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Abstract: With the development of internet of vehicles, the traditional centralized
content caching mode transmits content through the core network, which causes a
large delay and cannot meet the demands for delay-sensitive services. To solve
these problems, on basis of vehicle caching network, we propose an edge colla-
borative caching scheme. Road side unit (RSU) and mobile edge computing
(MEC) are used to collect vehicle information, predict and cache popular content,
thereby provide low-latency content delivery services. However, the storage capa-
city of a single RSU severely limits the edge caching performance and cannot
handle intensive content requests at the same time. Through content sharing, col-
laborative caching can relieve the storage burden on caching servers. Therefore,
we integrate RSU and collaborative caching to build a MEC-assisted vehicle edge
collaborative caching (MVECC) scheme, so as to realize the collaborative caching
among cloud, edge and vehicle. MVECC uses deep reinforcement learning to pre-
dict what needs to be cached on RSU, which enables RSUs to cache more popular
content. In addition, MVECC also introduces a mobility-aware caching replace-
ment scheme at the edge network to reduce redundant cache and improving cache
efficiency, which allows RSU to dynamically replace the cached content in
response to the mobility of vehicles. The simulation results show that the pro-
posed MVECC scheme can improve cache performance in terms of energy cost
and content hit rate.

Keywords: Internet of vehicles; vehicle caching network; collaborative caching;
caching replacement; deep reinforcement learning

1 Introduction

With the development of internet of vehicles, the content demand of mobile vehicles has increased
rapidly. Artificial intelligence-driven vehicles need to constantly learn their surrounding environment and
make instant decisions. Vehicles can be regarded as mobile devices to collect and process environmental

This work is licensed under a Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

Computer Systems Science & Engineering
DOI:10.32604/csse.2022.022103

Article

echT PressScience

mailto:zlwang@bupt.edu.cn
http://dx.doi.org/10.32604/csse.2022.022103
http://dx.doi.org/10.32604/csse.2022.022103


data and support various information services. The development of Internet of Vehicles (IoV) and wireless
technology provides a way to improve the driving experience [1]. Due to high latency and network energy
consumption [2], traditional mobile cloud computing is not suitable for latency-sensitive applications [3,4],
which affects the experience of vehicle users.

To solve the problems of high latency and energy consumption in IoV, road side units (RSU) are used to
help collect vehicle data and provide vehicle-based information services, mobile edge computing (MEC) is
used to calculate content popularity [5–7]. Caching popular content in RSU can bring valuable data, thereby
reducing access latency and network energy consumption. However, the caching performance is limited by
the RSU storage capacity. The storage capacity of single RSU is not enough to support the intensive content
requests in IoV, which leads to an unbalanced and redundant cache in adjacent RSUs [8,9]. In addition, due to
the high-speed mobility, the vehicle will quickly pass through its coverage region when sending a request to
RSU, which means that the RSU cached content is easily out of date [10,11]. In order to improve the caching
efficiency, the caching scheme should respond to the vehicle mobility and enable the RSU to selectively
replace part of the cached content.

Therefore, an intelligent collaborative caching mechanism is needed to improve caching efficiency.
Considering that collaborative caching can enable the cached content to be shared between RSUs, the
implementation of collaborative caching at the edge of IoV can alleviate caching load of a single RSU. In
addition, vehicle-to-vehicle (V2V) communication can further shorten the transmission distance and
reduce the transmission delay. Therefore, we integrate MEC, collaborative caching and V2V caching to
realize collaborative caching among cloud, RSU and vehicle.

However, the complex and dynamically changing IoV network environment makes it difficult to
determine what content should be cached on RSU. Moreover, the caching optimization problem is a long-
term mixed integer linear programming (LT-MILP), which has been proven to be NP-hard [12]. Through
neural networks to continuously interact with the environment, deep reinforcement learning (DRL) has
excellent performance in dealing with complex dynamic environments.

