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Abstract: The accuracy of the statistical learning model depends on the learning
technique used which in turn depends on the dataset’s values. In most research
studies, the existence of missing values (MVs) is a vital problem. In addition,
any dataset with MVs cannot be used for further analysis or with any data driven
tool especially when the percentage of MVs are high. In this paper, the authors
propose a novel algorithm for dealing with MVs depending on the feature selec-
tion (FS) of similarity classifier with fuzzy entropy measure. The proposed algo-
rithm imputes MVs in cumulative order. The candidate feature to be manipulated
is selected using similarity classifier with Parkash’s fuzzy entropy measure. The
predictive model to predict MVs within the candidate feature is the Bayesian
Ridge Regression (BRR) technique. Furthermore, any imputed features will be
incorporated within the BRR equation to impute the MVs in the next chosen
incomplete feature. The proposed algorithm was compared against some practical
state-of-the-art imputation methods by conducting an experiment on four medical
datasets which were gathered from several databases repository with MVs gener-
ated from the three missingness mechanisms. The evaluation metrics of mean abso-
lute error (MAE), root mean square error (RMSE) and coefficient of determination
(R2 score) were used to measure the performance. The results exhibited that perfor-
mance vary depending on the size of the dataset, amount of MVs and the missing-
ness mechanism type. Moreover, compared to other methods, the results showed
that the proposed method gives better accuracy and less error in most cases.

Keywords: Bayesian ridge regression; fuzzy entropy measure; feature selection;
imputation; missing values; missingness mechanisms; similarity classifier; medical
dataset

This work is licensed under a Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

Computer Systems Science & Engineering
DOI:10.32604/csse.2022.022152

Article

echT PressScience

mailto:mragab@kau.edu.sa
http://dx.doi.org/10.32604/csse.2022.022152
http://dx.doi.org/10.32604/csse.2022.022152


1 Introduction

MVs are considered a critical problem that can occur in many scientific areas such as biological,
psychological, or medical [1]. Commonly, many reasons may lead to the occurrence of MVs, for
instance, wrong data entry, improper data collection, management of similar but not identical datasets and
malfunctioning measurement equipment [2]. Machine learning (ML), big data and any data driven tool
require high data quality which results in good analysis and outcomes. The existence of MVs within a
dataset can result in problems, for instance, bad data analysis, reducing the research results obtained from
such dataset and presenting amount of bias [3]. To this end, significant information is incorporated within
MVs which should be manipulated before using the incomplete dataset with any data driven tool.
Furthermore, many researches were done and novel algorithms were proposed to solve the problem of
MVs, especially in medical data [4]. Nevertheless, several imputation algorithms may result in poor
imputation and may fail in handling all MVs in the dataset. In addition, they may not deal with all
missingness mechanisms. These shortcomings of these algorithms encouraged the authors to propose a
novel algorithm introduced in this paper. The proposed algorithm utilizes the most significant feature to
impute MVs in cumulative order. Besides MVs, FS also affects the ML model performance.

1.1 Feature Selection

High dimensionality data is problematic especially in circumstances when a dataset contains a few
numbers of training instances and a large number of features. This type of data commonly exists in
medicine where cost and time problems may limit the number of training observations, while the number
of diseases increases through the years [5]. FS helps to overcome the problem of high dimensionality by
selecting a subset of features that have a strong relationship with the target feature. In addition, in the
existence of MVs the FS is considered a vital preprocessing step such as correlation, mutual information
and fuzzy FS. Dropping features that hold a large number of MVs (e.g., >50%) is an easy solution. But
such a solution may result in bad analysis, losing the ability to recognize statistically significant
variations and may also generates bias. Missingness mechanisms have a large effect on FS that’s why
before applying any FS technique missingness mechanisms need to be taken into consideration [3].

1.2 Missingness Mechanisms

Before introducing different methods for handling MVs, it is essential to present the different types of
missingness mechanisms (i.e., the reason for the occurrence of MVs in data). MVs are commonly classified
to one of three MVs mechanisms [6]:

� Missing Completely at Random (MCAR): This type of MVs mechanisms happens when the
probability of the existence of MVs is independent from any other features in the data. From
statistical perspective, MCAR can be stated as in Eq. (1) [1].

f M jY ;[ð Þ ¼ f M jYð Þ for all Y ; [ (1)

whereM and Y represent the missing and observed data respectively. The conditional probability is denoted
by f and [ represents the unknown parameter. An example of MCAR MVs occur when the measuring
equipment stops working correctly [7].

� Missing at Random (MAR): In this mechanism the relationship between MVs and other features
existed in the dataset is a dependent relationship. In other words, the probability of the occurrence
of MVs depends on observed values in other features and not on other MVs in the target feature
[8]. MAR can be represented as in Eq. (2) [1].
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f M jY ;[ð Þ ¼ f M jYobs;[ð Þ for all Ymis;[ (2)

where Ymis and Yobs are the missing and observed values from Y respectively. From a medical perspective,
this situation may occur when an experiment has not been accomplished because a feature within the dataset
shows that the patient is a woman for example [7].

� Missing Not at Random (MNAR): For this type, there is a dependent relationship between the MVs
and the observed data. MNAR can be expressed using Eq. (3) [1].

f ðM ;Y jh;[Þ ¼ f Y jhð Þf M jY ;[ð Þ (3)

where h (i.e., parameter of the distribution Y ). is estimated from the detected data The distribution of the
missingness is denoted by [: An example of MNAR MVs, when people having a too high or too low
income reject to reveal it [7].

