
LogUAD: Log Unsupervised Anomaly Detection Based on Word2Vec

Jin Wang1, Changqing Zhao1, Shiming He1,*, Yu Gu2, Osama Alfarraj3 and Ahed Abugabah4

1School of Computer and Communication Engineering, Changsha University of Science & Technology, Changsha, 410114, China
2Department of Chemistry, Institute of Inorganic and Analytical Chemistry, Goethe-University, Frankfurt, 60438, Germany

3Computer Science Department, Community College, King Saud University, Riyadh, 11437, Saudi Arabia
4Zayed University, CTI, Abu Dhabi, 144534, United Arab Emirates
*Corresponding Author: Shiming He. Email: smhe_cs@csust.edu.cn

Received: 05 August 2021; Accepted: 17 September 2021

Abstract: System logs record detailed information about system operation and are
important for analyzing the system's operational status and performance. Rapid
and accurate detection of system anomalies is of great significance to ensure sys-
tem stability. However, large-scale distributed systems are becoming more and
more complex, and the number of system logs gradually increases, which brings
challenges to analyze system logs. Some recent studies show that logs can be
unstable due to the evolution of log statements and noise introduced by log col-
lection and parsing. Moreover, deep learning-based detection methods take a long
time to train models. Therefore, to reduce the computational cost and avoid log
instability we propose a new Word2Vec-based log unsupervised anomaly detec-
tion method (LogUAD). LogUAD does not require a log parsing step and takes
original log messages as input to avoid the noise. LogUAD uses Word2Vec to
generate word vectors and generates weighted log sequence feature vectors with
TF-IDF to handle the evolution of log statements. At last, a computationally effi-
cient unsupervised clustering is exploited to detect the anomaly. We conducted
extensive experiments on the public dataset from Blue Gene/L (BGL). Experi-
mental results show that the F1-score of LogUAD can be improved by 67.25%
compared to LogCluster.
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1 Introduction

Nowadays, information technology and the economy are growing closer. In order to ensure the
sustainable development of the economy, the requirements of robust information systems keep getting
higher. Any failure, including service interruption, and transmission quality degradation, may lead to
application error, collapse, and even significant economic losses. For example, the securities industry is
sensitive to the real-time and continuity of information systems. To enhance the ability of network
security emergency response, securities companies have established an automatic emergency switching
process to reduce system paralysis time. Once the cause is clearly located, the emergency switching time
is controllable. Therefore, identifying the cause or anomaly detection has become a research hotspot [1,2].

This work is licensed under a Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

Computer Systems Science & Engineering
DOI:10.32604/csse.2022.022365

Article

echT PressScience

mailto:smhe_cs@csust.edu.cn
http://dx.doi.org/10.32604/csse.2022.022365
http://dx.doi.org/10.32604/csse.2022.022365


At present, information systems have installed a great number of devices and software to monitor the
system states, which generate large-scale system logs and key performance indicators (KPI) data [3], such
as CPU utilization, query times per second, etc. Abnormal KPI data (e.g., spikes, sudden drops, jitters)
can show the abnormal state of the system. However, KPI only can contain limited information. System
logs record the detailed operation information. Generally, the cause of fault is also recorded in the system
log. Analysis and detection of logs can provide various dimensional information to locate faults. The
system log is a rich data source of anomaly detection. Therefore, log anomaly detection has been widely
adopted in practice due to its directness and effectiveness.

System logs are generally semi-structured statements and have many different types and formats.
Therefore, it is not easy to understand the causes of log anomalies. Initially, developers manually detect
anomalies by keyword searching (such as “fail” or “exception”) or regular expression matching according
to their relevant field knowledge. However, it depends on manual inspection heavily by developers,
which is inefficient and high error rate. Therefore, many machine learning methods are applied into log
anomaly detection [4,5], such as Logistic Regression (LR), Support Vector Machine (SVM), Principal
Component Analysis (PCA), etc. Machine learning methods can save time, reduce the possibility of error,
and further improve detection accuracy. However, they do not consider the log instability and still have
the following problems:

1) An ideal supervised classification model needs to be trained with a large amount of label data.
Generally, the more the amount of label data, the better the classification model. In order to get a
good classification model, a large number of label logs are needed, which is hard in practice.

