
Adaptive Server Load Balancing in SDN Using PID Neural Network Controller

R. Malavika1,* and M. L. Valarmathi2

1Department of Information Technology, Government College of Technology, Coimbatore, 641013, India
2Department of Computer Sceince and Engineering, Dr. Mahalingham College of Engineering and Technology, Pollachi, 642003,

India
*Corresponding Author: R. Malavika. Email: malavikkares21@yahoo.com

Received: 16 June 2021; Accepted: 23 August 2021

Abstract: Web service applications are increasing tremendously in support of
high-level businesses. There must be a need of better server load balancing
mechanism for improving the performance of web services in business. Though
many load balancing methods exist, there is still a need for sophisticated load bal-
ancing mechanism for not letting the clients to get frustrated. In this work, the ser-
ver with minimum response time and the server having less traffic volume were
selected for the aimed server to process the forthcoming requests. The Servers are
probed with adaptive control of time with two thresholds L and U to indicate the
status of server load in terms of response time difference as low, medium and high
load by the load balancing application. Fetching the real time responses of entire
servers in the server farm is a key component of this intelligent Load balancing
system. Many Load Balancing schemes are based on the graded thresholds,
because the exact information about the network flux is difficult to obtain. Using
two thresholds L and U, it is possible to indicate the load on particular server as
low, medium or high depending on the Maximum response time difference of the
servers present in the server farm which is below L, between L and U or above U
respectively. However, the existing works of load balancing in the server farm
incorporate fixed time to measure real time response time, which in general are
not optimal for all traffic conditions. Therefore, an algorithm based on Propor-
tional Integration and Derivative neural network controller was designed with
two thresholds for tuning the timing to probe the server for near optimal perfor-
mance. The emulation results has shown a significant gain in the performance by
tuning the threshold time. In addition to that, tuning algorithm is implemented in
conjunction with Load Balancing scheme which does not tune the fixed time slots.

Keywords: Software defined networks; PID neural network controller; closed loop
control theory; server load balancing; server response time

1 Introduction

Achieving availability and responsiveness is turned out to be an important consideration in service
provisioning model. The server load balancing is always used to distribute the user requests to redundant

This work is licensed under a Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

Computer Systems Science & Engineering
DOI:10.32604/csse.2022.020947

Article

echT PressScience

mailto:malavikkares21@yahoo.com
http://dx.doi.org/10.32604/csse.2022.020947
http://dx.doi.org/10.32604/csse.2022.020947


servers in the server farm. This farm provides a continuous service for ensuring availability and
responsiveness of services to end users. The techniques that are employed in the server load balancer play
a significant role in satisfying the end users. The Network Approach [1] implementation of Enterprise
Content Delivery Network (ECDN) faces server load balancing because it is critically a great challenge in
providing a service availability to the end user. In these days, reducing the heavy traffic network flux and
alleviating the risk of single server have become targeted concepts for providing better services. For the
sake of providing services, the hardware resources from ECDN are put into practice for a load balancer.
However, the ECDN infrastructure is subjected to high cost, it involves more complexity and difficulty in
managing the conditions. Software Defined Networking (SDN) [2,3] a New Networking paradigm
uncouples the control plane from data plane. Further it enables the ECDN providers to implement their
business logic as new network application and forward the request based on predefined policies [4]. In
order to improve the web service responsiveness and network utilization, SDN offers the utmost benefits
for most of the end users even with flexible investment cost. Additionally, the Central Controller of SDN
maintains and monitors the networking elements and processes. The programmability and centralized
control function has enabled the server load balancing in the software Defined Enterprise content
Delivery Network (SD ECDN). Moreover, the SDN has allowed ECDN providers to be free from the
governing networking devices and infrastructure so as to concentrate more on the business growth and
network improvement. Load balancing module is implemented in SDN Controller. The controller in turn
communicates to the whitebox switches using open standards protocol such as open flow [5,6]. And it
would provide better composes of network resources. In general terms, balancing a Load in a network
dictates many merits in terms of fault tolerance, high availability, scalable and secured server farm. The
extensive literature on the topic of SDN based server load balancer using several factors namely reported
load of server, least response time, up/down status of server, geographic locations of servers and network
traffic flux are discussed.