1.3 Handling Missing Data

The simplest methods for handling MVs are traditional methods. Traditional methods can be deletion
(i.e., delete instances that hold MVs), mean or median (i.e., replace the MVs with the mean or median of
the feature that holds MVs) substitution [9]. Deletion can be case deletion or pairwise deletion. Case
deletion (a.k.a., listwise) in which any instance holds MVs is dropped from analysis. In many statistical
packages listwise is the default choice [10]. Pairwise deletion is considered a selective method, which
tries to minimize the lost amount of data instances that occur in case of using the listwise method by
including into the analysis the instances with MVs. In other words, pairwise deletion will drop only
particular features with MVs from the analysis and use the remainder features with no MVs. The
selection of features varies from analysis to another depending on the missingness. Using deletion
methods results in reducing the data size [11].

The other methods that overcome the defects of deletion methods are called imputation methods. In
imputation methods, predefined (mean, median, etc.) or estimated (using statistical methods, ML
algorithms, etc.) value is used instead of MVs [12]. Imputation is classified into single and multiple
imputation. In single imputation, MVs are imputed by a value one time. Though, single imputation does
not require computational resources it can result in biased results [3]. In multiple imputation, m copies
from the original dataset are generated. In each generated dataset, MVs are imputed using single
imputation techniques. The final imputed dataset is the average analysis of the m imputed datasets
[13,14]. ML algorithms can also be used to predict MVs depending on using the available information
within the given dataset. Some examples of ML techniques that are used to predict MVs include linear
regression, k-nearest neighbour (KNN), decision trees [1] and BRR. BRR is the predictive model used
within the proposed algorithm in this paper to predict MVs, which can be expressed using Eq. (4) [15].

y � Nðl; aÞ (4)

where:

l ¼ bX ¼ bo þ b1x1 þ b2x2 þ � � �bqxq
b � N 0; ��1Iq

� �
a � gða1; a2Þ
� � gð�1; �2Þ

The target feature is denoted by y which is distributed as a normal distribution characterized by mean
l ¼ bX and variance a. b ¼ b0; b1;b2; . . . ; bq

� �
denotes the unknown parameters and X ¼ x1; x2; . . . ; xq

� �
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denotes the independent features. The number of independent features is represented by q. a and � represent the
regularization parameters which are assessed jointly while fitting the model through maximizing the log marginal
likelihood and both of them are assumed to be distributed as gamma distribution. a1; a2; �1; �2 are hyper-
parameters of the gamma prior distributions.

The rest of the paper is organized as follows: Section 2 presents a brief literature review about analysis of
MVs. Sections 3 and 4 reveal the proposed algorithm and explains in detail the experimental setup,
respectively. Section 5 is devoted to the presentation of the results and discussion while section 6
concludes this paper and exhibits some perspectives of future work.

2 Literature Review

Hot-Deck (HD) imputation is a popular choice for manipulating MVs in survey research. Hot deck
technique finds a similar dataset and imputes MVs by substituting MVs with an observed value from this
dataset. Although, this technique is easy to implement but it may be computationally [16]. The method
that looks like hot-deck imputation but the data source and current data set must be different from each
other is known as Cold-Deck imputation [17]. In many time-series and longitudinal data, one of the most
common and used imputation methods is the Last Observation Carried Forward (LOCF). This method
imputes each missing value using the last observed value from the same data [18]. The maximum
likelihood method can also be used to manipulate MVs. The maximum likelihood assumes that the
detected data is a sample taken from a multivariate normal distribution. After the estimation of the
parameters using the available information, the MVs are imputed depending on the estimated parameters
[19,20]. In regression imputation, the complete features are used to predict the MVs within the features
that contain MVs. The predicted values is used to impute the MVs. Regression imputation keeps all data
and hence overcomes the pairwise or listwise deletion and does not change the shape of the distribution.
In regression imputation, no information is changed or added and the standard error is reduced, hence,
little or no biased predictions are generated from the imputation stage [21]. Expectation-Maximization
Imputation (EMI) is a kind of the maximum likelihood technique that can be used to manipulate MVs.
EMI uses the values assessed by the use of maximum likelihood methods to impute MVs [22]. This
method begins with the expectation step, through which the parameters (e.g., means, covariances, and
variances) are assessed, possibly by the use of listwise deletion. Predicting MVs is implemented after
creation of a regression equation by the use of the estimated parameters. In the maximization step, the
regression equations are used to impute MVs. By repeating the expectation and maximization steps until
the covariance matrix for the successive iteration is almost the same as that for the previous one. When
there is large amount of MVs, EMI method require long time to converge. EMI can result in biased
parameter assessments, hence, the standard error is underestimated [21]. KNN imputation technique is
considered as one of the most commonly used imputation techniques KNN detects between the complete
instances the k most nearest neighbors of a missing data point. The MVs are then imputed with an
average of the values of its neighbors in this point. The performance of KNN is extremely bounded
especially when the percentage of MVs is high. A simple improvement for manipulating MVs using
KNN lies in looking for incomplete neighbors (i.e., act as donors) of an instance given that these
neighbors are detected for the features missing instances. This method is known as incomplete case k-
nearest neighbors imputation (ICkNNI). ICkNNI in somewhat considered a complex method [23].
Methods that manipulate MVs problems directly without the need of any deletion or imputation step have
been developed. For example, logistic regression with MVs by using a Gaussian mixture model to assess
the conditional density functions was performed by the authors in [24]. For clustering purposes, the
Kernel Spectral Clustering (KSC) algorithm was proposed, which encodes as a set of supplemental soft
constraints the partially detected features [25]. MLPimpute is a novel algorithm for handling MVs
depending multilayer perceptron (MLP) networks was proposed. Although MLP exhibits a good accuracy
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the relationship between data genes is not sufficient for the method [26]. An iterative learning method
consists of fuzzy k-means and decision trees was used to manipulate MVs. When this iterative learning
compared with KNNimpute it exhibits a better accuracy [27].

