristics map was extracted from the convolution
and the pooling layer. Here, Google's Inception V3 approach was used for retraining the last layer of the
CNN model for recognition. The diagnostic support model could enable the acquisition, interpretation,
and clinical data analysis, and the ECG bio-signals from patients facilitate the diagnosis of heart disease
in rural areas. Finally, the simulation outcomes of the proposed model have attained increased specificity,
improved sensitivity, better F1 scores, and higher accuracy, respectively. However, a more enhanced
algorithm was needed for classifying the ECG paper.

In 2019, Hasan et al. [11] had developed a new approach for classifying the multiple HD by 1-D deep
CNN. Moreover, the modified ECG signal was provided as an input signal, and every signal was
decomposed by the higher-order IMFs (Intrinsic mode functions) and the EMD (Empirical mode
decomposition). Furthermore, the EMD usage has provided denoising performance as well as a wide
range of information. In the CNN architecture, the pre-processed signal was given, and then it classified
the record by the SoftMax regressor based on the CVD. The inherent features of the altered ECG signal
have shown superior performance compared to the raw ECG signal in the CNN architecture. Finally, the
experimental outcomes of the proposed model have proven maximum accuracy robustness, average time
complexity, and highest accuracy. However, ECG signals were not separable due to noise.

In 2019, Bhurane et al. [12] have proposed an automated model for CHF diagnosis through the ECG
signals. Further, the adopted model was tested on the 4 sets of CHF and normal ECG signals collected
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from public databases. The short 2 s ECG segments were conducted in the experiments, and 5 different
features like Higuchi's fractal dimension, Renyi entropy, Kraskov entropy, fuzzy entropy, and energy
were extracted using the frequency localized filter banks of ECG segments. The QSVM (Quadratic
support vector machine)was employed in the proposed model for classification and training; however, the
evaluation process has used the 10-fold cross-validation models. At last, the experimental outcomes of
the adopted method have attained better accuracy, improved sensitivity, increased specificity, and
minimum error rate than other traditional schemes. However, different deep learning models were not
used for classifying without extracting the features by some datasets and advanced techniques.

In 2019, Tripathy et al. [13] had introduced a new scheme for designing the classifier-based method for
CHF detection. Likewise, the proposed method has established the frequency division and the Stock well-
transform usage from the ECG signals for analyzing the time-frequency sub-band matrices stemming.
The entropy features were assessed from the sub-band matrices of the ECG signal. Moreover, the average
distances from the nearest neighbors and the sparse representation classifier for the CHF detection
implemented the hybrid classification approach. The normal sinus rhythm and the CHF subjects were
validated from public databases by the ECG signals. Finally, the outcome of the adopted model has
proven improved accuracy, maximum sensitivity, and better specificity than other models. In this
research, the time-frequency analysis was not performed for CHF detection.

In 2019, Acharya et al. [14] have presented the 11-layer deep CNN approach for CHF detection. The
proposed CNN method could need the lower pre-processing process, classification, or no engineered
features in the ECG signals. Moreover, the adopted approach was entirely–automatic; whereas, the R-
peak detection was not needed in work. For testing and training the CNN model, the 4 different sets of
data like A, B, C, and D were collected from the Physio Bank. At last, the performance of the proposed
method has shown higher accuracy, increased specificity, maximum sensitivity, and faster interpretation
than other existing models. This review observed that the CNN methods were not developed for detecting
normal ECG, CHF, MI, and CAD signals. Such limitations must be taken into account based on heart
disease prediction using the ECG signal in the present work effectively.

3 Proposed Heart Disease Prediction Model with Hybrid Classification System

The proposed scheme based on the HD prediction model includes three significant phases: (i) Feature
extraction, (ii) Feature selection (dimensional reduction), and (iii) Classification. The features include a
time-domain index, frequency-domain index, geometrical domain features, nonlinear features, WT
features, signal energy, skewness, entropy, kurtosis features from the input signal. The curse of
dimensionality becomes a severe issue in this aspect. This paper introduces a new Multiple kernel-based
PCA for reducing the feature set dimension, which incurs only the needed information or feature to make
the classification more precise and accurate. This is to be believed by the proposed dimensionality
reduction model. Moreover, the dimensionally reduced feature set is subjected to a classification process,
where the hybrid RNN and RBM are used. Fig. 1 represents the overall architecture of the proposed
methodology.