The ECDN providers can entrust on SDN for allowing the load balancing as an essential functionality of
network for the attainment of load balancing benefits. Besides, load balancing has lent a hand to amend
the problem associated with the scalability of server farm by spreading out the user requests among
all the servers. Load balancer which is implemented using SDN would handle the server and the failure
from the web application by creating multiple abstract distribution trees. These innovative methods are
used in order to withstand the failure. Load balancing solution has provided security for the server farm
from different forms of attack by packet inspection and machine learning techniques. The inherent
problem associated with the SDN based implementation of load balancing with single SDN Controller is
the core point of its failure [7]. Many research works have been carried out in solving the bottlenecks
associated with the single central SDN Controller by substituting it with many distributed controllers
operating together as logically centralized controller. Thus, the controller load balancing in achieving the
scalability of SDN controller [8] has also become a major research in SDN.

This paper focuses on how to improve the system using PID Neural Network Controller by the extension
of LBBSRT [9] and SD-WLB [10], which works with both least server response time and traffic volume. In
the study, the system was named as LBBNNC (Load balancing based on neural network controller). Both
LBBSRT and SD-WLB had reviewed the server farm in a defined uniform time slot and it was found that
it was not suitable for the inconsistent traffic. So, a system was designed based on PID Neural Network
Controller with two threshold values or set points namely L and U to mark the status of the sever load as
Low, Medium and high based on the maximum response time difference (MRTD) among servers in the
farm which was below L, between L and U and above U respectively to change the probing time for
measuring the MRTD of the server pool. However, the systems that were reviewed in the literature had
incorporated the fixed time in fetching the response time. But in general, it is not ideal for all traffic

230 CSSE, 2022, vol.42, no.1



conditions. The optimization engine in LBBNNC had tuned the probing time adaptively based on the
thresholds that were associated with the load balancing algorithm for near optimal performance

Additionally, the specified approach LBBNNC was compared with Round robin [11] LBBSR, SD-WL,
LBBNNC had exhibited higher network throughput, lessen response time and optimized open flow’s
PACKET-IN message overhead when the traffic conditions would have been unpredictable. With the
implementation of closed loop control theory with two set points, LBBNNC had changed the probing
time adaptively to measure the server load imbalance through maximum response time difference among
servers in the server farm.

The particulars of the research and the important findings of it are provided in a detailed way.

1. Closed loop theory with two threshold values for branding the system load as low, medium and high
grounded on the load balancer in SDN based network which optimizes the probing time to measure the server
response time and the port traffic of switch for calculating the server load imbalance was proposed and the
system had performed better than Round Robin, LBBSRT and SD-WLB.

2. Emulation of the experiment in Mininet [12] and the functioning of the system with other load
balancing solutions in SDN based networks were carried out with respect to mean response time, memory
usage and CPU usage.

Section 2 describes the related works. Section 3 shares a limelight on to the contribution which
concentrates on adaptively change the probing time to measure the response time of all servers with two
threshold values of MRTD. Thereby, the selecting server with minimum response time and minimum
traffic volume on the port of the switch to manage all traffic conditions by considering the imbalance of
the server load to balance the user requests among servers in server farm. Section 4 presents the
experimental results acquired by Round Robin, LBBSRT, SD-WLB and our system LBBNNC. Section
5 brings about the document with conclusion and works in future.

2 Related Works

Maglev [13] a reliable and fast Layer 3 load balancer was intended to work on Linux server. It was
designed to meet connection persistence by tracking the connections with reliable hashing in order to
reduce the error on connection-based protocols. Despite of its merits, design and implementation
techniques were extremely multifaceted and burdensome. Duet [14] was a cross layer 3 cloud scale load
balancer system that used the custom hardware switches in datacenter with an integrated load balancing
software function. The results had attained improvement in flexibility and availability of CONGA [15] a
forwarding plane load balancing mechanism. CONGA had used the network flux cognizance maintained
at the edge switches and it was implemented in the traditional hardware. Storage limitation was a
problem to CONGA. HULA [16] a load balancing system was implemented in forwarding plane. Later it
was prevailed over the limitation of CONGA by allowing every switch in the network to note down the
congestion. That congestion helped in identifying the most appropriate path to a target through the
neighboring switch. HULA was intended for the programmable switches without requiring the traditional
hardware. Compared to CONGA, HULA is adaptable to the failures of network link but getting path
utilization information is a burdensome task. The implementation of a distributed layer 4 load balancer
was to create scale out web services that was operated on the commodity hardware and Ananta [17] was
utilised to meet the requirements of multitenant cloud environment. Ananta provided back responses to
the client bypassing the load balancing mechanism to increase the throughput and to reduce latency.
Although Ananta had performed well, it would not be used by the public because of its proprietorship.