2) The log is unstable. The update and evolution of log statements and the noise introduced by log
parsing lead to log unstable, which has a great influence on anomaly detection results.

3) Since there are few label logs, unsupervised methods to detect anomalies in logs are the trend. The
detection accuracy of the unsupervised model depends on the feature representation. The original log
is often high-dimensional, including a lot of redundant information. Directly training original log data
is often inefficient. A suitable feature representation is important for unsupervised model.

Therefore, to overcome the above issues, we propose Log Unsupervised Anomaly Detection
(LogUAD), which is an unsupervised anomaly detection method based on Word2Vec. LogUAD does not
require a log parsing step and takes original log messages as input to avoid the noise from log parsing.
LogUAD uses Word2Vec to generate word vectors and generates weighted log feature vectors to handle
the evolution of log statements. At last, a computationally efficient unsupervised clustering is exploited to
detect anomalies based on the feature vectors of the log sequence. The contributions can be summarized
as follows.

1) We propose a LogUAD anomaly detection model without log parsing, which uses the original log
directly for feature extraction and avoids the noise from log parsing on anomaly detection.

2) A word-sequence weight matrix based on the TF-IDF (Term Frequency–Inverse Document
Frequency) is used to indicate the relationship between words and log sequences. The feature
vector of the log sequence is obtained from word vector generated by Word2Vec and the word-
sequence weight matrix, which can handle the evolution of log statements because of the
semantic similarity among evaluation of log. It effectively extracts suitable feature for clustering-
based anomaly detection.

3) Compared with the LogCluster [6], the F1-score of LogUAD increases by 67.2%. LogUAD improves
the accuracy of unsupervised log anomaly detection and can effectively carry out unsupervised
anomaly detection.
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The rest of this paper is organized as follows. The related work is introduced in Section 2. Section
3 introduces the necessary knowledge about log anomaly detection. Section 4 proposes the LogUAD
method. Section 5 describes the experiment in detail. Finally, Section 6 summarizes the work of this
paper and future work.

2 Related Work

In practice, system logs are widely used in anomaly detection by developers. There are many works on
log anomaly detection. The current main technologies are machine learning and deep learning.

In order to pursue higher detection accuracy, log anomaly detection has applied many supervised
learning methods. Liang et al. [7] trained Support Vector Machines (SVM) classifier to detect log events
fault. Chen et al. [8] proposed a decision tree method for fault detection and diagnosis of website sites,
by sorting and merging the correlation degree of faults to improve the detection accuracy. Farshchi et al.
[9] proposed a novel regression-based analysis method. Their experiments on Amazon servers show that
this method can solve the problem of operating cloud applications. Zhang et al. [10] proposed PreFix,
which applied the random forest algorithm to the template sequence so that it could intervene and “fix”
the potential failures. Bertero et al. [11] mapped the logfiles’ words to a high-dimensional metric space
and then used a standard classifier to check whether the log event is abnormal. However, a large number
of label logs are necessary to train unsupervised models and detect anomalies.

Afterward, many unsupervised learning methods were proposed. The advantage of unsupervised
learning is without labels. Lou et al. [12] presented Invariants Mining (IM). IM mines the invariants of
sparse integer values from the message count vector. Experiments on Hadoop and CloudDB show that
IM can detect more and more complete anomaly messages from the distributed systems. Xu et al. [13]
used principal component analysis (PCA) to detect abnormal events and found that PCA with term
weighting technology in information retrieval got good anomaly detection results without too much
parameter adjustment. Yang et al. [14] proposed LogOHC, which had high extraction efficiency for multi-
source log datasets. It is an online log template extraction method with an online hierarchical clustering
algorithm.

The deep learning method is favored by more and more researchers, which provides a new direction for
log anomaly detection. Zhang et al. [15] firstly employed LSTM for log system failure prediction. They
gathered logs of similar format and content, and dealt with the “rarity” of labeled data in the training
process by LSTM to capture the long-range dependency across log sequences. Due to the great similarity
between log analysis and natural language processing, some works use natural language processing
(NLP) related technologies for log anomaly detection. Du et al. [16] proposed DeepLog. DeepLog
regards anomaly detection as a multi-classification problem of log keys. LSTM is used to model the log
key sequence, and only the normal log key sequence is trained for LSTM. LSTM model needs to be
trained with a large amount of normal data, but the original dataset cannot be all normal which may
contain some abnormal log.