Feature extraction

The frequency domain and the time domain features are extracted from the input ECG signal. The
feature extraction process includes 9 features: time-domain indices, frequency-domain indices,
geometrical domain features, nonlinear features, WT features, signal energy, skewness, Kurtosis features,
and entropy, respectively. Thus, the extracted energy features are denoted by F.
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4 Proposed Multiple Kernel Based PCA for Feature Dimensionality Reduction

The extracted features F have to be selected for the effective classification of HDs from the ECG signals.
But the curse of dimensionality is the major problem in the feature sets. To handle this, a new multiple kernel-
based PCA is introduced in this work. The multiple kernel function is used in the process modulation of PCA
to reduce the dimensions of the feature set.

PCA is the base transformation to diagonalize the estimation of the covariance matrix of data
ykk ¼ 1; . . . ; n yk 2 pm; Thereby, the covariance matrix is defined in Eq. (1).

c ¼ 1

n

Xn
i¼1

ðyÞ:ðyÞT (1)

This work contributes with the data nonlinearly into the feature space, which is done by the multiple
kernel function.

Let us consider that the data mapped into feature space ðyÞ; . . . �ðyÞ is centered. The kernel functions
(y, z) are given in Eq. (2).

kjðy; zÞ ¼ ð[ðyÞ:[ðzÞÞ:y:w (2)

Eq. (2) w ¼ 0 to 1 indicates the weight coefficients. Let the input feature set y(y1,…., yn, )∈ pm, here,
m denotes the dimension of the measurement variables and n indicates the number of samples. Hence the
PCA for the covariance matrix is expressed in Eq. (3).

Input ECG signal

Feature Extraction

Time-domain index features

Frequency domain index features

Geometrical domain features
Nonlinear features 

WT features 

Signal energy features 
Skewness features 

Entropy features 
Kurtosis features 

Feature Selection
(Feature set
Reduction) 

Proposed Multiple
Kernel based PCA 

Classification

Hybrid Classifiers

RNN RBM

Final Classified
Output 

Figure 1: Overall design of the proposed methodology
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cf ¼ 1

n

Xn
i¼1

[iðyÞ:[iy
T (3)

Eq. (3)[ð:Þ indicates the nonlinear mapping function, and it is assumed that
Pn
i¼1

[iðykÞ ¼ 0. Where the

eigenvalues λ ≥ 0 and eigenvector Vεf, the eigenvector V for any λ ≠ 0 are linearly noted by [ðyjÞ. It can be
converted to kernel eigenvalue as in Eq. (6).

�V ¼ cf V (4)

V ¼
Xn
j¼1

AðjÞ[ðyjÞ (5)

n�A ¼ kA (6)

where n*nmatrix k is a kernel matrix, in Eq. (9), A is the feature vector of the kernel matrix. Here, the hybrid
kernel function is expressed in Eq. (13).

k ¼ kji ¼ ð[ðyjÞ[ðyiÞÞ ¼ kðyj; yiÞ (7)

zk ¼ hVk;[ðyÞi (8)

zk ¼
Xn
T¼1

AK
j h[ðyjÞ; [ðyÞi (9)

Polynomial kernel klðy; zÞ ¼ ðy; zÞd (10)

Sigmoid kernel k2ðy; zÞ ¼ tan hðh0ðy; zÞ þ h1Þ (11)

Radial Basis Function; k3ðy; zÞ ¼ exp
jjy� zjj2

c

 !
(12)

kðy; zÞ ¼ k1 þ k2 þ k3
3

(13)

5 Hybrid RBM-RNN for Heart Disease Classification

This work introduces the hybrid classifier combining the RBM and RNN classifiers for predicting heart
disease. The hybrid classifiers are more effective in dealing with complex scenarios that minimize the risks in
predicting the disease. As per this paper, the hybrid classifiers process in this way: The extracted features are
given as the input to the RBM classifier [15], and then the output of RBM is subjected to the RNN as its input.
Finally, the RNN output is considered as the classified output.