3 Proposed Algorithm

This section aims to introduce and elaborate the proposed algorithm in details. The next procedural steps
help in clarifying the proposed algorithm.

� Splitting Dataset: The proposed algorithm gets a dataset D as input which incorporates MVs, then
creates from D two subsets. The first set X ðcompÞ holds all features with no MVs and the second set
X ðmisÞ holds all features with MVs. The target feature was assumed to be perfect feature (i.e., does
not hold MVs), thus X ðcompÞ holds all perfect features besides the target feature y.

� Feature Selection: The proposed algorithm uses the FS of fuzzy entropy measure introduced by
Parkash et al. given by Eq. (5) with the similarity-based classification [28]

S x; vh i ¼ 1

t

Xt
r¼1

wr 1� x frð Þp � v frð Þpj jð Þmp
 !1

m

; x; ve 0; 1½ �t (5)

where t represents the number of features of varied types f1;…; ft that can be observed from the objects, the
ideal vector vi ¼ ðviðf1Þ;…; viðftÞÞ should be determined for every class i. x ¼ ðxðf1Þ;…; xðftÞÞ represents
vectors which belong to known class. m is the power value that is obtained from the generalized mean
from the generalized Lukasiewicz structure. The parameter p can be detected from the generalized
Lukasiewicz structure. wr is a weight parameter. The weights were set as one.

H A;wð Þ ¼
Xn
j¼1

ðsinplAðxjÞ
2

þ sin
pð1� lAðxjÞÞ

2
� 1Þ (6)

where H represents the fuzzy entropy. j represents the number of features and the fuzzy values are denoted
bylA xj

� �
. A denotes the fuzzy set which is the maximum element of the ordering specified by H when

lA xð Þ = 0.5.

The proposed algorithm chooses the feature that exhibits the lowest fuzzy entropy, which gives a strong
relationship with the output feature.

� Imputation: After the candidate feature X missð Þ
g is being selected, the model is fitted using X ðcompÞ as the

input features and the candidate feature as target with the cumulative formula described in Eq. (7).

X missð Þ
g � N lg; ag

� �
(7)

where:

lg ¼ bo þ
Xc
i¼1

biX
compð Þ

i þ bcþ1yþ
Xg�1

imp¼1

bimpþcþ1X
missð Þ2

imp

b � N 0; ��1
g Iimpþcþ1

� �
ag � � a1g; a2g

� �
�g � � �1g; �2g

� �
where g ¼ 1; 2; . . . ;m: m is the number of features holding MVs and c is the number of perfect features.
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� Update datasets: The selected feature dropped from X misð Þ and after imputing MVs within the X missð Þ
g ,

the imputed feature X misð Þ
imp is added to X ðcompÞ. Now X ðcompÞ holds all perfect features, X misð Þ

imp and y. A

new X missð Þ
g from X misð Þ is chosen. The model is fitted with the cumulative formula with X ðcompÞ as an

input features and the new X missð Þ
g as the target feature.

Repeat from step 2 of feature selection until X misð Þ holds no features, at that moment return (X ðcompÞ) as
the imputed dataset as described in the following algorithm.

The Prposed Algorithm

1: Input:
2: D: a dataset with MVs containing n instances.
3: Output:
4: D imputed: a dataset with all missing features imputed.
5: Definitions:
6: X ðcompÞ Set of complete features.
7: X misð Þ Set of incomplete features.
8: X misð Þ

imp Imputed feature from X misð Þ.
9: m Number of features containing MVs.
10: H ½i� Fuzzy entropy measure with the similarity.
11: Begin
12: 1: Split D into X ðcompÞ and X ðmisÞ

13: 2: From X ðmisÞ select X ðmisÞ
l that exhibits min H ½i� (using similarity classifier with Parkash’s fuzzy

entropy measure) #l 2 1; . . . ;mf g.
14: 3: While X ðmisÞ 6¼ f
15: i: g ← index of the candidate feature in X ðmisÞ.
16: ii: Fit a Bayesian ridge regression model on X compð Þ as independent features and X missð Þ

g as dependent
feature.

17: iii: X misð Þ
imp ← Impute the MVs in X missð Þ

g with the fitted model.
18: iv: Delete X missð Þ

g from X ðmisÞ and add X misð Þ
imp to X ðcompÞ.