These works can not cope with the evolution of log statements, especially in the case of new log
templates [17], which greatly limits their applicability in practice. Log instability is common, but there
are few works on it. Brown et al. [18] proposed attention-based RNN, which improved the interpretability
of the model without sacrificing the effect of anomaly detection. However, it focuses on log events and
ignores the relationship of context in the log sequence. Zhang et al. [19] proposed LogRobust, which
could handle the instability in log events and log sequences. LogRobust uses Bi-LSTM neural network
based on attention to capturing context information. By assigning weights to different events, the model
can automatically analyze the importance of events to improve the accuracy of anomaly detection. It can
solve log instability problems, but the computational cost is large, and training is slower when the
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amount of log data is huge. Lin et al. [6] introduced the LogCluster algorithm based on the clustering method
to realize data clustering and linear pattern mining of logs, but it still needed log parsing. Therefore, we
propose LogUAD to resolve the problem of log instability and increase the accuracy and efficiency of
anomaly detection with low computational cost.

3 Preparatory Knowledge

In this session, we introduce the basic knowledge about different log types, general log anomaly
detection framework, and Word2Vec.

3.1 Different Log Types

The system log records detailed information during system operation. Anomaly detection based on a
system log can effectively maintain system security and reduce system failure.

Four different system logs are shown in Fig. 1. The log records the detailed information of the system
operation, such as timestamp, message type, system operation status, dynamic changes of software and
hardware, message level, date, and time of occurrence, etc. System logs are all semi-structured texts. The
log specifications are not uniform, and different types of devices print different log formats.

3.2 General Log Anomaly Detection Framework

Fig. 2 shows the overall framework of log anomaly detection, which contains the following four steps:
log collection and processing, log parsing, feature extraction, and anomaly detection.

The system usually generates logs to record system status, operations, and changes. Therefore, logs are
collected for preprocessing, such as log division and information extraction. Logs are unstructured, and the
word count, and position in the text are not fixed. After preprocessing, this valuable information can be used
for various purposes (for example, statistics, anomaly detection).

Figure 1: Log messages from four different systems
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The purpose of log parsing is to extract the log template from the original system log. Each log message
can be seen as composed of a constant part and a variable part. Log parsing eliminates the variable part or
replaces it with wildcards, and keeps only the constant part to form a log template.

After the logs are parsed into log templates, log templates are further encoded into digital feature vectors
(such as log template count vectors, etc.). Then, a machine learning model can be used to detect the anomaly.

Finally, after obtaining the feature vector, the feature vector is input into the anomaly detection model.
The trained model can identify whether the log is normal or abnormal.

3.3 Word2Vec

Word2Vec is a word vectorization tool proposed by Google in 2013, which calculates the relationship
between words and explores the connections between words. According to the different types of input and
output, it can be roughly divided into two completely different models, one is the continuous Skip-gram
model, and the other is Continuous Bag of Words (CBOW). Word2Vec can convert words into word
vectors, and vectorize texts while maintaining the semantic relationship between texts. Word2Vec can
distinguish the semantic similarity of short texts, such as news headlines or similar bus and subway
station analysis.

Fig. 3 summarizes the network structure of Word2Vec. The input and output are the One-Hot vectors of
words. The first layer is a fully connected layer, and then there is no activation function. The output layer is a
Softmax layer, which outputs a probability distribution that represents the probability of each word in the
dictionary. Skip gram is a model that predicts context by giving input words. On the contrary, CBOW
inputs the context word vector of the target word and outputs the word vector of the target word.

4 Design of LogUAD

In this section, we first give the overview of LogUAD and the detailed steps of LogUAD, including log
preprocessing, word vector matrix generation, word-sequence weight matrix generation, log sequence
feature vector matrix generation, and unsupervised anomaly detection. Then, an example is given to
illustrate our method.