FDALB [18] had managed the dynamics of network traffic by reducing flow finish time with the
information about flow sizes distribution. Plug-n-Serve [19] system had effectively balanced (load) the

CSSE, 2022, vol.42, no.1 231



web traffic using OpenFlow by capturing the current state of network. It was suited for the networks that were
built with inexpensive product hardware and at the same time, it was not suitable for structured networks
such as data centers. The proposed system was used to load balance in SDN based networks using round
robin strategy availing the agility of SDN. In general terms, SDN data planes are inexpensive and
product-based silicon devices. They were uncoupled from the control plane using OpenFlow protocol to
communicate with the forwarding plane. Later, it was allowed to design and develop round robin plan for
selecting the server to achieve load balancing. SDN Controller independently had set up every flow in per
flow-based routing. SDN POX Controller was used to develop the load balancer module, but round
robin-based algorithm had faced its difficulty with the inconsistent network traffic that is usual in real
time cases. Finally, the SDN POX Controller had taken the advantage of programmability and agility of
SDN and calculated the response time of the server by dispatching. Pseudo ARP request and reply
packets were collected to and from of all the servers in the server farm. It figured out the most suitable
server for the request processing. This approach leverages the flexibility of SDN for selecting the server
based on response time. The response time was measured by SDN Controller by probing the server with
fixed interval of time. Web load balancing scheme had utilized both the server response time and the real
time response time. the server had used the port traffic volume of the switch to calculate minimum value
of weighted average of real time responses of all servers. The port traffic volume of the switch was used
for selecting the suitable server to forward the request. Both LBBSRT and SD-WLB had worked well
when the traffic was consistent i.e., the frequency distribution of traffic was the same for all the time slots
defined by the fixed time interval. But, when the traffic was not consistent, both LBBSRT and SD-WLB
showed poor performance. The LBBSRT and SD-WLB were handled by extending the closed loop
control theory. In a such way, the probing time was adaptively changed based on two threshold values for
maximum response time. To select the server with minimum weighted average of response time of all
servers, the port traffic static of the switch was used in the server farm. Then the user request was
processed by the chosen web server.

3 Proposed Load Balancing Methodology Using PID Neural Network Controller

The architecture of SDN is proposed in Fig. 1. and some of its applications are also mentioned. The
important functionality in the network approach [20] implementation of Enterprise content delivery
networks was load balancing. In order to Provide Scalability and availability, ECDN providers had used
redundant surrogate servers at the geographical location that were close to the clients, but it would incur
heavy price to the infrastructure providers. So, a system was designed which used the SDN innovation to
implement a SD-ECDN based on network approach to enhance the user satisfaction by increasing the
availability of servers.

Figure 1: Innovation of SDN

232 CSSE, 2022, vol.42, no.1



LBBNNC was implemented using component-based framework for SDN namely RYU Controller [21].
Once the system got started, the web users had requested their service by locating the service via virtual load
balancer IP configured by the ECDN provider. Once the request was directed to the networking (simple dumb
device), which was not able to hold any intelligence because all the intelligence was extracted from the
forwarding plane and it was encoded in the central SDN Controller. The Dumb Switch did not know how
to handle the traffic flow so it would ask the controller on how to process the request. Based on the
controller receiving the switch’s request via OpenFlow’s, the PACKET_IN message got processed. They
process according to the rule enforced by the LBBNNC algorithm was implemented in RYU Controller.
Normally, the job of LBBNNC algorithm is to choose the factors namely minimum response time and
switch’s port traffic volume. The proposed framework worked on how the controller retrieved the above-
mentioned factors in variable time slots as defined by the probing time. The time was produced by the
engine which was optimized in choosing the process of best server if the traffic condition was not consistent.