19: End While
20: 4: return D imputed ← X ðcompÞ:
21: End

4 Experimental Setup

4.1 Datasets

Usually, applying and comparing several imputation algorithms on diverse datasets versus the proposed
algorithm will result in different imputation performances. Furthermore, this difference in imputation helps in
judgement about the compared algorithms and the proposed one and also gives an insight about how the
proposed algorithm will perform in future and in different situations. The focus in this paper is on
medical datasets. The used datasets in this experiment were obtained from several data repositories and
are freely access. Tab. 1 gives an overview about the specifications of the datasets used in the experiment.
In each dataset, the generation of MVs proportions, 10%, 20%, 30%, 40% and 50%, were performed
using the ampute function from the R environment [29] for every missingness mechanism, MAR, MCAR
and MNAR.

Five practical imputation algorithms were used in the experiment against the proposed algorithm. Tab. 2
describes briefly the compared algorithms used in the experiment.
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Table 1: The fundamental specifications the used datasets

Dataset name #Ins. #Features #Class Missingness mechanism

MAR MCAR MNAR

Dermatology [30] 366 33 6 10%, 20%, 30%, 40% and 50%

Breast Cancer [31] 699 10 2

Parkinsons [32] 197 23 2

Pima Indians Diabetes [33] 768 8 2

Table 2: The algorithms used in the comparison

Package (function
name)

Description

autoimpute
(stochastic) [34]

imputes MVs using the least squares methodology, then adds to the imputations a
stochastic element.

autoimpute (nocb)
[34]

imputes MVs by carrying next observation moving backward.

SimpleImputer
(median) [34]

imputes MVs using the median for each feature.

impyute (EMI) [35] handles MVs using Expectation Maximization Imputation.

impyute (random) [35] imputes MVs using a randomly selected value from the same feature.

The experiments were conducted using a laptop with the following specification: Windows 10 OS, 4 GB
memory, AMD A4-6210 APU with AMD Radeon R3 Graphics (1.80 GHz) processor, 500 GB HDD and
Python (version 3.7) programming language and R (version 3.5.2).

4.2 Evaluation Metrics

Imputation performance can be measured using various metrics. This section exhibits an overview of
most metrics used in the experimental implementation to measure the imputation performance; these
metrics include MAE, RMSE, and R2 score.

4.2.1 MAE and RMSE
MAE is used to calculate the average of the absolute differences between the predicted and true values. It

gives an intuition about the magnitudes (absolute values) of the error in prediction, but does not offer any idea
about the direction of the prediction (i.e., under or over predicting) [36]. RMSE is much like the MAE in that
it gives an idea of the magnitude of error. Furthermore, as the variance related to the error magnitudes
distribution increases RMSE also increases and MAE is steady. Eqs. (8) and (9) describes MAE and
RMSE respectively [3]

MAE ¼ 1

n

Xn
l¼1

yl � bylj j (8)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
l¼1

yl � bylð Þ2
s

(9)

CSSE, 2022, vol.42, no.1 309



where the real and predicted values are denoted as yl and byl of the lth observation respectively and the number
of the observations is denoted as n.

4.2.2 R2 Score
R2 score, given by Eq. (10), gives an indication of the prediction’s goodness of fit to the true values.

From a statistical perspective, the R2 score has been dubbed as the coefficient of determination [14].

R2 y; ŷð Þ ¼ 1�
Pn
i¼1

yl � byið Þ2

Pn
l¼1

yl � �yð Þ2
(10)

where:

�y ¼ 1

n

Xn
l¼1

yl

�y represents the mean of the detected data.

5 Results and Discussion

Figs. 1 to 3 present the improvement in performance, using RMSE, MAE and R2 score, of the compared
algorithms versus the proposed one. The performance evaluation of the proposed algorithm against the
compared algorithms for each MVs percentage, 10%, 20%, 30%, 40% and 50%, generated from the
missingness mechanisms, MAR, MCAR and MNAR, is presented in more details in Tabs. 3 to 6. The
results exhibit that the performance differs from one algorithm to another depending on the dimension of
the dataset, the missingness mechanism type, and the amount of MVs in the dataset. The computational
complexity of both CBRL and CBRC is O(n).

Figure 1: R2 score improvement percentage of the proposed algorithm versus the compared algorithms

Figure 2: MAE improvement percentage of the proposed algorithm versus the compared algorithms
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This section is subdivided into two subsections. The first section explains the accuracy analysis
evaluated using R2 score (higher values is better) and the second represents the error analysis evaluated
using RMSE and MAE metrics (lower value is better).

Figure 3: RMSE improvement percentage of the proposed algorithm versus the compared algorithms

Table 3: MAE, RMSE and R2 score of the proposed algorithm against the compared algorithms (breast
cancer dataset)

Breast cancer

Mech %
missing
value

Proposed
algorithm

Stochastic NOCB Median EMI Random

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

MAR 10 320.64 14398.76 407.99 16689.91 17.316 1215.105 373.904 16117.67 373.9 19940.49 373.90 16754.00

20 443.09 14370.89 678.96 21339.27 235.09 12320.38 447.678 16186.82 447.68 41898.87 447.68 88603.04

30 394.73 12750.13 973.25 25093.19 31.25 1475.361 421.783 14278.08 421.783 22493.84 421.78 15263.37

40 983.17 21635.06 2532.58 50233.29 404.21 17943.89 901.744 23224.22 901.744 49081.14 901.74 22287.51