For this reason, we propose a MEC-assisted vehicle edge collaborative caching (MVECC) scheme based
on the vehicle caching network. MVECC uses DRL to predict content popularity and cache popular content
in RSUs. Each RSU shares the cached content to achieve collaborative caching. In MVECC, RSUs collect
and upload the learning data to macro base station (MBS). Then MBS acts as a DRL agent to determine
content caching and delivery schemes. In addition, we have also designed a mobility-aware caching
replacement algorithm, RSU can selectively replace and update the cached content according to vehicle
mobility. Our contributions can be summarized as follows:

� We build a MVECC scheme. In this scheme, we make full use of the caching capability of RSU and
smart vehicles and design two content caching modes, including RSU caching and assisted caching
vehicle (ACV) caching. In addition, MVECC includes four content delivery modes, namely content
center server (CCS) delivery, RSU direct delivery, RSU collaborative indirect delivery and ACV
assisted delivery. MVECC can maximize performance through the coordination of multiple
caching and delivery modes.

� We propose a content caching algorithm based on deep deterministic policy gradient (DDPG) and a
mobility-aware caching replacement algorithm. Through the learning process of DRL, MVECC
continuously adapt to the dynamic changes of IoV network and determine caching scheme based
on content popularity. We use Markov chains to simulate state changes. The content transmission
energy consumption is regarded as a criterion for supervising the learning process. Agent decide
the caching and delivery scheme based on historical experience. At the same time, caching
replacement enables RSUs to replace the cached content in response to vehicle mobility, which
ensures that RSUs do not store outdated and unpopular content.
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2 Related Works

In order to solve the caching optimization problem, many excellent works have studied mobile edge
computing and caching methods in wireless networks. In terms of caching allocation, Huang et al.
[13,14] considered the best combination of multiple transmissions. Campolo et al. [15] evaluated a
solution that can reduce V2R link gap and improve the utilization of wireless channel. Kwon et al. [16]
encoded the network and realizes data transmission between multiple RSUs. Mei et al. [17] optimized the
radio resources and coding scheme of V2V communication to reduce transmission delay.

In addition, based on the similarity and population of the user community in the V2V communication
scenario, Zhao et al. [18] proposed an effective caching scheme to improve the content hit rate. Ding et al.
[19] proposed a cache-assisted data transmission scheme, which uses a large number of cache servers
deployed on the roadside to support vehicle applications. To solve the data loss caused by vehicle
mobility, Abdelhamid et al. [20,21] proposed a vehicle-assisted content caching scheme to distribute
content at each exit and entrance of road segment.

Above works solves the cache optimization problem in IoV with the help of edge caching, the cache
efficiency of these schemes in processing intensive service requests is still limited by the storage capacity
of RSU. Specifically, adjacent RSUs tend to cache the same content, resulting in redundant caching.
Through the collaboration between RSUs, MBS can make cache decisions for each RSU from a global
perspective and effectively avoid redundant cache.

Considering the randomness of content popularity and IoV network state, it is very complicated to make
effective caching decisions in IoV network. As an intelligent learning solution, DRL can effectively
overcome these problems and find an optimal caching scheme. There have been some works focusing on
DRL-based caching solutions. To solve the problem of continuously acting variables in Markov decision
process (MDP) model, Li et al. [22] used a deterministic strategy gradient learning algorithm to provide
the optimal resource pricing strategy. Sadeghi et al. [23] introduced the concept of global content
popularity and proposed a novel RL-based content caching scheme to implement the best caching strategy.

For reader convenience, the above references are presented in Tab. 1. Although several excellent caching
schemes have been proposed to improve resource utilization and vehicle user experience. But most of these
studies ignore the high-speed mobility of vehicle. After the vehicle moves, the RSU passing by the vehicle
still caches the requested content, which may cause a waste of storage resources. To minimize the energy cost
of vehicle caching network, this article introduce an artificial intelligence-assisted caching scheme, which
allows multiple caching and delivery modes to coexist, and obtains the best caching and delivery by
applying DRL. The simulation results show that we have proposed an effective and feasible reference
scheme for vehicle caching network.

