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Abstract: The brain of humans and other organisms is affected in various ways
through the electromagnetic field (EMF) radiations generated by mobile phones
and cell phone towers. Morphological variations in the brain are caused by the
neurological changes due to the revelation of EMF. Cellular level analysis is used
to measure and detect the effect of mobile radiations, but its utilization seems very
expensive, and it is a tedious process, where its analysis requires the preparation
of cell suspension. In this regard, this research article proposes optimal broadcast-
ing learning to detect changes in brain morphology due to the revelation of EMF.
Here, Drosophila melanogaster acts as a specimen under the revelation of EMF.
Automatic segmentation is performed for the brain to attain the microscopic
images from the prejudicial geometrical characteristics that are removed to detect
the effect of revelation of EMF. The geometrical characteristics of the brain image
of that is microscopic segmented are analyzed. Analysis results reveal the occur-
rence of several prejudicial characteristics that can be processed by machine learn-
ing techniques. The important prejudicial characteristics are given to four varieties
of classifiers such as naïve Bayes, artificial neural network, support vector
machine, and unsystematic forest for the classification of open or nonopen micro-
scopic image of D. melanogaster brain. The results are attained through various
experimental evaluations, and the said classifiers perform well by achieving
96.44% using the prejudicial characteristics chosen by the feature selection meth-
od. The proposed system is an optimal approach that automatically identifies the
effect of revelation of EMF with minimal time complexity, where the machine
learning techniques produce an effective framework for image processing.
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1 Introduction

In recent years, the usage of the smart phones and its sales increased enormously. Owing to this increase,
the radio frequency–electromagnetic field (EMF) radiations spread everywhere in the environment, which
affects the brain of humans and other organisms in various ways. The revelation of EMF may explain
neurological changes that affect the morphological and electrical characteristics of the nervous system [1].
The increase in tumor development in the brain is also due to the increase in the number of users of
mobile phones, which creates risk to human life [2].

To make people aware about the effect of radio frequency–EMF, the International Agency for Research
on Cancer (IARC), an arm of the World Health Organization, released a report indicating that the exposure of
human beings to radio frequency–EMF results in a high chance of cancer [3]. This report from the IARC
made people aware of the ill effects of radiations produced by cell phones.

Various studies by the International Organization specified that if human beings and animals are exposed
to radio frequency–EMF, then the possibility of affecting the brain's nervous system arises. Apart from
cancer, these radiations cause various biological effects to human beings, animals, and insects such as
blood–brain barrier, learning and memory, neuronal calcium channels, myelin sheath, and autophagic
activities in neurons.

This article is arranged in the following sequence: Section 1 deals with the introduction. Section 2 briefly
explains the literature review of all existing papers. Section 3 discusses the proposed technique, optimal
broadcasting learning to detect changes in brain morphology due to revelation of EMF. Section 4 presents
a case study, which illustrates optimal broadcasting learning to detect the changes in brain morphology
due to revelation of EMF. Section 5 compares the proposed system with the existing system. Section
6 deals with the conclusion.

2 Literature Review

The existing report explored the effect of EMF on spinal cord morphology and motor processing in
female rat pups during pregnancy. This report also mentioned that the revelation of EMF in pregnancy
disturbs the growth of rat pups. Another report exposed the truth of effects of radio frequency that affects
the gabaergic system in the brain of rats, and EMF tempts the glial reaction and biochemical variations in
the rat brain [4].

Numerous experiments were conducted by researchers during which they analyzed the effect of
microwave vulnerability on the spatial memory of rats [5]. Similarly, various experiments and studies
were conducted to check the memory, nervous system, and hippocampal pyramidal cells of animals after
EMF radiations [6]. Another researcher stated that microwave revelation resulted in a rise in
deoxyribonucleic acid in rat brain [7]. Predominantly, insects were chosen for the experiment, and
Drosophila melanogaster is mostly used for research study due to its high resistance than the animals [8].
Researchers believe that if D. melanogaster is affected by any of the radiations, then the possibility that
those radiations will affect human beings as well as animals is high.