50 834.06 17070.85 1792.33 33483.05 280.10 15684.06 670.810 17701.69 670.810 40735.57 670.81 27890.12

Average 595.14 16045.14 1277.02 29367.74 193.59 9727.76 563.18 17501.69 563.18 34829.98 563.18 34159.61

Improvement 0.53 0.45 –2.07 –0.65 –0.06 0.08 –0.06 0.54 –0.06 0.53

MCAR 10 522.92 15759.95 1335.46 40018.23 197.18 14155.30 509.28 17330.07 509.28 37906.66 509.28 17228.65

20 541.59 11785.89 1335.61 32870.79 256.52 14398.2 378.15 10291.57 378.15 31369.78 378.15 27283.8

30 791.10 18334.46 1979.26 46012.12 79.82 3571.15 808.66 20314.66 808.65 50625.01 808.66 18119.15

40 1039.62 19614.44 1531.01 27097.39 354.61 17217.28 905.83 20613.91 905.83 55373.14 905.83 31896.57

50 1296.27 24990.94 3480.9 57980.1 255.97 11428.92 1289.99 27442.8 1289.99 50641.55 1289.98 33227.33

Average 838.3 18097.14 1932.45 40795.91 228.82 12154.17 778.38 19198.60 778.38 45183.23 778.38 25551.1

Improvement 0.57 0.56 –2.66 –0.49 –0.08 0.06 –0.08 0.6 –0.08 0.292

MNAR 10 105.56 4262 490.45 20762.39 4.33 218.99 50.40 2157.73 50.40 18587.69 50.40 11489.77

20 264.5 7141.54 652.4 20256.7 8.017 284.40 129.97 3845.5 129.97 28673.89 129.97 11829

30 481.06 9917.79 1785.58 43896.77 19.02 699.58 354.49 7929.36 354.49 32101.63 354.49 16315.06

40 735.63 13379.96 2861.79 53352.1 29.28 1005.46 603.55 11938.82 603.55 38242.58 603.55 87175.66

50 812.28 13960.04 2837.58 54955.41 154.06 9768.59 647.49 13497.92 647.49 40577.24 647.5 18928.93

Average 479.81 9732.27 1725.56 38644.85 42.94 2395.40 357.18 7873.87 357.18 31636.61 357.18 29147.68

Improvement 0.72 0.75 –10.17 –3.063 –0.34 –0.24 –0.34 0.69 –0.34 0.67

(Continued)
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Table 3 (continued)

Mech %
missing
value

R2score

MAR 10 0.989 0.985 0.969 0.965 0.955 0.974

20 0.984 0.980 0.966 0.947 0.933 0.923

30 0.977 0.971 0.926 0.923 0.907 0.913

40 0.978 0.962 0.903 0.912 0.902 0.907

50 0.968 0.953 0.899 0.898 0.886 0.859

Average 0.979 0.970 0.933 0.929 0.917 0.915

Improvement 0.009 0.050 0.054 0.068 0.070

MCAR 10 0.995 0.989 0.979 0.987 0.980 0.962

20 0.994 0.985 0.970 0.978 0.965 0.953

30 0.987 0.972 0.941 0.958 0.943 0.902

40 0.991 0.979 0.947 0.960 0.936 0.899

50 0.983 0.956 0.926 0.932 0.906 0.859

Average 0.990 0.976 0.953 0.963 0.946 0.915

Improvement 0.014 0.039 0.028 0.046 0.082

MNAR 10 0.990 0.985 0.966 0.953 0.952 0.973

20 0.976 0.971 0.932 0.925 0.917 0.947

30 0.970 0.958 0.917 0.901 0.898 0.909

40 0.973 0.953 0.913 0.903 0.886 0.884

50 0.972 0.959 0.889 0.882 0.870 0.860

Average 0.976 0.965 0.924 0.913 0.904 0.915

Improvement 0.012 0.057 0.069 0.079 0.067

Table 4: MAE, RMSE and R2 score of the proposed algorithm against the compared algorithms (dermatology
dataset)

Dermatology

Mech % missing value Proposed algorithm Stochastic NOCB Median EMI Random

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

MAR 10 0.265 0.005 0.223 0.004 0.196 0.004 0.247 0.005 0.269 0.005 0.247 0.005

20 0.166 0.003 0.371 0.006 0.320 0.006 0.208 0.004 0.490 0.004 0.218 0.004

30 0.237 0.006 0.499 0.011 0.529 0.013 0.265 0.009 0.198 0.009 0.443 0.009

40 0.194 0.006 0.252 0.009 0.287 0.012 0.250 0.009 0.350 0.009 0.194 0.009

50 0.509 0.015 0.708 0.021 0.623 0.020 0.531 0.017 0.863 0.017 0.639 0.017

Average 0.274 0.007 0.411 0.010 0.391 0.011 0.300 0.009 0.434 0.009 0.348 0.009

Improvement 0.332 0.302 0.298 0.357 0.085 0.207 0.368 0.207 0.212 0.207

(Continued)

312 CSSE, 2022, vol.42, no.1



Table 4 (continued)