Figure 2: General log anomaly detection framework

Figure 3: Network structure of Word2Vec model
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4.1 The Overview of LogUAD

To unravel the issue of log instability, reduce computational overhead, and improve the accuracy and
efficiency of log anomaly detection, we propose an unsupervised log anomaly detection method based on
Word2Vec——LogUAD, as shown in Fig. 4. First of all, we download the relevant logs in the network
system and divide and extract the collected system logs. Only the detailed contents are retained. There is
no need to form structured text. By setting different window sizes, the detailed contents are divided into
multiple log sequences. Then, the log contents are used as the input of Word2Vec to obtain the word
vector. The feature vector of the log sequence can be obtained by combining TF-IDF of the log sequence.
After obtaining the feature vector of the log sequence, log anomaly detection based on clustering can
distinguish normal and abnormal logs. LogUAD mainly involves the following steps:

1) Data collection: We can download and collect a large number of logs from the network service
system, such as distributed system logs, operating system logs, mobile system logs, etc. The
collected logs include a great number of normal system logs and few anomaly system logs in the
actual network environment.

2) Processing: After getting the original system log, delete the timestamp, node, information of the
original system log, only extract the message content. Log messages are divided into multiple log
sequences according to different window sizes (that is, the number of log entries).

3) Word vector matrix generation: Taking the words in the log sequence as the input of the Word2Vec,
each word can be mapped to a vector space to generate a word vector. After training the vector of
words, it is easy to be calculated in the next step. All words in the dictionary form a word vector
matrix.

4) Word-sequence weight matrix generation: TF-IDF is a common weighting technique for information
retrieval and data mining. The weight of a word increases proportionally with the number of
occurrences in the log sequence, but if the frequency of occurrences in the file decreases, the
weight of words also decreases. We use TF-IDF to calculate word-sequence weight matrix.

5) Log sequence feature vector generation: The word vector matrix is multiplied by the word-sequence
weight matrix to get the log sequence feature vector.

6) Unsupervised clustering for anomaly detection: By the K-means clustering algorithm, the log
sequence is divided into different clusters for anomaly detection according to the Euclidean
distance from the feature vector of the log sequence to the cluster center.

4.2 Log Processing

Most of the log files are original text and unstructured files. We take a dataset from the Blue Gene/L
(BGL) [20] supercomputer system of Lawrence Livermore National Laboratory (LLNL) as an example.
Fig. 5 lists some fragments of the BGL dataset.

As shown in Tab. 1, BGL data contains a lot of irrelevant information such as time, node, message type,
kernel, etc. For example: “1118765360 2005.06.14 R04-M0-ND-C:J15-U01 RAS KERNEL FATAL data
storage interrupt”. The timestamp is 1118765360, the record date is 2005.06.14, the node is R04-M0-ND-
C:J15-U01, the type of the log message is RAS, the location where the message is generated is

Log messages Log sequence
System log

Word vector

Word2Vec

Word-sequence 
weight matrix

TF-IDF

Log sequence 
feature vector

Unsupervised clustering

Processing

Figure 4: The overall framework of LogUAD

1212 CSSE, 2022, vol.41, no.3



KERNEL, the corresponding level of the log message is FATAL, and the content is “data storage interrupt”.
We remove irrelevant information and keep useful log messages, that is, “data storage interrupt”.

After extracting the log message contents, they are divided according to the fix window to generate log
sequences. Assuming that the total number of log entries is N and the window size is t, the log contents are
divided into m log sequences, where m = N/t. Each log sequence contains t consecutive logs. Seqi represents
the i-th log sequence.

4.3 Word Vector Matrix Generation

Because Word2Vec takes words as input, it is necessary to segment the log content first. Here, we can
use space and other ways to segment words. For example, “141 double-hummer alignment exceptions data
TLB error interrupt” are divided into nine words: “141”, “double”, “hummer”, “alignment”, “exceptions”,
“data”, “TLB”, “error” and “interrupt”.

CBOWand Skip-gram are two training modes of Word2vec. We use CBOW to predict the current word
through the context. CBOW calculates the probability of the current word through the first n or last n words
of the current word.

As shown in Fig. 6, we suppose that a word is only associated with the first n and last n words of the
word. The one-hot vector of the context word of the word v(i−n),…, v(i−1), v(i+1)…, v(i+n) are entered, then the
word vector of the v(i) through the Projection layer and Softmax layer is calculated. The word vector of word

Figure 5: Examples of BGL original datasets

Table 1: Details of BGL log

Project Data

Timestamp 1118765360

Date 2005.06.14

Node R04-M0-ND-C:J15-U01

Information type RAS

Generate location KERNEL

Information level FATAL

Content Data storage interrupt
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i is wi∈ R1×j, where j is the dimension of the word. Assuming that the dictionary contains s words, the
vectors of all words form a word vector matrix W 2 Rs�j according to the order of words appearing, as
shown in Fig. 7.