3 System Model

3.1 Network Model

In this section, we propose a DRL-based MVECC scheme. As shown in Fig. 1, the MVECC scheme
includes a content center server (CCS), a macro base station (MBS), multiple RSUs and assisted caching
vehicles (ACVs). We define RSU and ACV as caching nodes, suppose set K¼f0; 1; 2; . . . ;Kg,
E¼f1;2; . . . ; Eg denote RSU and ACV respectively (where k = 0 denotes CCS), M¼f1; 2; . . . ;Mg
represents mobile request vehicle (MRV), which sends out a content request. Let F ¼f1; . . . ;Fg.
represent all content set, CCS stores all content files and can always satisfy any content request from
MRV. RSUs are connected by optical fiber to realize the collaborative caching between cloud, edge and
vehicles.
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The proposed MVECC scheme uses DRL agents to monitor environment and extract vehicle and
content features to estimate vehicle mobility and content popularity. By using Deep Deterministic Policy
Gradient (DDPG) algorithm and caching replacement scheme, content can be cached and delivered more
efficiently at edge network. DDPG algorithm are calculated and executed on MBS, the content is cached
on RSU and ACV. Fig. 1 shows the proposed scheme, where on the left is a DRL module, responsible
for determining the best caching and delivery decision. On the right is a MVECC network, where the
content is cached from CCS to RSU and ACV, and finally delivered to MRV.

In MVECC, MBS is acted as a DRL agent to monitor the network environment, DDPG are calculated
and executed on RSU. In content caching process, caching nodes caches content from CCS according to
content popularity; in content delivery process, MRV requests content, MBS selects the optimal delivery
path to complete content delivery with lower system energy consumption. Specifically, if the requested

Table 1: Comparison of related works

Simple cache
optimization with edge
cache [13–17]

Cache optimization scheme
considering popularity and V2V
[18–21]

Cache optimization
scheme under DRL
[22–23]

Our paper

Cache content at edge
nodes

Cache content at edge nodes Cache content at edge
nodes

Cache content at
edge nodes

No collaboration
between edge nodes

Considering popularity and V2V Solve optimization
problem by DRL

Considering
popularity and
V2V

No consideration about
redundant cache

No collaboration between edge
nodes

No collaboration
between edge nodes

Collaborative
caching between
RSUs

No consideration about
redundant cache

No consideration about
redundant cache

Considering
redundant cache

Solve optimization
problem by DRL

Figure 1: System model
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content is cached in MRV itself, the content can be obtained without any system energy consumption.
Otherwise, the content will be obtained from the communication range, such as obtaining content from
ACV or RSU in communication region of MRV. When neither RSU nor ACV within MRV
communication range has cached the required content, it will consider forwarding the cached content
from adjacent RSU to implement the delivery process. When the cache nodes cannot deliver the cached
content, the content will be obtained from CCS.

3.2 Content Caching and Delivery Model

Considering that the content popularity and location of MRV/ACV are time-varying and uncertain, the
time-varying scale of content popularity update is much larger than MRV/ACV location changes. Therefore,
the content caching process and delivery process should be constructed based on different time scales. As
shown in Fig. 2, the large time scale is content caching process. Let X¼f1; . . . ;Xg be the set of content
caching time slot, tx represents the xth caching time slot, the content caching decision is made at the
beginning of caching time slot. The small time scale is content delivery process, divide each tx time slot
into y small time slots. Let Y¼f1; . . . ;Yg be the set of content delivery time slot, tyx represents the yth
delivery time slot in xth caching time slot, content delivery decision is decided at delivery time slot.

We define caching matrix a txð Þ 2 f0; 1g to represent the content cache state on caching nodes at tx time
slot. a txð Þ½e�½f �¼1 denotes content f is cached on ACVe, a txð Þ½k�½f �¼1 denotes content f is cached on RSUk .
Define the delivery matrix b tyx

� � 2 f0; 1g, which represents the state of the caching nodes processing MRV

content requests at tyx time slot. b tyx
� �½m� ¼ e and b tyx

� �½m� ¼ k denotes at tyx time slot, the content requested
by MRVm is delivered by ACVe and RSUk , respectively. Therefore, at tx and tyx time slot, making content
caching and delivery decisions is equivalent to update a txð Þ and b tyx

� �
, respectively.

To improve content delivery efficiency, we also propose a RSU collaborative content delivery model.
Specifically, RSUs are linked by optical fiber links, they share the cached content with each other and
perform content delivery process in a collaborative manner. For example, as shown in Fig. 1, RSU4

cannot perform the content delivery process because the content f requested by MRV is not cached.
Based on the proposed collaborative model, when RSU2 has cached content f , then f can be forwarded
from RSU2 to RSU4. At last, f is delivered to MRV by RSU4. By using the collaborative caching model,
although additional content forwarding costs will be incurred, the number of times that MRV obtains
content through backhaul link will be greatly reduced, which can effectively reduce content delivery
energy consumption.