The proposed LBBNNC is comprised of four modules namely Server load imbalance monitor, traffic
volume collector, probe interval producing engine and server chooser. “Server load imbalance monitor”
checks for the load imbalance using maximum response time difference among servers in server farm and
the MRTD value is being given to the “probe interval producing engine” to define the variable time slots
for probing the server farm using two graded threshold values namely L and U. The “traffic volume
collector”, collects the volume of traffic in every port of all the switches in the network. Both the
minimum response time and volume of traffic is given to the Server Chooser module for selecting the
suitable server to process the user request. The modules in LBBNNC are depicted in the Fig. 2.

Figure 2: Modules of LBBNNC

CSSE, 2022, vol.42, no.1 233



3.1 Server Load Imbalance Monitor

The server load imbalance was calculated by the module using maximum response time difference of
every server in the server farm. It works as defined by the Algorithm 1.

After initializing, the system server load imbalance monitor sends pseudo ARP request to every server in
the server farm with variable interval time slots defined by the probing time producing engine module and
record the sending time Tsend. Once the reply from ARP received, this component computes the value for Tres
i.e., the response time using the formula Tsend − Treceive and the computed values are stored in the database.
Besides computing the response time, this module also computes the Maximum response time difference as
max(Tres) − min(Tres) and sends the MRTD value to probing time producing engine.

3.2 Traffic Volume Collector

The traffic volume that was flowing through the ports of the network switch were collected by the
module and got stored in SQLite database with variable time slots as defined by the probing time
producing engine. The port traffic value was extracted from OpenVswitches using OpenFlow message
namely OFPPORTSTATSREQUEST. The implemented module based on SD-WLB is presented below.

Algorithm 1:

Input: Probe Time Tprobe received from Probing time producing engine

Output: Maximum Response Time Difference MRTD

1.while system starts do

2. If current time % Tprobe == 0 then

3. for each server do

4. send a Pseudo ARP request to server and records the time Tsend

5. record the receiving time of ARP reply as Treceive

6. calculate the response time by the formula Tsend − Treceive

7. store the response time in SQLite database as Tres

8. end for

9. end if

10. calculate MRTD as max(Tres) − min(Tres) and send it to probing time producing engine

11. end while

Algorithm 2:

Input: Probe Time Tprobe received from Probing time producing engine

Output: Volume of traffic in switch’s port

1.while system starts do

2. If current time % Tprobe == 0 then
(Continued)

234 CSSE, 2022, vol.42, no.1



3.3 Probing Time Producing Engine

The working of this module is depicted in Algorithm 3. The network architect or designer would
determine the performance levels acceptable for the system. The maximum response time difference
(MRTD) among all the server systems in the server farm was viewed. MRTD was dictated by the two
application delay tolerance thresholds L and U, which was dependent on the application running in the
server farm. Certain unstructured computer networks are not maintained with sophisticated infrastructures
such as campus networks where the traffic load cannot be predicted in advance. whenever the students
have to submit the assignment, the network traffic and its volume may get elevated to some extent which
cannot be resisted. In such cases, it is to be learned the application delay tolerance thresholds L and U in
terms of maximum response time difference in an online manner. For that purpose, the system was
modelled with neural network to dictate L and U values. The neural network PID Controller is shown in
Fig. 3. The neural network model was constructed online from the feedback of the system. The neural
controller was trained then for tracking of specific set points namely L and U by defining the cost
function based on the neural network model [22]. MRTD attempted in dictating the server load imbalance
and the probing time producing engine which took care of finding the optimal probing time that helped in
achieving such performance level. The behavior of this module is as follows: the network architect or
designer defines the expected behavior for load balancer system using measurable MRTD thresholds L
and U (the set point SP1(L) and SP2(U)). The probe interval generator measures the actual value for that
variable MRTD (the process variable, PV) and computes the error, e = SP − PV. Given that error, the
Probe interval Generator must compute an actuation value that is optimal probe interval (controller
output, CO) to provide input to the system that should minimize the error and bring PV to the value
defined for SP with the formula.

Algorithm 2 (continued)

3. for each port of switch do

4. prior_total_bytes = 0

5. prior_total_seconds = 0

6. Analyze request’s response and get the total_bytes and total_seconds

7. current_bytes = total_bytes-prior_total_bytes

8. current_seconds = total_seconds-prior_total_seconds

9. traffic_volume = (current_bytes * 8)/current_seconds

10. prior_total_bytes = total_bytes

11. prior_total_seconds = total_seconds

12. store the port’s traffic volume in SQLite database as traffic_volume

8. end for

9. end if

10. send the Port’s traffic volume to probing time producing engine

11. end while

CSSE, 2022, vol.42, no.1 235



p
new¼ Pold=PV

� � � sp2 if PV . SP2 (1)

p
new¼ PV=Pold

� � � sp1 if PV < SP1

Pnew = Pold if SP1 ≤ PV ≤ SP2

where Pnew is the next probe interval window and Pold is the previous probe interval window. The actuation
value CO in terms of probe interval window is given as input to the system that should minimize the error and
bring PV to the value defined for SP.