5.1 Restricted Boltzmann Machine

The parameterized generative approach that represents the probability distribution is RBM. RBM
learning is the adjustment of RBM parameters in the given training data, in which the probability
distribution determined through the RBM would fit the possible training data. Moreover, the RBM
provides the closed-form with representation after the successful learning in the distribution underlies the
training data assisting the interferences relating to the provided data. The RBM is a type of MRF from its
structural view, including the hidden and visible layers. There is no connection between the two units
inside the same layer, and there is a connection between the visible and hidden units.
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Further, the visible units comprise the 1st layer and correspond to the observation components. In
addition, the hidden layer provides the dependency among the observation components. Therefore, the
RBM is known as a nonlinear feature detector. The standard RBM model consists of a visible layer v
with l units representing the hidden layer h with q units and the observable data to capture the
dependencies among those observed variables. The real-valued matrix is known as a link matrix w, and
the element represented wa,b specifies the weight among the hidden hb and visible unit va s. Let us
assume all the hidden units and the visible units as binary variables such as h∈ {0, 1}q, and v∈ {0, 1}l.
Moreover, the joint probability distribution v, h is determined through the Gibbs distribution with the
energy function in Eq. (14).

pðv; hÞ ¼ 1

x
expð�Gðv; hÞÞ (14)

Gðv; hÞ ¼ �
Xl
a¼1

sava �
Xq
b¼1

tbhb �
Xl
a¼1

Xq
b¼1

vawa;bhb (15)

Here,x indicates the normalization factor and x ¼P
v;h

expð�Gðv; hÞÞ. In Eq. (15), hb and va

correspondingly, the binary states of the hidden b and visible unit a s. Further sa, tb are the biases and wa,

b refers to the weight among va and hb. Thus {wa,b, sa, tb, l ≤ a ≤ l, l ≤ b ≤ q}, the real-valued parameters
are estimated. The parameters are optimized through the stochastic gradient descent performance on the
log-likelihood of training data, while the RBM is used as a generative model. Moreover, the probability
assigned to the training instance is determined in Eq. (16). The derivative of log probability in a training
vector with weight is given in Eq. (17).

pðvÞ ¼ 1

x

X
h

e�Gðv;hÞ (16)

@ log pðvÞ
@wab

¼ ðvahbÞdata � ðva; hbÞmodel (17)

In Eq. (17), (.) data and (.) model indicates the expectations below the distribution is given as p(h/v) and
p(v,h), correspondingly. Eq. (18) illustrates the learning rule for stochastic gradient steepest ascent
performance in the log probability of training data.

Dwab ¼ cððvahbÞdata � ðva; hbÞmodel (18)

where γ indicates the learning rate that the user specifies in advance. Since there is no direct connection
among the hidden units in RBM, it gets an unbiased sample (vahb) data. Consider a training vector v that
is randomly selected; the binary state hb of each hidden unit (b = 1, 2, …, q) is set as 1 with its
probability.

pðhb ¼ 1=vÞ ¼ r tb þ
Xl
a¼1

wabvb

 !
(19)

Eq. (19) σ(u) indicates the logistic sigmoid function as (1/(1 + exp( − u)). Likewise, the unbiased sample
of the state of a visible unit is obtained from the given hidden vector h.

p va ¼ 1

h

� �
¼ r sa þ

Xl
b¼q

wabhb

 !
(20)
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Eq. (19) represents the binary states of the hidden units in parallel. A ‘‘reconstruction’’ is obtained via
setting each va to 1 with a probability once the binary states are given to the hidden units as in Eq. (20).
Therefore, the weight change is determined in Eq. (21).

Dwab ¼ cððvahbÞdata � ðva; hbÞrecon (21)

Eq. (20) (va,hb ) recon indicates the distribution achieved via running the alternate Gibbs sampling and
initializing the data va.