In summary, based on our proposed RSU collaborative content delivery model, there are four content
delivery models for MRV content requests:

1. RSU direct delivery: as shown in step 1 of Fig. 1, the directly connected RSU1 has cached the
requested content f , RSU1 directly delivers content f to MRV;

2. RSU indirect delivery: as shown in steps 2–3 of Fig. 1, the directly connected RSU2 has not cached
content f , while RSU3 caches content f . At this time slot, RSU2 can get content by forwarding
content f from RSU3, and then, deliver the content f to MRV;

Figure 2: Content caching and delivery time slot
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3. ACVassisted delivery: as shown in steps 4 of Fig. 1, in the communication range of MRV, ACV has
cached content f , ACV assisted delivers content f to MRV;

4. CCS delivery: all caching nodes (RSU and ACV) cannot delivery content f to MRV, the content f is
delivered by CCV to MRV.

3.3 Content Popularity Model

Most of the current work assumes that the popularity of content follows the Zipf distribution in mobile
social networks. Since the MRVmay pass through multiple RSU regions during the content delivery process,
this assumption may not always be applicable in IoV network, and distribution information of content
popularity cannot correctly reflect the real-time content requirements of vehicles.

To provide a reasonable content popularity model, we define a global content popularity based on
content request probability. RSU collects the content request information of all MRV and ACV in the
region, calculates and updates the content popularity at the beginning of tx time slot. Let pf denote the
popularity of content f , sf denote the size of content f , df denote the maximum acceptable delay to
obtain content f . The popularity of content f at tx time slot is:

pf txð Þ¼
PM

m¼1
qxm;f

M
; f 2 F (1)

where qxm;f 2 f0; 1g denotes MRVm requested state for content f at tx time slot. qxm;f¼ 1 denotes MRVm

request content f at tx time slot. According to content popularity pf , MBS updates a txð Þ and makes
content caching decisions. And then, a caching request is sent to CCS, the requested content will be
download and cached on RSU or ACV.

3.4 Communication Model

In this section, we use the communication connection state between caching nodes (RSU, ACV) and
MRV, as well as the communication connection state between cache nodes RSUk and RSUk 0 to express
the path that cache nodes obtain content.

Let lm;i;f tyx
� �

; i 2 E [ K represent connection state between MRVm and caching node i at tyx time slot,
lm;i;f tyx

� � ¼ 1 represent MRVm get content f from caching node i. Let hm;k;k 0 ;f tyx
� �

represent the connection

state between caching node RSUk and RSUk 0 at tyx time slot. hm;k;k 0 ;f tyx
� � ¼ 1 and k;k

0 2 K represent

connected, that is a collaborative delivery content process. hm;k;k 0 ;f tyx
� � ¼ 0 and k;k

0 2 K represent

unconnected, that is delivery content without collaborative process.

3.5 Channel Transmission Model

In this section, based on the real mobile network scenario, we analyze the link state between MRVand
caching nodes and build an energy consumption model.

The signal-to-noise ratio (SNR) betweenMRVm and caching node i at tyx time slot can be formulated as:

SNRm;i t
y
x

� �¼ pm;i t
y
x

� �
gm;i t

y
x

� �

nm;i t
y
xð Þdm;i tyxð Þkrm;i tyxð Þ2

; m 2 M [ E; i 2 E [ K (2)

where pm;i t
y
x

� �
and dm;i tyx

� �
represent transmission power and distance between MRVm and caching node i,

respectively. gm;i t
y
x

� �
is the antenna gain, nm;i t

y
x

� �
and k are path loss at and path loss exponent, respectively.

rm;i tyx
� �

is the additive white Gaussian noise.
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Let Wmbs
0 , Wmbs

k and Wmbs
e represent the available bandwidth resources between CCS and MRV, RSU

and ACV respectively. wm;i tyx
� �

m 2 M ; i 2 E [ K represents the bandwidth resource allocated by

caching node i to MRVm at tyx time slot. wk;k
0 tyx
� �

k; k
0 2 K represents the bandwidth resources between

RSUk and RSUk 0 in collaborative delivery process.