The closed loop control theory [23–25] was used in the industrial automation field. The proposed Probe
interval producing engine was designed as PID neural network controller that calculated their control
decision as function of the error. The error was defined as the change between the actual measured
variable being controlled. That was measured as MRTD and its desired value and thereby adjusting the
time interval to probe response time dynamically using the feedback from the system until the desired
value was achieved in the process variable (PV). The goal was achieved with PID Controller. It had
controlled their decision as the sum of three functions of the error: one was relative to the current error,
the other was relative to the sum of the past measured error and the last was proportional to the current
derivative of the error. In that case controller output and the measured error are related by the Eq. (2).

co ¼ kpeþ ki

Z t

0
e:dt þ kd

de

dt
þ bias (2)

The PID constants Kp, Ki and Kd had defined the weight of three components of the error which included
request distribution pattern, request variability, server failure and link down. The neural network PID
controller was implemented in probing time producing engine that generated the probe interval based on
the information from the server performance monitor and calculated the maximum response time
difference of the servers in the server farm dictating the server load imbalance. As the neural network
PID Controller tries to cancel the error, it computes the optimal time to probe the server in server farm
for calculating the real time response of all servers to proximate PV and SP.

Figure 3: The neural network PID controller

Algorithm 3:

Input: Application delay tolerance as Global Threshold values in terms of maximum response time
difference (MRTD) of every server in the server farm as L and U dictated by Neural network in PID
Controller

Output: Probe Interval for next Iteration as θin terms of θnew
(Continued)

236 CSSE, 2022, vol.42, no.1



3.4 Server Chooser

This module checks for each PACKET_IN message for new flow to be processed by the server or
whether it is new user service request. If it is so, the module fetches the data from both server load
imbalance and traffic volume collector module for calculating the metric WANVi to find the weighted
average value of both minimum response time and port of the switch traffic volume as defined by
SD_WLB using the formula

WANVi ¼ a
ASRTi �MINSRTi

MAXSRTi �MINSRTi

� �
þ b

ASPTi �MINSPTi
MAXSPTi �MINSPTi

� �
(3)

where α and β are the variables which take the value between 0 and 1 and defined by the network
administrator where ASRTi is the corresponding average server response time of ith server for n recent
response times of ith server and ASPTi is the corresponding average switch's port traffic of ith port of the
switch for n recent values of traffic volumes of ith port of the switch. The first term of Eq. (3) holds the
standardized average response time value of ith server and second term is the normalized form of port i
traffic volume. WANVi is weighted average value of port traffic and server response time. The server
selector component computes the values for (3) on the arrival of a new user service request for every
server in the server farm. Finally, the server chooser picks the best server which is having minimum
WANVi. The Working principle of server chooser is shown in Algorithm 4.

Algorithm 3 (continued)

1.while system starts do

2. θ = L

3. If current time % θ == 0 then

4. Obtain the recent response time of every server in server farm

5. Calculate the MRTD with the formula Maximum (response time of all the servers) − Minimum
(response time of all the servers)