Dermatology

Mech % missing value Proposed algorithm Stochastic NOCB Median EMI Random

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

MCAR 10 0.325 0.005 0.277 0.005 0.430 0.007 0.331 0.006 0.413 0.006 0.519 0.006

20 0.166 0.004 0.487 0.010 0.366 0.008 0.269 0.007 0.399 0.007 0.311 0.007

30 0.237 0.006 0.319 0.008 0.282 0.009 0.226 0.007 0.342 0.007 0.288 0.007

40 0.155 0.006 0.138 0.008 0.242 0.010 0.188 0.008 0.434 0.008 0.193 0.008

50 0.182 0.008 0.265 0.010 0.394 0.014 0.207 0.010 0.221 0.010 0.224 0.010

Average 0.213 0.006 0.297 0.008 0.343 0.010 0.244 0.008 0.362 0.008 0.307 0.008

Improvement 0.284 0.277 0.379 0.368 0.129 0.218 0.412 0.218 0.306 0.218

MNAR 10 0.158 0.004 0.173 0.005 0.236 0.006 0.180 0.005 0.310 0.005 0.331 0.005

20 0.373 0.008 0.573 0.012 0.465 0.013 0.386 0.012 0.423 0.012 0.604 0.012

30 0.271 0.008 0.349 0.010 0.412 0.011 0.329 0.012 0.409 0.012 0.335 0.012

40 0.325 0.012 0.327 0.012 0.538 0.019 0.350 0.017 0.304 0.017 0.548 0.017

50 0.372 0.014 0.303 0.013 0.367 0.016 0.456 0.019 0.923 0.019 0.485 0.019

Average 0.300 0.009 0.345 0.010 0.403 0.013 0.340 0.013 0.474 0.013 0.461 0.013

Improvement 0.131 0.119 0.257 0.307 0.119 0.296 0.367 0.296 0.349 0.296

Mech % missing value R2score

MAR 10 0.999 0.998 0.995 0.998 0.997 0.993

20 0.998 0.996 0.993 0.994 0.988 0.981

30 0.995 0.992 0.985 0.985 0.981 0.965

40 0.993 0.987 0.974 0.982 0.977 0.952

50 0.992 0.987 0.978 0.979 0.971 0.937

Average 0.995 0.992 0.985 0.988 0.983 0.966

Improvement 0.003 0.010 0.008 0.013 0.031

MCAR 10 0.998 0.997 0.994 0.994 0.992 0.983

20 0.998 0.995 0.992 0.992 0.989 0.972

30 0.995 0.993 0.984 0.988 0.980 0.967

40 0.993 0.991 0.982 0.981 0.977 0.944

50 0.991 0.989 0.971 0.979 0.972 0.926

Average 0.995 0.993 0.985 0.987 0.982 0.958

Improvement 0.002 0.010 0.008 0.013 0.038

MNAR 10 0.996 0.997 0.987 0.988 0.986 0.985

20 0.993 0.991 0.984 0.980 0.978 0.971

30 0.991 0.989 0.980 0.978 0.976 0.967

40 0.988 0.989 0.974 0.968 0.962 0.954

50 0.991 0.987 0.975 0.974 0.966 0.950

Average 0.992 0.991 0.980 0.977 0.974 0.965

Improvement 0.001 0.012 0.015 0.019 0.027
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Table 5: MAE, RMSE and R2 score of the proposed algorithm against the compared algorithms (parkinsons
dataset)