4.4 Word-Sequence Weight Matrix Generation

TF-IDF calculates the weight of words in all log sequences. If a word appears less frequently in all log
sequences, it should be given higher weight. If it appears more frequently, its weight should be lower. If it
does not appear in the current log sequence, its weight is 0. TF calculates the frequency of words, and IDF
measures the occurrence of log events, which are formulated by Eq. (1) and Eq. (2).

TFðwordiÞ ¼ CountðwordiÞ
TotalðwordÞ (1)

IDFðwordiÞ ¼ log
TotalðseqiÞ

TotalðseqÞ þ 1
(2)

where Count(wordi) is the occurrence number of wordi in all log sequences, Total(word) is the total number
of words in all log sequences, Total(seq) is the total number of log sequences, and Total(seqi) is the total
number of log sequences contain wordi. Finally, TF-IDF is the product of TF and IDF, according to Eq. (3):

TF� IDFðwordiÞ ¼ TFðwordiÞ � IDFðwordiÞ (3)

The weight vector of the i-th log sequence Seqi is denoted by TSeqi 2 R1�s, where s is the total number of
words. TSeqiz represents the value of column z in the i-th log sequence. If wordz belongs to log sequence Seqi,

v(i-n) v(i-1) v(i+1) v(i+n)

Softmax 

v(i)

... ...

Projection 
layer

SUM

Figure 6: CBOW model structure

Syslog

w1 instruction 
w2 cache 
w3 parity
w4 error 
w5 corrected
w6 generating
w7 core
w8 data
w9 tlb
w10 interrupt
w11 exception 
……

Word2Vec

w1 instruction [0.751,0.256,0.335,……0.254,0.432]
w2 cache         [0.352,0.623,0.135,……0.534,0.469]
w3 party           [0.215,0.156,0.853,……0.455,0.512]
w4 error [0.623,0.325,0.293,……0.234,0.135]
w5 corrected [0.234,0.573,0.271,……0.849,0.281]
w6 generating [0.313,0.304,0.213,……0.342,0.453]
w7 core [0.381,0.163,0.194,……0.281,0.821]
w8 data [0.729,0.321,0.382,……0.341,0.386]
w9 tlb             [0.436,0.276,0.138,……0.445,0.262]
w10 interrupt [0.323,0.345,0.173,……0.294,0.525]
w11 exception [0.341,0.463,0.164,……0.681,0.221]
……

j dimensions

W=

Figure 7: Generating schema of word vector matrix W
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the value of the z-th column of TSeqiz is TF − IDF(wordz). Otherwise, it is zero, as shown in Eq. (4):

TSeqiz ¼ TF� IDFðwordzÞ; wordz 2 Seqi
0; wordz =2 Seqi

�
(4)

There are m log sequences in total, and the weight vectors of all log sequences form a word-sequence
weight matrix T∈ Rm×s.

4.5 Log Sequence Feature Matrix Generation

Obtaining the log sequence feature matrix is a key step in log anomaly detection. The log anomaly
detection model takes the log sequence feature matrix as the input. The word-sequence weight matrix T is
multiplied by the word vector matrix W to obtain the log sequence feature matrix vector Eseq∈ Rm×j, as
shown in Eq. (5).

ESeq ¼ T �W (5)

4.6 Unsupervised Anomaly Detection

An unsupervised clustering method based on K-means is exploited to detect anomaly. The K-means
method has the advantages of simple principle, fast convergence speed, and good interpretability.