6. If MRTD < L

7. hnew ¼ MRTD=h

� �
� L

8. else if MRTD > U

9. hnew ¼ MRTD=h

� �
� U

10. else

11. θnew = θ

12. End if

12. End if

13. Set the θ = θnew as probe interval for next iteration

14. End While

CSSE, 2022, vol.42, no.1 237



The LBBNNC works as follows: Initially a user request is directed to the virtual load balancer IP, but
initially the switch does not possess flow entry, so it packs the user service request as PACKET_IN Message
and send it to Ryu Controller to dictate on how to handle with this flow. LBBNNC was implemented in the
controller that made the entry for suitable rules of the present flow traffic in the switch. The subsequent flows
that match the rules are transmitted to the chosen server by the switch. The proposed system had its merits in
handling the inconsistent traffic by calculating the Maximum Response Time Difference (MRTD) among all
servers in the server farm. Using the MRTD value, the controller adjusts the probe interval bestowed by the
formula (1) and the server with minimum weighted average normalized metric which is selected for
processing the request till the next probe. The Optimization engine (Neural network PID Controller) in
the probe interval generator computes the change between ideal load and server load and balances the
overloaded server and under loaded server by choosing a server with WANVi. While the traffic increases,
the probe interval is proportionally reduced and while the traffic decreases, the probe interval is
proportionally increased. When the traffic is high, the request is not queued up to the same server for a
long time because of reduction in probe interval. The proposed algorithm possesses two advantages; one
is the handling of inconsistent traffic condition with maximized throughput and the other is optimal probe
message overhead.

4 Performance Evaluation

Experiment was done using Mininet emulator to match the network with 1 switch, 1 controller and
18 host machines. The process level virtualization was carried out to emulate switch and hosts, RYU
Controller was used as remote controller in the experiment and OpenFlow Protocol was used as south

Algorithm 4:

Input: Server response time and Switch’s Port Traffic

Output: Best server to process user request

1.if controller receives a PACKET_IN message then

2. If request is user service request then

3. for each server do

4. fetch n recent data for Response time from SQLite database;

5. fetch n recent data for port traffic volume from SQLite database;

6. calculateWANVi using the formula (3);

7. select server with minimum WANVi

8. make an entry to the current flow in the switch with target address as chosen server address

9. end for

10. else

11. send to other modules

12. end if

13. end if

238 CSSE, 2022, vol.42, no.1



bound communication protocol to communicate with controller and switch. The software which are used in
the experiment are tabulated in Tab. 1.

In the experiment, a single topology was used with 1 switch (OpenVSwitch) and 18 nodes or hosts, out
of which 3 nodes were configured as apache web servers. The servers had the running version 2.4.7 of the
Apache http server. The Apache daemon was configured according to the report [27]. Each Server was
configured to serve a python file with execution time as 0.3 seconds

Httperf version 0.9 was installed on client node. An instance of httperf running on host issues, the http
request to apache web server to access python file. The aim of the experiments is to evaluate the load balancer
performance which needs high throughput and minimum error rate. Tab. 2 depicts the important evaluation
parameters.

The Load balancer had a virtual IP address defined in RYU Controller, and all the requests of the clients
were sent to the specified virtual IP address by hiding the server IP address from clients. VIP address of load
balancer might be publicly available to all clients. The load balancer with VIP would distribute the traffic
among all servers using a load balancing algorithm based on closed loop control theory. Address
mapping of the client to the server and the server to the client was indirectly carried out by the load
balancer module through the destination port number in TCP or UDP segment header. The workload mix
with the auto bench was designed from the demanded request rate from 10 per second to 100 request per
second and the demanded requested rate was increased at the rate of 5 requests per second.

Table 1: Software used in the implementation and experiment

Mininet Network emulator Mininet 2.2.1

Open V switch [26] Virtual SDN switch 2.3.0

Ryu SDN controller 4.30

Openflow Southbound protocol 1.3

Ubuntu Operating system 14.04

Python Programming language 2.7.6

Web server Apache2 2.4.7

Httperf Web server benchmarking tool 0.9

Table 2: Important parameters in the simulation experiment

Usage Parameter Value

Evaluation network
topology

Single topology defined by
mininet

1 switch, 1 controller and 18 hosts
No of servers: 03
No of clients: 04

Server capacity Apache with multithreading
capacity

Default values of Apache2 that comes
with Httpd configuration

Implementation of closed
loop control theory

Set point value used in probe
interval producing engine

0.0025 s

Implementation of server
selector component

α and β 0.5

CSSE, 2022, vol.42, no.1 239



The experiment was executed with 50000 requests with timeout value as 20 s in Httperf for four different load
balancing algorithms namely round robin, LBBSRT, SD-WLB and the proposed LBBNNC. From Fig. 4, it is
evident that the algorithm LBBNNC has shown better performance for the achieved request rate, in spite of
its greater number of concurrent connections. Fig. 5 depicts that the proposed LBBNNC algorithm has shown
higher average response rate compared to the other algorithms. Fig. 6. shows the minimum number of errors
in LBBNNC compared to other algorithms. The LBBNNC has provided better performance in terms of
average response rate, achieved request rate, error and average response time as shown in the Fig. 7.