In the existing system, cellular level analysis is used to detect the effect of radio frequency–MF on the
deoxyribonucleic acid of D. melanogaster. However, using the traditional cellular level analysis has the
following disadvantages: The effect of radio frequency–EMF on D. melanogaster can be found using
the dominant geometrical features of D. melanogaster, but recognizing this is quite challenging because
the structure of D. melanogaster varies for each sample in the microscopic image.

The major drawback of using cellular level analysis is that it will not show any difference between the
microscopic image of D. melanogaster taken before and after subjecting it to radio frequency–EMF. The
brain of D. melanogaster is small such that even a small change in chemical provides a large variation in
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the result. Determining the vulnerability becomes highly impossible because the color of the D. melanogaster
brain will not change even after it is kept under radio frequency–EMF.

3 Optimal Broadcasting Learning to Identify Changes in Brain Morphology

To overcome the drawback of the existing system, the proposed technique uses optimal broadcasting
learning to detect changes in brain morphology due to cell death and deoxyribonucleic acid from
revelation of radio frequency–EMF. Fig. 1 presents the flow diagram of the proposed technique.

D. Melanogaster was selected as the specimen to detect the effect of EMF radiations on the brain using
machine learning. D. Melanogaster was collected and kept at room temperature maintained at 25°C±1°C, and
the specimen was kept under relative humidity of 70% for half day continuously for 5 days. To produce EMF
radiations, 2400 MHz of horn antennae experimental was set up. The computed power density was
maintained at 29 mW/m2. During this experiment, the EMF source produced 1800–2700 MHz frequency
with an antennae gain of 10 dB (relative). Fig. 2 depicts the flow diagram of the exposure chamber. The
temperature of the chamber was maintained at 25°C ± 0.1°C to avoid effects caused by thermal energy
during this process.

Figure 1: Flow diagram for detecting the effect of EMF radiation on morphology

CSSE, 2022, vol.42, no.1 151



Similarly, another five D. Melanogaster were taken for this research. These D. Melanogaster underwent
the same process as the above D. Melanogaster, but the difference was that these five D. Melanogaster were
not under EMF. Two images of D. Melanogaster were taken (one was exposed to EMF, and the other was not
revolutionized). Magcam DC 5 (5.1 M P) fitted along with the microscope. The resolution of the image was
1944 × 2592 pixels.

3.1 Examination of Microscopic Image of Brain

After exposing the D. Melanogaster to EMF, the image of the brain was examined using a color
microscopic image [9]. Examination of D. Melanogaster can be completed using image acquisition,
during which noise and reflections in the color microscopic image were observed. However, other than
noise and reflection, no difference was observed in the image of D. Melanogaster with and without EMF,
hence the need for image examination.

3.2 Partitioning of Brain from Microscopic Image

The input image for the image partitioning was the microscopic color image. In this process, the image
of the brain was partitioned sepavaluely from the overall image by removing noise and reflection. The
partitioning of the image should be carefully done because even a small mistake may drastically change
the end result. Thus, image partitioning should be examined with various color models and individual
color components to identify the appropriate color components.

3.2.1 Examining Microscopic Image in Various Color Models
During the partitioning of the brain image, the microscopic color image was transformed into different

color models. Predominantly, three different color models were used: red, green, and blue (RGB); hue,
saturation, and value (HSV); and L: lightness, A and B: color components (LAB).

From the image acquisition, whether the image belongs to RGB can be decided easily by examination. If
the image fails to falls in red, green, and blue, then this RGB color model cannot be chosen. After confirming
it, the next image model, HSV, has to be checked. A series of steps must be followed to change the RGB color
image into an HSV color image:

Figure 2: P values for obtained structural characteristics
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r ¼ Red � 255; g ¼ Green � 255; b ¼ Blue � 255 (1)

DMhigh ¼ high ðRed; Green; BlueÞ (2)

DMlow ¼ Low ðRed; Green; BlueÞ (3)

D ¼ DMhigh� DMlow (4)