According to Shannon's formula, the data transmission rate whenMRVm get content from caching node i
can be formulated as:

rm;i;f tyx
� �¼lm;i;f tyx

� �
wm;i t

y
x

� �
log2 1þ SNRm;i t

y
x

� �� �
; m 2 M; i 2 E [ K; f 2 F (3)

4 Problem Formulation

In this section, we transform the joint optimization problem of content caching and delivery into MDP.
The behavior of MRV request content is modeled as Markov chain, in which each vehicle changes state with
probability. The basic elements of characterizing MDP are: state set S, action set A, and reward R. The basic
elements are defined below.

4.1 System State

RSU gets all MRVs content request information at tx time slot, including MRV locationMRVm Xm;Ymð Þ,
content popularity pf , content size sf and maximum access delay df . Therefore, the system state includes the
following parts:

f ðtyxÞ: content requested by MRV at tyx time slot, f ðtyxÞ 2 F .

zðtyxÞ: location of MRV and ACV at tyx time slot.

pðtxÞ: content popularity at tx time slot.

oðtxÞ: content delivery deadline, oðtxÞ � df

aðtxÞ: content cache state at tx time slot.

The system state set styx can be formulated as:

styx¼ f tyx
� �� �

; z tyx
� �� �

; p txð Þ½ �; o txð Þ½ �; a txð Þ½ �� �
(4)

4.2 System Action

At content caching time slot, after receiving the content request from MRV, MBS calculates content
popularity, and then decides which content to cache in caching node. At content delivery time slot, MBS
selects the best content delivery path to reduce the content delivery cost. Therefore, the action space
contains the following parts:

aðtxÞ: content cache action at tx time slot

lðtyxÞ: MRV get content f from caching node

hðtyxÞ: RSU collaborative action with RSU' when delivering content

The system action space atyx can be formulated as:

atyx¼ a txð Þ½ �; l tyx
� �� �

; h tyx
� �� �

;
� �

(5)
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4.3 Content Caching and Delivery Energy Consumption

4.3.1 Content Caching Energy Consumption
On the basis of the previous section, we can calculate that the delay of RSUk get content f from CCS at tx

time slot is:

tk;0;f tyx
� �¼ sf

rk
; f 2 F ; k 2 K (6)

the delay of MCEe get content f from CCS is:

te;0;f tyx
� �¼ Sf

re
; f 2 F ; e 2 E (7)

The updated content size on caching node i at tx time slot can be expressed as:

DSi txð Þ¼
XF

f¼1

ðsf�nfai txð Þ½i�½f �& ai tx�1ð Þ½i�½f �gÞ; i 2 E [ K (8)

where n is the same content size on the caching node at tx and tx�1 time slot, sf is the content size, r is the data
transmission rate.

The content caching cost is the energy consumption cost when transmitting updated content from
backhaul link. It can be formulated as the product of transmission time and transmission power.

Therefore, according to Eqs. (6)–(8), the energy consumption of caching node RSUk and ACVe are as
follows:

c1 txð Þ ¼ �1

PF

f¼1
ðsf�nfak txð Þ½k�½f � & ak tx�1ð Þ½k�½f �gÞ

ri
pk (9)

c2 txð Þ ¼ �2

PF

f¼1
ðsf�nfae txð Þ½e�½f � & ae tx�1ð Þ½e�½f �gÞ

rm;i;f tyxð Þ pe (10)

where pk is the transmission power between RSUk and CCS, pe is the transmission power between ACVe and
CCS, r is the data transmission rate, �1;�2 represent the weight factors on different cost.

4.3.2 Content Delivery Energy Consumption
On the basis of the previous section, we can calculate that the delay ofMRVm get content f from caching

node i at tx time slot is:

tm;i;f tyx
� �¼ sf

rm;i;f tyxð Þ (11)

If the content is delivered by collaborative forwarding, the delay of forwarding content f is:

tk;k 0 ;m;f tyx
� �¼ sf

rk;k 0 t
y
xð Þ (12)

where sf is the content size, r is the data transmission rate.

Therefore, according to Eqs. (11)–(12), the total energy consumption of content delivery process at tyx
time slot is:
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c3 tyx
� �¼�3

XEþK

i¼1

sf
rm;i;f tyxð Þpm;iþ�4

XK

k¼1

sf
rk;k 0 txyð Þpk;k 0 (13)

where pm;i is the transmission power between MRVm and caching node i, pk;k 0 is the transmission power
between RSUk and RSUk 0 , �3;�4 represent the weight factors on different cost functions.