The achieved request rate and the average response rate of the four schemes (Round Robin, LBBSRT,
SDWLB, and LBBNNC) were 35, 44, 36 and 51 respectively. Compared to Round Robin, LBBSRT and
SDWLB, the proposed scheme had showed improvement in achieving request rate and response rate by
34%,16% and 42% respectively.

Figure 4: Achieved request rate

Figure 5: Average response rate

240 CSSE, 2022, vol.42, no.1



The errors that were produced from the four schemes (Round Robin, LBBSRT, SDWLB, and LBBNNC)
were 54, 22, 49 and 7 respectively. Compared to Round Robin, LBBSRT and SDWLB, the proposed scheme
had showed improvement in minimizing the errors by 671%, 214%, 600% respectively.

The average response time of the server for four schemes (Round Robin, LBBSRT, SDWLB, and
LBBNNC) were 0.057, 0.049, 0.056 and 0.041 s respectively. Compared to Round Robin, LBBSRT and
SDWLB, the proposed scheme had showed improvement in minimizing the average response time by
39%, 20% and 37% respectively.

5 Conclusion

SDN paves the way for better arrangement of networks and provides the way to improve the load
balancing solution. The proposed scheme had proved to be better than Round Robin, LBBSRT and

Figure 6: Request rate vs. errors

Figure 7: Average response time

CSSE, 2022, vol.42, no.1 241



SDWLB by adaptively adjusting the time window to probe the server farm for the extraction of the maximum
response time difference. It was due to control the system using closed loop control theory so as to achieve
minimum error rate and maximum average response rate of user requests. From the study, it was implied that
further tuning of the algorithm with different values of L and U with varied online neural network model was
required to be done for the enhancement of the performance in terms of average response time of user
requests. Single point of failure was the bottleneck that was associated with the proposed algorithm. In
order to eliminate the problem, it is intended to use multiple controllers instead of single controller and to
address the issues pertinent to the synchronization of multiple controllers to have more resilient load
balanced SDN networks. In future, the same load balancing can be enriched for cloud computing framework.

Funding Statement: The authors received no specific funding for this study.

Conflicts of Interest: The authors declare that there is no conflict of interest regarding the publication of the
paper.

References
[1] R. Buyya, A. M. K. Pathan, J. Broberg and Z. Tari, “A case for peering of content delivery networks,” IEEE

Distributed Systems Online, vol. 7, no. 10, pp. 1–3, 2006.

[2] B. A. Nunes, M. Mendonca, X. N. Nguyen, K. Obraczka and T. Turletti, “A survey of software-defined
networking: Past, present, and future of programmable networks,” IEEE Communications Surveys & Tutorials,
vol. 16, no. 3, pp. 1617–1634, 2014.

[3] O. N. Foundation, “Software-defined networking: The new norm for networks,” 2012. [Online]. Available:
https://opennetworking.org/sdn-resources/whitepapers/software-defined-networking-the-new-norm-for-networks/.

[4] H. Kim and N. Feamster, “Improving network management with software defined networking,” IEEE
Communications Magazine, vol. 51, no. 2, pp. 114–119, 2013.

[5] A. Lara, A. Kolasani and B. Ramamurthy, “Network innovation using openflow: A survey,” IEEE
Communications Surveys & Tutorials, vol. 16, no. 1, pp. 493–512, 2013.

[6] N. Mc. Keown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson et al., “Openflow: Enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review, vol. 38, no. 2, pp. 69–74, 2008.

[7] N. Perrot and T. Reynaud, “Optimal placement of controllers in a resilient SDN architecture,” in Proc. DRCN,
IEEE, Paris, France, pp. 145–151, 2016.

[8] M. Karakus and A. Durresi, “A survey: Control plane scalability issues and approaches in software-defined
networking (SDN),” Computer Networks, vol. 112, no. 7, pp. 279–293, 2017.

[9] H. Zhong, Y. Fang and J. Cui, “Reprint of LBBSRT: An efficient SDN load balancing scheme based on server
response time,” Future Generation Computer Systems, vol. 80, no. 1, pp. 409–416, 2018.

[10] K. Soleimanzadeh, M. Ahmadi and M. Nassiri, “An SDN-aided mechanism for web load balancing based on
server statistics,” ETRI Journal, vol. 41, no. 2, pp. 197–206, 2019.