Moreover, qðhx ¼ 1=vxÞðx ¼ 1; 2Þ it indicates an q-dimensional column vector with its bth element as
pðhxb ¼ 1=vx Þ. The weight parameter wab is determined by the updated rule in Eq. (22).

wðgþ1Þ
ab ¼ wðgÞ

ab þ c
d

dwðgÞ
ab

ðlog pðvÞÞ � dwðgÞ
ab þ bDwðg�1Þ

ab|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼DwðgÞ

ab

(22)

In Eq. (22), the vanilla gradient ascent is obtained if the nonnegative constants d b are set to zero. The

distribution p
va
h

� �
under the Gaussian visible units holds h fixed, given in Eq. (23).

p
va
h

� �
¼ @ sa þ

Xq
b¼1

wabhb; 1

 !
(23)

where @ðu; 1Þ is a Gaussian distribution with unit variance and the mean u. For each class, the RBM is trained
by the log probability calculated, and the high log probability is assigned to the class by the test vector.

5.2 Recurrent Neural Network

The output of RBM is given as the input of the RNN framework. RNN [16] includes an output layer, a
hidden layer, and an input layer, in which each layer consists of neurons [17]. Moreover, the input units I are
present in the input layer with the sequence of vectors with time K, for instance f. . . ;LK�1;LK ; LKþ1;...g, in
which Lk ¼ L1;L2;...LlÞ. In the fully convolutional RNN, each input unit is linked with each hidden unit of the
hidden layer, and the weight matrixWMlh determines it. Further, the hidden layer Q includes the hidden units
RK ¼ ðR1;R2; . . .RQÞ linked to each other by the recurrent links in the matrix WMhh. Similarly, the hidden
layer of the RNN is given in Eq. (24), where, Chð:Þ and Bh refers to the activation function and the bias vector
of the hidden units, respectively.

Hk ¼ ChðWMIhLk þWMhhHK�1 þ BhÞ (24)

Here, the hidden units are connected to the output layer by the weight matrix WMho. Moreover, the
output layer includes s units as ok¼ðo1;o2; . . . :osÞ in Eq. (25), where Coð:Þ and Bo refers to the bias vector
and the activation function of output units, respectively.

Ok ¼ CoðWMhoHK þ BOÞ (25)

In addition, the RNN has different weight parameters, including the weight matrixWM1 with hidden-to-
hidden recurrent connections (i.e.,), exist among the nodes of the hidden layer, weight matrixWM1 connected
to the output layer and the hidden layer, and the weight matrix WM3 connects among the hidden layer and
input layer. All these parameters WM3;WM1;WM2 are shared across time. The following steps of the RNN
frameworks are as follows:

Step 1: The weight matrices are WM3;WM1;WM2, and the bias function BF1; BF2 is initialized with
zeros.
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Step 2: Moreover, the prediction is calculated by the Forward propagation. The RNN forward pass is
given in Eqs. (26)–(29), correspondingly. The Softmax function is provided as a post-processing step to
acquire the normalized probabilities of output as D.

J ðKÞ ¼ BF1 þWM3:UðkÞ þWM1:Hðk � 1Þ (26)

HðkÞ ¼ tanh:ðJðkÞ (27)

RðKÞ � BF2 þ HðKÞ:WM2 (28)

DðkÞ ¼ softmaxðRðkÞÞ (29)

Step 3: The loss function is determined in Eq. (30).

LOSS ¼ �
XN
BF2¼1

Zobs;cl:logðMobs;clÞ (30)

Eq. (30)N specifies the count of possible class labels, z indicates the binary indicator that checks whether
the class label cl s are classified correctly for the observation obs. In addition, the predicted probability of the
model is denoted as r.

Step 4: Compute the gradients through the back-propagation.

Thus, the output is obtained from the RNN is the final predicted outcome.