4.3.3 Penalty Cost
If the whole content is not obtained before the delivery deadline, the penalty cost will be:

c4 tyx
� �¼�5pf tyx

� �
df

s:t: tm;i;f tyx
� �þtk;k 0 ;m;f tyx

� �
>df

(14)

where pf is content popularity, df is the maximum access delay, �5 represent the weight factors.

4.3.4 Cost Function
According to Eqs. (6)–(14), the total system cost function at tyx time slot can be formulated as:

cðtyxÞ ¼
X

k2K
c1ðtxÞ þ

X

e2E
c2ðtyxÞ þ

X

m2M
c3ðtxyÞ þ c4ðtxyÞ

¼ �1

XK

k¼1

XF

f¼1

ðsf � nfak txð Þ½k�½f � & ak tx�1ð Þ½k�½f �gÞ pk
ri

þ �2

XE

e¼1

XF

f¼1

ðsf � nfae txð Þ½e�½f � & ae tx�1ð Þ½e�½f �gÞ pe
rm;i;f tyxð Þþ

�3

XM

m¼1

XEþK

i¼1

sf
rm;i;f tyxð Þpm;i þ �4

XM

m¼1

XK

k¼1

sf
rk;k 0 t

y
xð Þpk;k 0 þ �5pf tyx

� �
df

(15)

where �1��5 represent the weight factors on different cost functions.

4.3.5 Reward
After taking action atyx , the system will get rewarded rtyx . In the DRL method, actions affect not only the

immediate reward, but also the next situation and all subsequent rewards. In order to get more rewards, DRL
agent must like the actions that have been tried in the past and are considered to produce rewards effectively.
This feature needs to be reflected in the total system energy consumption cost. The purpose of our problem is
to minimize the energy consumption cost, the reward can be formulated as

rtyx ¼ �cðtyxÞ (16)

5 MVECC Caching Scheme

5.1 Principle of DDPG Algorithm

For some actions, it may be a continuous value, or a very high-dimensional discrete value, so that the
spatial dimension of the action is great. If the random policy is used, it is possible to study the probability of
all possible actions like DQN, and calculate the value of each possible action, the sample amount of that
requires is very large. Although at the same state, the transition probability is different, but the maximum
probability is unique. Determinative strategies take only the maximum probability, the strategy is: phðsÞ ¼a.
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Therefore, based on the deterministic Actor-Critic model, DDPG provide an accurate estimate decisive
policy function and value function. Similar to the Actor-Critic model, the actor network uses policy
functions, responsible for generating action and interacts with the environment. The critic network uses
value function, responsible for assessing the actor's performance and guides the actor's next action. This
combination can be used to implement joint optimization of the proposed content caching and delivery
issues. The schematic diagram of DDPG is shown in Fig. 3. There are three modules: 1) actor network;
2) critic network; 3) experience replay buffer.

5.2 DDPG Based Mobile Edge Collaborative Caching Algorithm

We develop DDPG based solutions to jointly optimize caching and delivery strategies and minimize
energy consumption costs, the algorithm is shown in Tab. 2. Network parameters are initialized at the
beginning of the training process. The training dataset is collected by MBS. Then, vehicle information is
calculated according to different models, and the parameters are input into the training network in the
form of state and action matrix. Finally, after continuous training, the model will converge, and the
output data is the optimal cache and delivery decision.

Figure 3: Algorithm flow chart

Table 2: DDPG based mobile edge collaborative caching algorithm

Algorithm 1: DDPG Based Mobile Edge Collaborative Caching Algorithm

1: Input: Actor-current network, Actor-target network, Critic-current network, Critic-target network

2: Parameters: θ, θ′, w, w′, attenuation factor γ, soft renewal coefficient τ, X, Y, minimum batch size D

3: Output: Actor-current network parameters θ, Critical-current network parameter w, action a

4: Initialize θ, w, w′ = w, θ′ = θ. Clear experience replay buffer

5: For episode = 1, 2, …, X do

6: Initializethe first state of the current state sequence, sðtyxÞ is the eigenvector.
7: For episodes = 1, 2,…,Y do

8: Gets action aðtyxÞ¼phðsðtyxÞÞþN based on state sðtyxÞ in Actor-current network
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5.3 Mobile-Aware Caching Replacement Scheme

RSU should selectively replace outdated content based on the mobility of MRV. For example, when
MRV moves from RSU1 to RSU2, RSU1 still stores the content requested by MRV, which causes a
waste of storage resources. Fig. 4 shows the detailed process of three caching replacement rounds.
MRV1, MRV2, and MRV3 request content a, b, and c respectively. The table shows the caching status of
RSU in each round.