Hue ¼

00 D ¼ 0
1800

3
� Green� Blue

D
½mod 6; DMhigh� ¼ Red

1800
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� Blue� Red
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8>>>>>>><
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(5)

Saturation ¼ 0; DMhigh¼ 0
D� DMhigh;DM1

high 6¼ 0

�
(6)

Value ¼ DMhigh (7)

By using the above equations, the RGB microscopic image can be converted into an HSV color model.
In this HSV color model, the examination of the image is checked via color as well as from the value. After
checking the color, if it is distinct, then the partition has to be checked; if the partition is not uniform, then the
image has to be converted into the LAB color components. They are as follows:

L ¼
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� �
; (9)

B ¼ 200 � fðQ=QnÞ � f
R

Rn

� �� �
; (10)

where L is lightness; A and B are the rivals of the green–red and blue–yellow.

Pn ¼ 95:047; Qn ¼ 100:000; and Rn ¼ 108:883 (11)

3.2.2 Preliminary Process for Quality Upgradation
Before segmenting the brain area, the preliminary process (lightness) is applied to the image order to

enhance the brain area separately from the background. Whenever lightness is applied to the image,
intensity adjustment is mandatory [10].

3.2.3 Partitioning After Processing
After adjusting the intensity of the image, the brain area becomes distinct. The threshold algorithm is

applied to the image to partition the brain area from the preliminary image. τ is selected as the threshold
parameter for the partitioning of the brain area.
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3.3 Examination of Structure of Image

The structure of D. Melanogaster obtained from the partitioned image is used to classify whether it is
affected by EMF radiations.

Recognizability: Things that are visually similar have similar characteristics that are common to both of
them.

Transformation: The movement of the thing should not affect the characteristics of the image obtained.

Trustworthiness: The obtained information provides the same result in situations dealing with identical
things.

Computably Self-reliant: All information obtained should be computable self-reliant. Eight structural
images can be obtained from the partitioned brain.

Size: Addition of the nonzero pixels of binary image (BI) of partitioned image provides the total size of
the brain. It can be calculated as

Size ¼
Xrow
a¼1

Xcol
b¼1

BIðr; cÞ ¼ 1 (12)

Extremity: It is the distance measured around the border of the object. It is calculated by measuring the
neighbor pixel pair around the boundary region.

Irregularity: It is calculated by dividing the length between the foci by the major axis length.

Irregularity¼ Length between Foci=Major Axis distance: (13)

Focal Length ¼ 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððHigher

p
Axis length=2Þ2 � ðLower Axis length=2Þ2Þ (14)

Equivalent Diameter: It is a diameter of the object that indicates the diameter of the object and the circle
are similar. It can be calculated as

Equivalent Diameter ¼ p
4 � Size

p

� �
(15)

Euler Number = It denotes the connection between the sum of continuous parts and the number of
openings in the structure.

Euler Number ¼ CP� OS: (16)

Bulging Space = It represents the number of the pixels in the bulging space of the image.

Sturdiness = It describes the degree, which determines whether the image is concave or convex. If S is
the size of the object, then SH is the convex size of the object.

Sturdiness ¼ S=SH (17)

Scope: It is calculated by dividing the sum of pixels (TP) in things and related bounding box (BB).

Scope ¼ TP= BB (18)

All the above characteristics are important. Tab. 1. describes the provocation of the above characteristics,
all the characteristics are calculated, and the most important characteristics are selected.
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3.4 Identifying the Most Preferential Characteristics

Various characteristics were identified in the previous technique [11]. However, the authenticity and time
intricacy of machine learning algorithms vastly rely on the preferential power of characteristics fed to the
classifiers. Authenticity will rise only when the characteristics fed to classifiers have sufficient preferential
power. To attain this, Wilcoxon rank sum Examines is implemented.