Algorithm 1: An Unsupervised Log Anomaly Detection Method Based on K-means

input: Log feature vectorD ¼ fEseq1 ; Eseq2 ; Eseq3 ; . . . ; Eseqmg, the number of clusters k, and anomaly score
threshold q

output: The anomaly detection results of all log sequence

1:k samples are randomly selected from D as the initial average vector {μ1, μ2, μ3, …, μk}

2:repeat

3:Ci ¼ [; ð1 � i � kÞ
4: for j = 1, 2, 3…m do

5: Calculate the distance between Eseqj and lið1 � i � kÞ: dji ¼k Eseqj � li k2
6: Determine the cluster markup of Eseqj based on the nearest mean vector: �j ¼ argmin

i2f1;2;3;...;kg
dji

7: Divide the sample Eseqj into the corresponding cluster: C�j ¼ C�j [ fEseqjg
8: end for

9: for i = 1, 2, 3…k do

10: Computing the new mean vector: l0i ¼ 1
jCij

P
Eseqj2Ci

Eseqj

11: if l0i ¼ li then

12: Update current mean vector μi to l0i
13: else

14: Keep current mean unchanged

15: end if

16: end for

17:until cluster center vectors are not updated

18:for j = 1, 2, 3…m do

(Continued)
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19: if dj�j . q then

20: Set the j log sequence to Anomaly

21: else

22: Set the j log sequence to Normal

23:end if

24:end for

Algorithm 1 shows an unsupervised clustering method based on K-means. The input of this algorithm is
the log sequence feature matrix, the number of cluster centers k, and the threshold of the abnormal fraction.
The output of the algorithm is an anomaly label for each log sequence. The 1–3 row is initialization. The
Euclidean distance between the log sequence vector and the center of each cluster is calculated in 4–
8 rows and the log sequence is divided into the cluster with minimum distance. Line 9–17 updates the
current cluster center until it is unchanged. Lines 18–24 mark the log that the distance between the log
sequence vector and its cluster center is larger than the anomaly score threshold as an abnormal log,
otherwise it is normal.

4.7 Example

An example is taken to briefly explain the main process of feature matrix generation. 6 lines of log
messages are selected from the BGL dataset, which contains 19 (s = 19) unique words forming a dictionary.

As shown in Fig. 8a, the original system log is preprocessed to extract the log message contents. As
shown in Fig. 8b, 6 log message is divided into 3 log sequences with a window size of 2. The 19 words
in the dictionary are trained by Word2Vec to generate word feature vectors w(i)∈ R1×j, where j is the
word vector dimension and is set in Word2Vec. Because there are 19 words in total, the word vector
matrix W is R19×j, as shown in Fig. 8c.

Original log:
L1: instruction cache parity error corrected
L2: generating core.2618
L3: data TLB error interrupt
L4: exception syndrome register: 0x00800000
L5: instruction address: 0x00004ed8
L6: 12364800 double-hummer alignment exceptions

Using word2vec to generate word vector W s×j

w1:instruction [0.05633735 -0.05261158  0.0118629  ...  0.00588734 -0.00146326  -0.01424479]
w2:cache        [ 0.03889728 -0.09909716 -0.0273791  ... -0.03723818 -0.14564057 -0.00994405]
w3:parity        [ 0.05971403 -0.01017197  0.08021388 ...  0.1014189   0.09729481  -0.02015128]
w4:error         [-0.01177904  0.15838371  0.0857243  ... -0.05008794 -0.04178567 0.01086983]
w5:corrected  [-0.02176594  0.03774984  0.08280678 ... -0.02659572 -0.06097814 -0.02378402]

w19:alignment [-0.07670728 -0.03709509 -0.12504871 ... -0.0568227   0.01688999  0.12394617]

Using TF-IDF to generate Sequence weight matrix TSeq
m×s

TSeq1 [0.7617  0.4283  0.6857 Ð  0 0         0          ]
TSeq2 [0 0 0.0118 ...  0           0         0          ]
TSeq3 [0  0  0 ...  0.9041 0.528 0.6421 ]

Generating log feature vector Eseq 
m×j

Eseq1 [0.03323566 -0.15138735 -0.01196029 ...-0.1447243 -0.10931993 0.08444784]
Eseq2 [0.56327536 -0.35236436 -0.52193429 ...-0.1657533 -0.14335723 0.23435739]
Eseq3 [-0.04311486 -0.00107462 -0.06392517 ... 0.13908645 0.03430317 -0.0824506]

Eseq =T×W

Generate log sequences:
L1 L2 Seq1

L3 L4 Seq2

L5 L6 Seq3

(a)

(c)

(b) (d)