6 Results and Discussions

6.1 Simulation Procedure

The proposed HD prediction model was executed in Python, and their resultant outcomes were
observed. Moreover, the performance of the adopted scheme was compared to the existing classifiers like
NN [18], RF [19], SVM, and KNN [20], in terms of specific measures like Accuracy, Bookmakers
Informedness, FDR, FNR, FOR, F-Measure, MCC, NPV, Precision, Recall, specificity, Sensitivity, and
Threat score, respectively. The analysis was performed for each measure considering the reduced feature
set to 15, 20, 25, and 30 via proposed multiple kernel-based PCA. The analysis is carried out here by
varying the learning percentage from 40, 50, 60, 70, and 80. Further, the statistical analysis was done for
the proposed model over the other traditional schemes based on specific case scenarios like best, worst,
mean, median, and standard deviation performances. The MIT-BIH arrhythmia from physio net database
were used for evaluation includes 48 ECG recordings which is downloaded from the link “https://www.
physionet.org/content/mitdb/1.0.0/”.

6.2 Performance Analysis by Varying Reduced Feature Set

Figs. 2–5 represent the adopted model's performance analysis compared to the existing schemes like
NN, RF, SVM, and KNN by varying the reduced feature sets to 15, 20, 25, and 30, respectively.
Moreover, the proposed RBM+RNN model has attained better outcomes for specific measures like
accuracy, Bookmaker Informedness, FOR, NPV, MCC, and Threat score. From the graph, it is observed
that the accuracy of the proposed RBM+RNN model at the 80th training percentage is 87.36%, 5.26%,
24.21%, and 26.31% superior to the traditional models like NN, RF, SVM, and KNN, respectively, with
15 feature set in Fig. 2. Further, in Fig. 3, the bookmarker Informedness of the adopted RBM+RNN
model holds the maximum value (∼0.9) for 20 feature sets; however, the conventional models attain the
minimum value for NN (∼0.75), RF (∼0.8), and SVM (∼0.7), correspondingly at 80th training
percentage. In addition, the adopted RBM+RNN method achieves the highest NPV values for 20 feature

CSSE, 2022, vol.41, no.3 1281

https://www.physionet.org/content/mitdb/1.0.0/
https://www.physionet.org/content/mitdb/1.0.0/


set at 70th training percentage than other existing schemes in Fig. 4. Likewise, in Fig. 4, the proposed RBM
+RNN model for 25 feature sets attains a lower FOR value (∼0.15) with better performance than other
traditional models such as NN, RF, SVM, and KNN, respectively, at 50th training percentage. Similarly,
on examining the 30-feature set in Fig. 5, the MCC of the adopted RBM+RNN model holds the highest
values at 70th training percentage than other existing schemes like NN, RF, SVM, and KNN,
respectively. Finally, the threat score of the proposed RBM + RNN model for 30 feature sets is 95.55%,
5.55%, 20%, and 22.22% better than other traditional models such as NN, RF, SVM, and KNN,
respectively at 80th training percentage. Thus, the betterment of the adopted RBM + RNN model is
validated effectively.

6.3 Feature Analysis Based on Varying Learning Percentage

The feature analysis of the proposed model with a feature set reduction over without feature set reduction
for all the performance measures like Recall, Accuracy, FOR, Specificity, Bookmaker Informedness,
Precision, MCC, F-Measure, Threat Score, NPV, Sensitivity, FNR, Markedness, and FDR, respectively
are illustrated in Tabs. 1–3. This analysis is carried out for all the learning percentages like 50, 60, and
70, respectively. Moreover, in Tab. 1 the proposed work with a reduced feature set provides less FNR and
FOR, indicating less error rate during prediction. The FDR value is 0 for both proposed models with
feature selection and without feature selection for learning percentage 50. Likewise, the MCC value is
higher (0.888698) for a proposed model with feature selection than the model without (0.808576) for
60 learning percentages in Tab. 2. Hence, it is proved that the adopted work is more apt to predict heart
disease with the appropriate information (reduced feature set).