Wilcoxon rank sum is used to find the value of p. If the value of p is low, then the preferential
characteristics are high. To identify this, the algorithm uses the nonparametric and speculative test in z
statistics [12]. This test checks all the characteristics obtained from the previous steps. Another element
that provides confidence regarding the usage of the Wilcoxon rank sum's p-value method [13] is to
determine the preferential of vector Box and Whisker Plot [14]. Tab. 2. presents the average, mean,
standard deviation, and p values for all the characteristics that identified the D. Melanogaster groups.

Fig. 2 shows that two out of the eight characteristics have the lowest dissemination, which means only
these two characteristics have the highest preferential power among all the characteristics. After calculating
the p value, which is ≤ 0.05, only two characteristics are capable of finding the open/not open D. to EMF.
Now, selecting the preferential characteristics is easy.

Table 1: Justification of extracted structural characteristics

Structural
characteristics

Provocation

Size The D. Melanogaster's brain will be affected upon exposure to EMF radiations. The
chance that the size of the brain will be affected even if it is open/not open to the EMF
radiations is high.

Extremity It is used to find the vulnerability of the radiations that affects the boundaries of the
brain.

Irregularity It describes the figure of the D. Melanogaster and can find the difference between the
specimen's figure before and after EMF radiations. Hence, it is an important
characteristic.

Equivalent
diameter

It is a figure-related circumference, which is related to shape of brain of D.
Melanogaster.

Euler number It denotes the connection between the sum of continuous parts and the number of
openings in the structure. It is used to detect the variations in brain area of the inner
side due to EMF radiations.

Bulging space It offers various numbers of pixel in the convex images that will vary due to the EMF
radiations.

Sturdiness It describes the softness of the object. The chance that the smoothness of the brain
will be affected is high.

Scope The partitioned image provides the pixel ration in the things as well as corresponding
box, which are the most important characteristics of the work.
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3.5 Segregating Open/Not Open Groups Using Machine Learning

Preferential characteristics out of eight were selected, and the selected characteristics were analyzed
based on their performance after final segregation. To examine the effect of EMF radiations on the
morphology of the D. Melanogaster brain, four classifiers were used to segregate it. These four classifiers
were naïve Bayes [15–17], artificial neural network [18–22], support vector machine [23–25], and
unsystematic forest.

The efficiency of the classifiers was measured by using various criteria. Initially, classifiers were skilled
in using the datasets and checking database, and were all used to examine the performance of the classifiers.
These criteria were used to check the classifiers: correct optimistic value (COV), correct pessimistic value
(CPV), noncorrect optimistic value (NOV), noncorrect pessimistic value (NPV), optimistic predictive
value, and pessimistic predictive value.

3.5.1 Youden's J Statistic
Youden's J statistic (also called Youden's index [YI]) is in the ROC Curve. It is far from the diagonal line.

It increases the distance between COV and NOV. The value between 0–1.0 is the lowest value, and 1 is the
highest value. It can be calculated as follows:

YI ¼ COV þ CPV � 1 (19)

3.5.2 F1 Score
Apart from YI, another methodology can check the efficiency of the classifiers. Predominantly, this

F1 score is used when the distribution of classifiers is uneven. It considers NOV and NPV.

F1 score ¼ 2
1

True Optimistic Rate

� �
þ 1

Optimistic Predictive Value

� � (20)

As YI, F1 score also ranges from 0 to 1, where 0 is the least score. As discussed earlier, authenticity is the
most important criteria while testing the efficiency of the classifiers.

Table 2: Examining the obtained structural characteristics and preferential characteristic sentence in
terms of p

Structural
characteristics

Mean + standard deviation
(Not opened)

Mean + standard
deviation (opened)

P
value

Preferential
characteristics (≤0.05)

Size 1.7566e+05± 2.1342e+04 1.62e+05± 1.41e+04 0.0774 No

Extremity 2.8564e+03± 23.928 3.01e+03± 501.91 0.9119 No

Irregularity 0.851 ± 0.0348 0.8444 ± 0.16 0.0513 Yes

Equivalent
diameter

45.2563± 30.27 453.60± 19.76 0.0774 No

Euler number −144.8750± 92.6751 −156.1250± 56.3047 0.0443 Yes

Bulging space 1.8959e+05 ± 2.8152e+04 1.8632e+05 ± 1.7865e
+04

0.4500 No

Sturdiness 0.81 ± 0.025 0.83 ± 0.016 0.1091 No

Scope 0.65 ± 0.055 0.62 ± 0.053 0.4273 No
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Authenticity ¼ True Optimisticþ True Pessimistic