(e)

(f)

Figure 8: Example of generating feature vectors. (a) Original log. (b) Generating log sequences. (c) Generating
word vector by Word2Vec. (d) Generating sequence weight matrix by TF-IDF. (e) Generating log feature
vectors. (f) Details of log feature vectors

Algorithm 1: (Continued)
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TF-IDF is used to calculate the weight of each word in all log sequences. As shown in Fig. 8d, the
TF-IDF of the word is used to represent the word-sequence weight vector TSeqi 2 R1�19 of the i-th log
sequence. All log sequence's weight vectors form a word-sequence weight matrix T∈ R3×19, where 3 is
the number of log sequences.

Finally, as shown in Fig. 8e and 8f, the log sequence feature matrix Eseq∈ R3×19 is obtained by
multiplying the word-sequence weight matrix T and the word vector matrix W. Then, the feature matrix is
used unsupervised to detect the anomaly of the log.

5 Simulation and Evaluation

In this section, we first introduce the details of the data set used for the experiment, the experimental
setup, and the experimental platform. Then we compare and evaluate our log anomaly detection method
with LogCluster. Finally, we analyze the effects of different experimental parameters.

5.1 Datasets

We use the BGL dataset, which is published by the Blue Gene/L supercomputer system of LLNL. The
BGL data contains 1,048,576 log messages. Tab. 2 shows the detailed information of the BGL dataset,
including data size, number of log information, etc. BGL logs contains 6% Out-of-Vocabulary (OOV)
words because of log evolution. After log parsing, the percent of OOV words can exceed 80% [21].

5.2 Experimental Setup

We use 1,000,000 lines of log messages for the experiment from the BGL dataset. There are a total of
773 words (that is, s = 773). The word vector dimension of each word is 376 dimensions. The window size t
of log sequences ranges from 5 to 100. Each line of log message has its label in the BGL dataset. Once there
are one or more logs in the log sequence, this log sequence is abnormal. Otherwise, it is a normal log
sequence. The default parameters of LogUAD are shown in Tab. 3.

We conduct an experimental comparison with LogCluster [6]. LogCluster processes and classifies the
logs of large-scale online software systems, treats the log clustering problem as a pattern mining problem,
and uses clustering methods to identify whether current failures have occurred before. LogCluster
generates log templates by log parsing, then combines IDF-based and Contrast-based method to generate
word vectors, and finally clusters them by similarity. Although the deep learning method has better
performance, the computational overhead can be very large, when the data set is large. Moreover, the
input log in the training stage must be correct so that a better model can be trained. However, most of the
dataset contains anomaly logs. Therefore, we only compare with machine learning-based method.

Table 2: Detailed information for BGL dataset

#System log #Period #Dataset size #Number of messages #Anomalies Log

BGL 24 days 1,048 M 1,048,576 224,921

Table 3: Default parameters of LogUAD

Dataset N
(Log lines)

j
(Word vector dimension)

t
(Window size)

k
(Number of clusters)

BGL 1,000,000 376 20 2
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We consider the impact of window sizes, the number of cluster and the dimension of word vectors on
LogUAD. All experiments of LogUAD were run on AI Studio. AI Studio is an AI development platform
based on Baidu deep learning platform, which equipped the server with a 4-core 32GB RAM and 100G
memory CPU of Intel (R) Xeon (R) Gold 6148 and a Tesla V100 GPU with 32G memory.

5.3 Evaluation Metrics

Anomaly detection is usually a two-class classification problem. We use precision, recall, and F1-score,
which are widely used in related studies, to evaluate the performance of our proposed method. The definition
for precision, recall, and F1-score is shown in Eq. (6):

Precision ¼ TP

TP þ FP
; Recall ¼ TP

TP þ FN

F1‐score ¼ 2� Precision� Recall

Precisionþ Recall

(6)

A true positive (TP) is the number of the normal log sequences in practice, and the results predicted by the
model are also normal. A false positive (FP) is the number of the abnormal log sequences in practice, and the
results predicted by the model are normal. A false negative (FN) indicates the number of log sequences that
the predictions are normal, but actually they are abnormal log sequences.