In the first caching round, MRV1 passes through the coverage area of RSU1 and requests content a.
Assuming that RSU1 has cached content a, RSU1 directly delivers content a to MRV1.

In the second caching round, MRV1 leaves the coverage area of RSU1. At the same time, MRV2 will
pass the coverage area of RSU1 and request content b. Content a that has been cached on RSU1 will not be
delivered again. Therefore, in the second caching round, RSU1 replaces content a with content b, and
RSU2 still caches content a.

Table 2 (continued).

Algorithm 1: DDPG Based Mobile Edge Collaborative Caching Algorithm

9: Execute action aðtyxÞ, get new state sðtyþ1
x Þ, reward R

10: Put fsðtyxÞ; aðtyxÞ; sðtyþ1
x Þ; cðtyxÞg into experience replay buffer

11: Sampling D samples from the experience replay buffer and calculate the current target Q-value
yi¼ Rþ cQ

0 ðS 0
;A

0
;w

0 Þ
12: Update all parameters of Critic-current network w thr-ough gradient reverse propagation of neural
network

13: Update all parameters of Actor-current network θ thr-ough gradient reverse propagation of neural
network

14: Update Critic-target network and Actor-target network parameters

15: end for

16: end for

Figure 4: Caching replacement process
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At the beginning of the third caching round, the cache status of each RSU is: RSU1 cache content b,
RSU1 cache content a, and RSU3 cache content a. MRV1 leaves the coverage area of RSU2, MRV2 will
pass the coverage area of RSU2, MRV3 will pass the coverage area of RSU1, and request content c. At
this time, the cached content b on RSU1 and the cached content a on RSU2 will no longer be delivered.
Therefore, in the third caching round, RSU1 replaces content c with content b, RSU2 replaces content b
with content a, RSU3 still caches content a. We found that during the first caching round, RSU1 has
cached content b. Therefore, before RSU1 replaces content c with content b, RSU2 can first obtain
content b from RSU1.

The flow of caching algorithm is shown in Fig. 5. In DDPG based collaborative caching algorithm, the
input dataset is the state information of IoV environment, and the output dataset is content caching and
delivery decisions. According to the decisions and node cache state, the cache replacement scheme
determines the contents that need to be replaced.

6 Simulation Results and Discussions

6.1 Parameter Settings

In this section, we use Python to build a simulation environment for the MVECC scheme. Using the
TensorFlow platform to implement a DDPG-based collaborative caching solution (DDPG-Caching).
Tab. 3 summarizes the main parameters used in the simulation.

As a reference, we implemented a random caching scheme and a deep Q-network (DQN)-based caching
scheme (DQN-Caching) [24] as benchmark caching scheme. In the random caching scheme, the system
randomly makes content caching and delivery decisions. In the DQN-caching scheme, there is no RSU
collaborative caching, and only the RSU or ACV is responsible for delivery. We take energy consumption
and content hit rate as performance measures. The energy consumption is generated by the content
transmission, it can be calculated by Eqs. (9)–(13). We take the ratio of content hit number to the total

Figure 5: Flow chart of collaborative caching scheme
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requests number as content hit rate, which measures the caching efficiency of RSUs. The content hit rate can
be formulated as:

htf¼
PM

m¼1
axm;f

M
; f 2 F (17)

where axm;f 2 f0; 1g denotes content hit state, M is the total requests number.

6.2 System Performance Analysis

Fig. 6 shows the comparison of system energy consumption costs when MRV = 200 and ACV = 50. As
the number of training increases, we can draw the following observations from Fig. 6. First of all, the random
cache scheme has the highest average system energy cost, the energy cost does not decrease with the increase
of the number of trainings. This is because the random content caching and delivery decisions are not optimal
system decisions. Therefore, random cache has a higher energy cost and does not have convergence.
Secondly, because the collaboration of RSU and the assisted caching of ACV provide a more effective
caching and delivery mode, the MVECC scheme can effectively reduce system costs. Third, compared
with other benchmark schemes, through the DDPG reinforcement learning algorithm, our proposed
MVECC scheme successfully solves the complex problem of high-dimensional action space in the joint
optimization. So that MVECC can quickly find the best caching and delivery solution.