Accuracy Bookmarker Informedness

NPV MCC

Figure 2: Performance analysis by varying the reduced 15 feature set
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Accuracy Bookmarker Informedness FOR

NPV MCC Threat score

Figure 3: Performance analysis by varying the reduced 20 feature set

Accuracy Bookmarker Informedness FOR

NPV MCC Threat score

Figure 4: Performance analysis by varying the reduced 25 feature set
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Accuracy Bookmarker Informedness FOR

NPV MCC Threat score

Figure 5: Performance analysis by varying the reduced 30 feature set

Table 1: Performance analysis for learning percentage 50

Measures Without feature
selection

With feature
selection

Accuracy 0.931818 0.960227

Sensitivity 0.915691 0.947891

Specificity 1 1

Precision 1 1

Recall 0.915691 0.947891

F-measure 0.95599 0.973248

Threat score 0.915691 0.947891

NPV 0.737226 0.856164

FNR 0.084309 0.052109

FDR 0 0

FOR 0.262774 0.143836

MCC 0.821627 0.900861

Bookmaker informedness 0.915691 0.947891

Markedness 0.737226 0.856164
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Table 2: Performance analysis for learning percentage 60

Measures Without feature selection With feature selection

Accuracy 0.921986 0.955083

Sensitivity 0.901786 0.941358

Specificity 1 1

Precision 1 1

Recall 0.901786 0.941358

F-measure 0.948357 0.969793

Threat score 0.901786 0.941358

NPV 0.725 0.838983

FNR 0.098214 0.058642

FDR 0 0

FOR 0.275 0.161017

MCC 0.808576 0.888698

Bookmaker informedness 0.901786 0.941358

Markedness 0.725 0.838983

Table 3: Performance analysis for learning percentage 70

Measures Without feature selection With feature selection

Accuracy 0.917981 0.949527

Sensitivity 0.900383 0.933884

Specificity 1 1

Precision 1 1

Recall 0.900383 0.933884

F-measure 0.947581 0.965812

Threat score 0.900383 0.933884

NPV 0.682927 0.824176

FNR 0.099617 0.066116

FDR 0 0

FOR 0.317073 0.175824

MCC 0.784153 0.877317

Bookmaker informedness 0.900383 0.933884

Markedness 0.682927 0.824176
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6.4 Statistical Analysis

Tabs. 4–8 represents the statistical analysis of the adopted RBM + RNNmodel with feature selection and
traditional models like NN, RF, SVM, KNN, RBM+PCA, and RBM for various measures such as accuracy,
bookmaker Informedness, FOR, NPV, MCC, and Threat score, respectively. From the statistical analysis
outcomes, the accuracy of the proposed RBM + RNN model with feature reduction attains maximum
values for a best-case scenario than other traditional models like NN, RF, SVM, KNN, RBM+PCA, and
RBM, respectively in Tab. 4. Moreover, under a worst-case scenario, the FOR of the proposed RBM
+RNN model with feature reduction attains a lower value (0.175824) with better performance; however,
the traditional models attain higher values for NN (0.923729), RF (0.405405), SVM (0.986486), KNN
(1), RBM+PCA (1), and RBM (0.391813), respectively in Tab. 5. The mean performance of the proposed
RBM+ RNN model with feature reduction for NPV measure in Tab. 6 is 34.29%, 27.30%, 97.80%,
62.86%, 67.41%, and 16.95% superior to the traditional models like NN, RF, SVM, KNN, RBM + PCA,
and RBM, respectively. Likewise, in Tab. 8, the median performance of the adopted RBM + RNN model
with feature reduction holds better threat score values (0.941358) compared to the existing models like
NN, RF, SVM, KNN, RBM + PCA, and RBM, correspondingly. Thus, the statistical analysis outcome
proves the superiority of the proposed RBM + RNN model with feature reduction.