ððTrue OptimisticÞ þ ð False OptimisticÞ þ ðTrue PessimisticÞ þ ðFalse PessimisticÞÞ (21)

The following are proven:

Correct Optimistic: D. Melanogaster is classified as affected if the microscopic image is revealed.

Correct Pessimistic: D. Melanogaster is classified as affected if the microscopic image is Shaw revealed.

Noncorrect Optimistic: D. Melanogaster is classified as affected if the microscopic image is Shaw
exposed.

Noncorrect Pessimistic: D. Melanogaster is classified as affected if the microscopic image is exposed.

4 Results and Discussion

Optimal broadcasting learning to detect the effect of EMF radiations on the brain using machine learning
is proposed to examine the brain morphology of D. Melanogaster after it is vulnerably affected by EMF
radiations. The brain was examined by the series of the image database. A total of 155 images were taken
for the research purpose, of which 66 images were exposed to EMF radiations and the still existing
89 images were selected by not concentrating any EMF radiation.

The database was subdivided into two sets, training set and testing set, to look into the efficiency of the
classifiers. The training set provided training to the classifiers, whereas the testing set checked the efficiency
of the classifiers. Tab. 3. shows the segregation of the database into testing set and training set. The database
was partitioned as 52% for training, and the remaining 48%was for testing. Classifiers were examined by two
methodologies, namely, F1 score and YI.

Tab. 4. and Fig. 3. present the results of the four classifiers (naïve Bayes, artificial neural network,
support vector machine, and unsystematic forest) without the characteristic selection method. All the
classifiers produce authenticity of nearly 67%. Among the four classifiers, the support vector machine
produces the high authenticity of 76%. Similarly, the artificial neural network has the least authenticity
among the four classifiers. In the F1-score methodology, all the four classifiers are less than the 0.6557,
but the value below is not much lesser; hence, it cannot be classified using this value.

Tab. 5. and Fig. 4. represent the efficiency of the classifiers. In this table, the classifiers are written based
on the preferential characteristics selected by the characteristic selection method. Similar to authenticity,
characteristic selection support vector machine provides a large authenticity with 94.66%. In the
characteristic selection, the minimum value for authenticity is 84%, which is higher the highest value
obtained without the characteristic selection method. Similarly, in F1 score and authenticity, the classifier
support vector machine ranks top in efficiency compared with the other classifiers.

Table 3: Segregation of microscopic image of D. melanogaster brain in training set and testing set

Groups Sum of training samples
used to train classifiers

Sum of testing samples
used to test classifiers

Sum of samples

Revealed 50 36 86

Shaw revealed 50 59 109

Total 100 95 195
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Figs. 5–7 present the chart where all the four classifiers are compared based on efficiency. All the
classifiers improved much in selected characteristics. Support vector machine classifiers show the best
result in the classification of open/not open groups.

Table 4: Capacity of all four classifiers without characteristic selection

Measurement of efficiency (MoE) Classifiers

Support vector
machine

Naïve
bayes

Artificial neural
network

Unsystematic
forest

Correct optimistic value (COV) 61.11% 62.06% 61.76% 57.14%

Correct pessimistic value (CPV) 89.74% 82.60% 72.41% 78.72%

Noncorrect optimistic value (NOV) 10.26% 17.39% 27.59% 21.27%

Noncorrect pessimistic value (NPV) 38.89% 37.93% 38.23% 42.85%

Optimistic predictive value (OPV) 84.61% 69.23% 63.64% 61.54%

Pessimistic predictive value (PPV) 71.43% 77.55% 70.79% 75.54%

Youden's index (YI) 0.5085 0.4466 0.3417 0.3586

F1 score (F1) 0.5814 0.6557 0.6289 0.5926

Autdenticity (AUT) 76.00% 74.64% 67.74% 70.67%

Figure 3: Efficiency of classifiers without characteristic selection
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Table 5: Capacity of all four classifiers with characteristic selection