5.4 Experimental Result and Analysis

5.4.1 Comparison with Logcluster
In order to evaluate the performance of LogUAD, we compare it with the LogCluster proposed by Lin

et al. [6]. The window size determines the division of the log sequences. To investigate the influence of
window size, t is set to 5, 10, 20, and 32, and other parameters are set as default values.

The experimental results of LogUAD and LogCluster are shown in Fig. 9. As the window size increases,
the F1-scores of LogUAD are 0.756, 0.757, 0.729, and 0.727, respectively, while the F1-scores of LogCluster
are 0.457, 0.522, 0.625, and 0.545. Although the anomaly detection performance of LogCluster improves as
the window size increases, the performance begins to decline when the window size increases to 20.
LogCluster needs to parse the original log into a log template before clustering analysis, which introduces
a lot of OOV words and results in a deviation in the log anomaly detection. As the window size
gradually increases, LogUAD anomaly detection performance tends to decrease insignificantly and
remains at a high level. Therefore, the overall performance of LogUAD is more accurate and more robust
than LogCluster.

Figure 9: The F1-scores of LogUAD and LogCluster on BGL dataset
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5.4.2 The Impact of Number of Clusters
The number of clusters plays an important role in LogUAD. Moreover, the number of clusters is set in

advance according to experience. In order to observe the impact of the number of clusters on LogUAD, we
set the number of cluster centers from 2 to 6. We use log sequences with four different window sizes t (5, 10,
20, and 32), and set other parameters, such as word vector dimensions, to the default value.

The F1-scores of LogUAD with the different number of clusters are shown in Fig. 10. The overall
abnormality detection score tends to increase as the number of clusters decreases. For example, when the
window size is 5 marked with the blue line, the F1-score of LogUAD gradually decreases from 0.756 to
0.637. When the number of clusters is less than 5, the red line with the window size of 32 maintains
relatively stable anomaly detection performance. This shows that the LogUAD is stable and robust. When
the number of clusters is 2 or 3, the F1-scores of LogUAD in different windows can reach 0.75, and can
obtain better anomaly detection effects. Because the abnormal log vector is far from the cluster center, the
fewer the number of cluster centers, the fewer the abnormal logs within the threshold range.

5.4.3 The Impact of Word Vector Dimensions
What word embedding does is map words into vector space, and the word vector dimension is a

parameter that can be set. In order to evaluate the effect of word vector dimension on LogUAD, we select
four types of word vector dimensions (200, 250, 300 and 376).

LogUAD with a high dimension of word vector can keep a stable anomaly detection effect when the
window size changes. Fig. 11 shows the performance of 2 cluster centers in LogUAD and Fig. 12
demonstrate the performance of 2 cluster centers in LogUAD.

As shown in Fig. 11, when the word vector dimension is 200 and the window size is small, LogUAD can
maintain a good anomaly detection effect. When the window size is larger than 32, the F1 scores begin to
decline. The reason is that as the window size increases, a log sequence contains more and more log
information. When the dimension of word vector is small, the cosine similarity of the word vectors of
two log sequence is higher. It is difficult to distinguish and result in clustering errors.

Figure 10: F1-score with different number of clusters
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As shown in Fig. 12, as the window size increases, LogUAD with high-dimensional word vector has a
higher F1 score than that with low-dimensional word vector. LogUAD with high-dimensional word vector
can maintain a stable anomaly detection effect. Therefore, LogUAD can effectively perform unsupervised
anomaly detection.

From the above experiments, compared with LogCluster, LogUAD has better performance. The weight
feature vector of LogUAD characterizes the log message efficiently. With different windows sizes and the
different number of clusters, LogUAD can achieve robust performance. At the same time, LogUAD
abandons the log parsing step and reduces computational overhead.

6 Conclusion

In this paper, we propose LogUAD, a log anomaly detection method based onWord2Vec. It is an off-line
feature extraction method, which avoids the steps of log parsing for the original log messages, saves the time
of the whole log anomaly detection. It can reduce the impact of the low accuracy of log parsing and also
overcome the instability of system log. It uses K-means unsupervised clustering algorithm to detect
anomaly. Simulation results show that our method is effective and superior to LogCluster. It is our next
step to combine deep learning with LogUAD framework.

Figure 11: The performance of LogUAD with 2 cluster centers

Figure 12: The performance of LogUAD with 3 cluster centers
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