Table 4: Statistical analysis in terms of accuracy

Measures Best Worst Mean Median STD

RBM + RNN with feature reduction 0.916404 0.960227 0.947758 0.955083 0.017966

NN 0.128994 0.755405 0.43459 0.276515 0.292907

RF 0.893491 0.897476 0.895002 0.894595 0.001672

SVM 0.728132 0.740828 0.734466 0.735016 0.005729

KNN 0.735135 0.945076 0.814927 0.737589 0.107545

RBM + PCA 0.735135 0.822485 0.786618 0.79653 0.038486

RBM 0.894322 0.933962 0.920014 0.921986 0.015827

Table 5: Statistical analysis in terms of FOR

Measures Best Worst Mean Median STD

RBM + RNN with feature reduction 0.136364 0.175824 0.158496 0.161017 0.018017

NN 0 0.923729 0.447119 0.572072 0.426691

RF 0.376712 0.405405 0.38831 0.381356 0.012603

SVM 0.974576 0.986486 0.981533 0.982456 0.004693

KNN 0.19863 1 0.687511 0.940678 0.403089

RBM + PCA 0.427928 1 0.725782 0.754386 0.226145

RBM 0.259259 0.391813 0.301184 0.275 0.055643
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7 Conclusion

This paper has introduced a heart disease prediction model including phases like (i) Feature extraction,
(ii) Feature selection, and (iii) Classification. At first, the feature extraction process was carried out, where the
features like a time-domain index, frequency-domain index, geometrical domain features, nonlinear features,
WT features, signal energy, skewness, entropy, kurtosis features were extracted from the input ECG signal.
The curse of dimensionality becomes a severe issue. This paper provides the solution for this issue by
introducing a new Modified Principal Component Analysis known as Multiple Kernel-based PCA for

Table 7: Statistical analysis in terms of MCC

Measures Best Worst Mean Median STD

RBM + RNN with feature reduction 0.785335 0.901937 0.870829 0.888698 0.048837

NN −0.64874 0.265812 −0.02918 0 0.368597

RF 0.720792 0.738134 0.731214 0.734237 0.00764

SVM 0.099994 0.135877 0.115579 0.113459 0.014058

KNN 0 0.863033 0.373329 0.208551 0.425315

RBM + PCA 0 0.517946 0.357689 0.438285 0.215578

RBM 0.728905 0.824893 0.793631 0.808576 0.039572

Table 8: Statistical analysis in terms of threat score

Measures Best Worst Mean Median STD

RBM + RNN with feature reduction 0.892495 0.947891 0.931513 0.941358 0.022371

NN 0 0.7373 0.298536 0.018667 0.40034

RF 0.871429 0.876894 0.874167 0.874142 0.001954

SVM 0.72619 0.739905 0.73312 0.733756 0.00612

KNN 0.733173 0.92944 0.807161 0.737278 0.099073

RBM + PCA 0.735135 0.796574 0.770855 0.782095 0.027083

RBM 0.873585 0.918605 0.90201 0.901786 0.017841

Table 6: Statistical analysis in terms of NPV

Measures Best Worst Mean Median STD

RBM + RNN with feature reduction 0.824176 0.863636 0.841504 0.838983 0.018017

NN 0.076271 1 0.552881 0.427928 0.426691

RF 0.594595 0.623288 0.61169 0.618644 0.012603

SVM 0.013514 0.025424 0.018467 0.017544 0.004693

KNN 0 0.80137 0.312489 0.059322 0.403089

RBM + PCA 0 0.572072 0.274218 0.245614 0.226145

RBM 0.608187 0.740741 0.698816 0.725 0.055643
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dimensionality reduction. Furthermore, the dimensionally reduced feature set was then subjected to a
classification process, where the hybrid classifier combining both RNN and RBM was used.

At last, the performance analysis of the adopted model was compared to the existing schemes models for
certain measures. From the graph, the bookmarker Informedness of the adopted RBM+RNN method holds
the maximum value (∼0.9) for 20 feature sets; however, the conventional models attain the minimum value
for NN (∼0.75), RF (∼0.8), and SVM (∼0.7), correspondingly at 80th training percentage. The threat score
of the proposed RBM+RNN model for 30 feature sets was 95.55%, 5.55%, 20%, and 22.22% better than
other traditional models such as NN, RF, SVM, and KNN, respectively at 80th training percentage.
Likewise, the median performance of the adopted RBM+RNN model with feature reduction holds better
threat score values (0.941358) when compared to the existing models like NN, RF, SVM, KNN RBM +
PCA, and RBM, correspondingly.
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