Measurement of efficiency (MoE) Classifiers

Support vector
machine

Naïve
bayes

Artificial neural
network

Unsystematic
forest

Correct optimistic value (COV) 95.83% 86.21% 89.66% 68.42%

Correct pessimistic value (CPV) 94.12% 97.83% 85.57% 100%

Noncorrect optimistic value (NOV) 5.88% 2.17% 14.43% 0%

Noncorrect pessimistic value (NPV) 4.17% 13.79% 10.34% 31.58%

Optimistic predictive value (OPV) 88.47% 96.15% 78.79% 100%

Pessimistic predictive value (PPV) 97.96% 91.84% 93.26% 75.51%

Youden's index (YI) 0.8995 0.8404 0.7523 0.6842

F1 score (F1) 0.9117 0.9090 0.8264 0.8130

Autdenticity (AUT) 94.66% 93.33% 87.10% 84.00%

Figure 4: Efficiency of classifiers with characteristic selection

CSSE, 2022, vol.42, no.1 159



Tab. 6. presents the time taken for partitioning the brain area from the microscopic image and obtaining
the structural characteristics from the partitioned brain image with randomly selected images. The times
taken for partitioning the brain area from the input image are 1.84 and 0.22 s, which are very low. Hence,
the proposed “Optimal broadcasting learning to detect the effect of EMF radiations on the brain using
machine learning” has a very low complexity.

Through this proposed system, the microscopic image of D. Melanogaster was automatically partitioned
and then obtained the structural characteristics to examine the brain morphology. The calculation of the p
value ≤ 0.05 is exactly suited for preferential characteristic selection for open/not open groups. This
imaging technique detected the effect of EMF radiations on the brain morphology of D. Melanogaster.

Figure 5: Comparison made for accuracy

Figure 6: Comparison made for F1 score
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Figure 7: Comparison made for Youden's index
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5 Conclusion

The proposed “Optimal broadcasting learning to detect the effect of EMF radiations on the brain using
machine learning” describes the automatic examination of the modifications in the morphology of the
specimen D. Melanogaster brain due to the vulnerabilities of EMF radiations. For this purpose, the brain
of the D. Melanogaster is examined in two different ways, namely, with vulnerability of EMF radiations
and without the vulnerability of EMF radiations. The analysis is made by using machine learning. The
brain area is segregated from the microscopic image, the structural features of the brain are obtained from
the image, and the color models are identified.

The structural characteristics are obtained from the segregated brain image. The preferable
characteristics for the classification of open/non open to EMF radiations are classified based on the
classifier. The classifier's efficiency increases when preferential characteristics are given to classifiers. The
support vector machine, which is one of the four classifiers discussed in the proposed system, performs
well and has the best authenticity. The computational time to segregate the brain image from the
microscopic image is reduced by using machine language. The times for partitioning the brain and
extracting the brain image are almost 1.8 and .20 s, which suit the practical applications.

Funding Statement: The authors received no specific funding for this study.

Conflicts of Interest: The authors declare no conflict of interest regarding the publication of the paper.

Table 6: Time taken for different steps in image processing for the 15 samples

Images (I) Time taken (Seconds)

Segregating the brain area
from the input image

Uprooting structural
characteristics

I1 1.8643 0.2121

I2 1.8345 0.2223

I3 1.8124 0.1932

I4 1.8123 0.2112

I5 1.8633 0.1981

I6 1.8222 0.1985

I7 1.8523 0.2123

I8 1.8412 0.2454

I9 1.8432 0.1891

I10 1.8365 0.2456

I11 1.8399 0.2566

I12 1.8487 0.2668

I13 1.8398 0.1988

I14 1.8386 0.2786

I15 1.8432 0.2567
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