Parkinsons

Mech % missing value Proposed algorithm Stochastic NOCB Median EMI Random

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

MAR 10 1.267 0.035 2.070 0.043 0.662 0.014 0.831 0.021 1.828 0.021 1.596 0.021

20 1.774 0.064 1.972 0.057 6.857 0.137 1.884 0.070 1.927 0.070 2.103 0.070

30 1.974 0.072 2.305 0.084 0.385 0.016 1.934 0.069 4.167 0.069 2.300 0.069

40 2.656 0.115 6.924 0.278 1.850 0.066 2.178 0.103 3.131 0.103 7.423 0.103

50 2.110 0.099 2.868 0.140 2.425 0.064 2.904 0.140 3.492 0.140 3.516 0.140

Average 1.956 0.077 3.228 0.120 2.436 0.059 1.946 0.081 2.909 0.081 3.388 0.081

Improvement 0.394 0.361 0.197 –0.297 –0.005 0.046 0.328 0.046 0.423 0.046

MCAR 10 1.085 0.024 1.734 0.042 0.223 0.005 0.951 0.025 2.464 0.025 2.018 0.025

20 5.895 0.109 5.047 0.113 6.452 0.102 6.323 0.129 7.252 0.129 5.956 0.129

30 1.493 0.056 3.553 0.127 0.904 0.022 1.766 0.076 2.639 0.076 6.722 0.076

40 1.794 0.071 1.449 0.048 2.606 0.070 2.071 0.079 2.628 0.079 2.130 0.079

50 7.332 0.240 7.272 0.268 9.779 0.306 7.027 0.254 8.483 0.254 8.404 0.254

Average 3.520 0.100 3.811 0.119 3.993 0.101 3.628 0.113 4.693 0.113 5.046 0.113

Improvement 0.076 0.163 0.119 0.011 0.030 0.111 0.250 0.111 0.302 0.111

MNAR 10 1.060 0.022 0.766 0.013 1.164 0.018 1.339 0.025 1.629 0.025 1.722 0.025

20 1.042 0.027 1.801 0.047 0.443 0.012 2.130 0.061 1.701 0.061 3.160 0.061

30 2.922 0.099 2.797 0.091 5.653 0.140 3.725 0.143 5.184 0.143 4.305 0.143

40 4.320 0.165 4.111 0.142 2.008 0.065 4.957 0.180 5.823 0.180 6.201 0.180

50 1.885 0.088 1.692 0.077 1.601 0.055 3.837 0.186 3.676 0.186 3.674 0.186

Average 2.246 0.080 2.234 0.074 2.174 0.058 3.197 0.119 3.602 0.119 3.813 0.119

Improvement –0.005 –0.085 –0.033 –0.381 0.298 0.325 0.377 0.325 0.411 0.325

Mech % missing value R2score

MAR 10 0.997 0.998 0.997 0.990 0.988 0.985

20 0.992 0.997 0.976 0.970 0.966 0.970

30 0.981 0.991 0.988 0.966 0.950 0.973

40 0.996 0.985 0.984 0.983 0.968 0.948

50 0.992 0.993 0.984 0.956 0.949 0.931

Average 0.992 0.993 0.986 0.973 0.964 0.961

Improvement −0.001 0.005 0.019 0.028 0.031

MCAR 10 1.000 0.999 0.999 0.997 0.994 0.994

20 0.994 0.995 0.989 0.987 0.981 0.974

30 0.996 0.997 0.990 0.984 0.974 0.973

40 0.996 0.997 0.992 0.989 0.975 0.980

50 0.987 0.986 0.967 0.968 0.950 0.940

Average 0.994 0.995 0.987 0.985 0.975 0.972

Improvement −0.001 0.007 0.010 0.020 0.023

MNAR 10 0.999 0.999 0.995 0.990 0.986 0.988

20 0.996 0.997 0.996 0.983 0.973 0.976

30 0.995 0.996 0.988 0.974 0.960 0.968

40 0.990 0.993 0.979 0.968 0.965 0.947

50 0.992 0.994 0.988 0.970 0.951 0.962

Average 0.995 0.996 0.989 0.977 0.967 0.968

Improvement −0.001 0.005 0.018 0.028 0.027
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Table 6: MAE, RMSE and R2 score of the proposed algorithm against the compared algorithms (Pima
Indians Diabetes dataset)

Pima Indians Diabetes

Mech % missing value Proposed algorithm Stochastic NOCB Median EMI Random

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

MAR 10 0.379 9.700 0.332 7.291 0.455 11.393 0.448 11.316 0.448 11.753 0.448 10.818

20 0.510 6.424 0.573 6.635 0.760 9.864 0.511 7.373 0.511 9.472 0.511 10.740

30 0.558 7.566 0.735 9.264 0.746 8.699 0.644 8.909 0.644 9.968 0.644 10.516

40 0.878 9.244 1.038 9.677 1.343 15.416 0.990 11.254 0.990 13.486 0.990 14.768

50 0.959 9.039 1.088 9.502 1.640 15.887 1.185 11.715 1.185 12.472 1.185 14.980

Average 0.656 8.395 0.753 8.474 0.989 12.252 0.756 10.113 0.756 11.430 0.756 12.364

Improvement 0.128 0.009 0.336 0.315 0.131 0.170 0.131 0.266 0.131 0.321

MCAR 10 0.849 3.821 0.473 7.773 0.352 5.153 0.266 3.798 0.247 4.384 0.247 11.382

20 0.874 7.494 0.688 9.948 0.670 10.193 0.430 7.684 0.504 11.153 0.504 13.846

30 1.021 10.058 0.953 10.781 1.084 12.833 0.697 12.217 0.947 14.416 0.947 16.033

40 0.845 7.480 1.012 9.752 1.130 12.879 0.702 7.826 0.702 9.056 0.702 18.766

50 0.939 8.057 1.531 12.185 1.818 16.443 1.147 9.919 1.147 15.752 1.147 22.155

Average 0.906 7.382 0.932 10.088 1.011 11.500 0.649 8.289 0.709 10.952 0.709 16.436