[11] S. Kaur, K. Kumar, J. Singh and N. S. Ghumman, “Round-robin based load balancing in software defined
Networking,” in Proc. INDIA Com, Delhi, India, pp. 2136–2139, 2015.

[12] K. Kaur, J. Singh and N. S. Ghumman, “Mininet as software defined networking testing platform,” in Proc.
ICCCS, Punjab, India, pp. 139–142, 2014.

[13] D. E. Eisenbud, C. Yi, C. Contavalli, C. Smith, R. Kononov et al., “A fast and reliable software network load
balancer,” in Proc. NSDI, California, USA, pp. 523–535, 2016.

[14] R. Gandhi, H. Harry Liu, Y. Charlie Hu, G. Lu, J. Padhye et al., “Duet: Cloud scale load balancing with hardware
and software,” ACM SIGCOMM Computer Communication Review, vol. 44, no. 4, pp. 27–38, 2014.

[15] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan, K. Chu et al., “CONGA: Distributed congestion-
aware load balancing for datacenters,” in Proc. SIGCOMM, ACM, Chicago Illinois USA, pp. 503–514, 2014.

[16] N. Katta, M. Hira, C. Kim, A. Sivaraman and J. Rexford, “Hula: Scalable load balancing using programmable data
planes,” in Proc. SOSR ’16, Santa Clara CA, USA, pp. 1–12, 2016.

242 CSSE, 2022, vol.42, no.1

https://opennetworking.org/sdn-resources/whitepapers/software-defined-networking-the-new-norm-for-networks/


[17] P. Patel, D. Bansal, L. Yuan, A. Murthy, A. Greenberg et al., “Ananta: Cloud scale load balancing,” ACM
SIGCOMM Computer Communication Review, vol. 43, no. 4, pp. 207–218, 2013.

[18] S. Wang, J. Zhang, T. Huang, T. Pan, J. Liu et al., “Fdalb: Flow distribution aware load balancing for datacenter
networks,” in Proc. IWQoS, Beijing, China, pp. 1–2, 2016.

[19] N. Handigol, S. Seetharaman, M. Flajslik, N. McKeown and R. Johari, “Plug-n-Serve: Load-balancing web traffic
using OpenFlow,” ACM Sigcomm Demo, vol. 4, no. 5, pages 6, 2009.

[20] B. M. Moreno, C. P. Salvador, M. E. Domingo, I. A. Pena and V. R. Extremera, “On content delivery network
implementation,” Computer Communications, vol. 29, no. 12, pp. 2396–2412, 2006.

[21] RYU project team, Copyright 2014, Project Ryu,” [Online]. Available: https://osrg.github.io/ryu-book/en/html.

[22] J. Park and I. W. Sandberg, “Universal approximation using radial-basis-function networks,” Neural computation,
vol. 3, no. 2, pp. 246–257, 1991.

[23] W. J. Rugh, Linear System Theory (2nd Ed.). USA: Prentice-Hall, Inc, 1996.

[24] S. Maheswaran, S. Sathesh, G. Saran and B. Vivek, “Automated coconut tree climber,” in Proc. 2017 I2C2, IEEE,
Tamil Nadu, India, pp. 1–6, 2017.

[25] S. Maheswaran, B. Vivek, P. Sivaranjani, S. Sathesh and K. Pon Vignesh, “Development of machine learning
based grain classification and sorting with machine vision approach for eco-friendly environment,” Journal of
Green Engineering, vol. 10, no. 3, pp. 526–543, 2020.

[26] D. Mosberger and T. Jin, “HTTP ref—a tool for measuring web server performance,” ACM Sigmetrics
Performance Evaluation Review, vol. 26, no. 3, pp. 31–37, 1998.

[27] J. T. J. Midgley, “Autobench an HTTP benchmarking suite,” Copyright (C) 2001–2003, [Online]. Available:
https://github.com/menavaur/Autobench.

CSSE, 2022, vol.42, no.1 243

https://osrg.github.io/ryu-book/en/html
https://github.com/menavaur/Autobench

	Adaptive Server Load Balancing in SDN Using PID Neural Network Controller
	Introduction
	Related Works
	Proposed Load Balancing Methodology Using PID Neural Network Controller
	Performance Evaluation
	Conclusion
	References