Next, in order to verify the performance of our proposed collaborative caching scheme, we compared the
DQN-Caching algorithm with the proposed DDPG-Caching algorithm in terms of content hit rate and energy
consumption.

As shown in Fig. 7, compared with the non-collaborative algorithm, the proposed MVECC scheme
increases the content hit rate by about 15%. As the number of ACVs increases, MVECC can provide
MRV with more opportunities for V2V content delivery. In addition, through the caching and delivery
decision made by DRL agent, RSU can cache more valuable content and deliver the content with a
higher hit rate. Since DQN does not have strong learning ability when dealing with high-latitude spatial
problems, the more ACVs there are, the higher the content hit rate of DRL based-MVECC will be.

Table 3: Simulation parameters

System parameters Value

Learning rate of actor-network 0.001

Learning rate of critic-network 0.002

Number of RSU 10

Number of ACV [50, 200]

Number of MRV [150, 350]

CCS transmit power 75 dBm

RSU transmit power 60 dBm

RSU cache capacity [5–10 GBytes]

ACV transmit power 50 dBm

Bandwidth range [10–30 MHz]

Content size [300–500 MBytes]
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Then, we use the overall system energy consumption as a performance indicator. As shown in Fig. 8, our
proposed MVECC scheme has the lowest system energy consumption. The reason is that in the MVECC
scheme, RSUs can respond to MRV content requests on the edge side, which can reduce system latency
by reducing transmission distance and sharing cached content. When there are more MRV numbers, the
number of requests will increase accordingly, so the system energy consumption will also increase. The
increase in ACV will provide more V2V opportunities, so the system energy consumption will continue
to decrease. Since there is no learning process for random caching, the content caching and delivery
decisions executed each time are random rather than optimal, which results in a large system energy
consumption. However, for DRL, when the number of MRV and ACV increases, there will be a disaster
of dimensionality. Therefore, compared with the DQN caching algorithm, the DRL agent can avoid the
dimensionality disaster through the DDPG algorithm and determine the best caching and delivery strategy
for MVECC. Therefore, the optimal caching and delivery decisions made by the DRL agent in the
MVECC scheme can still minimize the energy consumption.

Figure 7: Content hit rate under different ACV numbers

Figure 6: Comparison of energy consumption
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Finally, we compared the system energy consumption under different cache capacities. As shown in
Fig. 9, as the cache capacity increases, the system energy consumption continues to decrease. This is
because more content can be cached on the edge side, MRV content requests will be responded to more
on the edge side. The number of content requests forwarded by the link to the CCS will be greatly
reduced, thereby effectively reducing the high energy consumption costs on the backhaul link. In
addition, the DRL agent selects the optimal content caching and delivery decision for the MVECC
scheme, so that the caching node can cache the content that is more likely to be delivered under the
limited cache capacity. RSU and ACV have more opportunities for content delivery, so that the system
has the lowest energy consumption.

7 Conclusion

In this article, we take the vehicle caching network as an example to study the collaborative caching
problem in the internet of vehicles. We propose a novel MEC-assisted vehicle edge collaborative caching
(MVECC) scheme to improve cache efficiency. With the help of the roadside unit (RSU) and assisted

Figure 9: System energy consumption under different cache capacity

Figure 8: System energy consumption under different ACV and MRV numbers
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caching vehicle, MVECC has two content caching modes and four content delivery modes coexist. MVECC
also uses DRL to actively cache popular content on RSU, so as to reduce cache energy consumption. In
addition, based on the vehicle mobility, we designed a mobility-aware cache replacement strategy to
dynamically update the cached content on RSU. The simulation results show that the method is better
than the random caching scheme and the DQN caching scheme in terms of content hit rate and system
energy consumption. We do not consider the impact of link state changes on the transmission process, in
our future work, we intend to study this problem and design a caching scheme based on federated
learning to better adapt to user behavior.
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