Improvement 0.028 0.268 0.104 0.358 –0.396 0.109 –0.277 0.326 –0.277 0.551

MNAR 10 1.070 8.684 0.484 9.689 0.469 9.466 0.502 10.700 0.502 9.781 0.502 9.367

20 1.112 14.583 0.696 13.146 0.883 15.400 0.790 16.248 0.790 14.527 0.790 13.169

30 0.86 7.75 1.06 10.36 1.16 11.70 1.06 10.98 1.06 11.56 1.06 18.88

40 0.84 14.04 1.33 12.99 1.38 16.51 1.32 16.58 1.32 19.15 1.32 16.53

50 0.84 12.07 1.66 13.74 1.77 15.70 1.66 15.82 1.66 14.25 1.66 18.23

Average 0.94 11.43 1.05 11.99 1.13 13.76 1.07 14.07 1.07 13.85 1.07 15.24

Improvement 0.10 0.05 0.17 0.17 0.12 0.19 0.12 0.18 0.12 0.25

Mech % missing value R2score

MAR 10 0.98 0.98 0.97 0.98 0.96 0.96

20 0.98 0.97 0.95 0.97 0.96 0.94

30 0.97 0.94 0.93 0.96 0.94 0.92

40 0.95 0.91 0.88 0.92 0.88 0.86

50 0.95 0.92 0.88 0.93 0.88 0.84

Average 0.97 0.95 0.92 0.95 0.92 0.90

Improvement 0.02 0.05 0.01 0.04 0.07

MCAR 10 0.99 0.97 0.97 0.99 0.98 0.96

20 0.98 0.96 0.96 0.98 0.96 0.93

30 0.96 0.95 0.92 0.95 0.92 0.86

40 0.96 0.92 0.90 0.95 0.93 0.85

50 0.96 0.92 0.92 0.92 0.92 0.85

Average 0.97 0.94 0.93 0.96 0.94 0.89

Improvement 0.03 0.04 0.01 0.03 0.09

MNAR 10 0.98 0.97 0.96 0.96 0.95 0.96

20 0.95 0.94 0.93 0.94 0.93 0.94

30 0.95 0.93 0.91 0.93 0.88 0.87

40 0.94 0.91 0.90 0.91 0.87 0.88

50 0.93 0.89 0.87 0.90 0.85 0.82

Average 0.95 0.93 0.91 0.93 0.90 0.90

Improvement 0.02 0.04 0.02 0.06 0.06
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5.1 Accuracy Analysis

This subsection exhibits that the proposed algorithm offers better accuracy versus the compared
algorithms in many cases. The accuracy analysis is represented by calculating R2 score. Fig. 1 exhibits
the improvement percentage of R2 score which is given by Eq. (10) for the proposed algorithm versus the
compared algorithms. In what follows, the comparison of R2 score is discussed in detail. In all missigness
mechanisms, R2 score of the proposed algorithm is better than nocb, median, EMI and random when
applied on all datasets used in the experiment. In addition, R2 score of the proposed algorithm is better
than stochastic when applied on all used datasets but worse than stochastic when applied on parkinsons
dataset in all missigness mechanisms.

5.2 Error Analysis

This subsection exhibits that the proposed algorithm gives lower error versus the compared algorithms
in many cases. MAE and RMSE, given by Eqs. (8) and (9) respectively, are the metrics used for assessing the
error in imputation. Figs. 2 and 3 exhibit the improvement percentage in evaluating both MAE and RMSE
respectively.

In all missigness mechanisms, MAE given by the proposed algorithm is lower than MAE given by EMI
and random when applied on all datasets used in the experiment. When the proposed algorithm is compared
with stochastic in MAR and MCAR, it was observed that MAE granted by the proposed algorithm is the
lowest in all used datasets. In MNAR, MAE of the proposed algorithm is better than stochastic in all
used datasets except when applied on the parkinsons dataset. In MAR and MCAR, MAE of the proposed
algorithm is better than nocb in all used datasets except when applied on the breast cancer dataset. In
MNAR, MAE of the proposed algorithm is better than nocb in all used datasets except when applied on
the breast cancer and parkinsons datasets. When the proposed algorithm is compared with median in
MCAR it was observed that MAE of the proposed algorithm is better in all used datasets. In MAR, MAE
of the proposed algorithm is better than median in all used datasets except when applied on the
parkinsons dataset. In MNAR, MAE of the proposed algorithm is better than median in all used datasets
except when applied on the breast cancer dataset.

In MAR and MCAR, RMSE of the proposed algorithm is better than stochastic in all used datasets. Also
in MNAR, RMSE of the proposed algorithm is better than stochastic in all used datasets except when applied
on the parkinsons dataset. When the proposed algorithm is compared with nocb in MAR and MNAR, it was
noticed that RMSE of the proposed algorithm is better than nocb in all used datasets except when applied on
the parkinsons and breast cancer datasets. When the proposed algorithm is compared with median, EMI and
random in MAR and MNAR, it was observed that RMSE of the proposed algorithm is better in all used
datasets. Also in MCAR, RMSE of the proposed algorithm is better than RMSE of median, EMI and
random when applied in all datasets used in the experiment except in Pima Indians Diabetes and breast
cancer datasets.

6 Conclusion

MVs are considered a critical problem in pattern recognition, ML and data mining applications. Many
extensive studies have been performed for manipulating the problem of MVs especially in medical data. In
addition to MVs, FS is the data preprocessing strategy which has been considered to be efficient when
preparing data (specifically large volume data) in ML. It has been confirmed to be efficient and effective
in handling high-dimensional data for any data dependent tool. Reducing the computational cost of
modeling and the number of input features helps in improving the performance of the model.

In this paper, novel algorithm was proposed to manipulate MVs. The proposed algorithm depends on FS
of similarity classifier with Parkash’s fuzzy entropy measure to select the candidate feature and the BRR
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model to predict MVs in the selected feature. Hence, the proposed algorithm consists mainly of two phases.
In the first phase, the FS of similarity classifier with Parkash’s fuzzy entropy is used to select features to be
imputed one after one. In the second phase, the MVs in the selected feature are predicted using the BRR
model. The first and second phases are repeated until the imputation of the whole dataset. The proposed
algorithm is easy to implement and can deal with all MVs from any missingness mechanism.
Furthermore, the proposed algorithm exhibits a good performance against the compared algorithms.

In future research, the proposed algorithm will be implemented on new medical datasets like pulmonary
embolism data and cardiovascular disease. Furthermore, additional performance metrics will be taken into
consideration such as the normalized root mean square error (NRMSE), statistical tests and predictive
accuracy (PAC).
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