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Abstract: Major fields such as military applications, medical fields, weather fore-
casting, and environmental applications use wireless sensor networks for major
computing processes. Sensors play a vital role in emerging technologies of the
20th century. Localization of sensors in needed locations is a very serious pro-
blem. The environment is home to every living being in the world. The growth
of industries after the industrial revolution increased pollution across the environ-
ment. Owing to recent uncontrolled growth and development, sensors to measure
pollution levels across industries and surroundings are needed. An interesting and
challenging task is choosing the place to fit the sensors. Many meta-heuristic tech-
niques have been introduced in node localization. Swarm intelligent algorithms
have proven their efficiency in many studies on localization problems. In this arti-
cle, we introduce an industrial-centric approach to solve the problem of node loca-
lization in the sensor network. First, our work aims at selecting industrial areas in
the sensed location. We use random forest regression methodology to select the
polluted area. Then, the elephant herding algorithm is used in sensor node loca-
lization. These two algorithms are combined to produce the best standard result in
localizing the sensor nodes. To check the proposed performance, experiments are
conducted with data from the KDD Cup 2018, which contain the name of 35 sta-
tions with concentrations of air pollutants such as PM, SO2, CO, NO2, and O3.
These data are normalized and tested with algorithms. The results are compara-
tively analyzed with other swarm intelligence algorithms such as the elephant
herding algorithm, particle swarm optimization, and machine learning algorithms
such as decision tree regression and multi-layer perceptron. Results can indicate
our proposed algorithm can suggest more meaningful locations for localizing
the sensors in the topology. Our proposed method achieves a lower root mean
square value with 0.06 to 0.08 for localizing with Stations 1 to 5.

This work is licensed under a Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.
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1 Introduction

The genuine factors that act as major challenges in our environment are air quality issues, water
pollution issues, and radiation pollution problems. A healthy society is the main sustainable development
goal among countries worldwide. At present, advanced environmental monitoring systems are highly
focused on developing technologies such as the internet of things (IoT), parallel computing, sensors, and
distributed computing. Under these circumstances, this research article aims to achieve smart placement
of sensors and investigate predicting smart environment pollution, such as factors involving monitoring of
air quality level, water quality level, radiation pollution levels, and advanced monitoring over agricultural
systems

Wireless sensor nodes are placed and scattered at all locations in the environment. The sensors are placed
for various applications. Localizing or predicting where to place sensor nodes is important to focus on the
sensing area accurately and reduce redundancy of sensing the same environment using parallel
computing. In our research problem, we introduce industrial-centric node localization using a decision
tree with a swarm intelligence algorithm. Manufacturing industries emit more pollutants. Therefore,
placing more nodes in such areas with help of IoT is necessary, as is decreasing the nodes when moving
away from industries. Owing to this architecture, the cost of sensors will be reduced and data prediction
accuracy increases.

As the technological and information field grows, wireless sensor networks (WSN) collect huge data in
and around the environment for various applications like military projects, metrological applications,
medical fields, and security surveillance. Broadly enabled applications significantly introduce
advancement in WSN. At present, the IoT concept uses WSN for data collection and processing in real
time [1]. The collection sensor nodes with other inexpensive devices form the WSN infrastructure. This
network is used to monitor and detects the environmental data for computing [2,3]. Collected data are
sent to sink nodes, which are a destination for processing and storing the collected data and sent to the
network for various usage and user applications. The WSN has many advantages such as parallel
computing, deployment, communications, transferring data, and organizing data. Day by day, various
challenges are experienced across WSNs. Further implementing the WSN has enormous challenges such
as localizing nodes, area coverage, energy consumption, and time of transfer in sensors. Among these
various challenges, node localization is a very important and basic problem to address.

Validation of sensor node localization is very important to collect data effectively. If we do not localize
the sensors at correct or needed locations, we will miss information or misread data while processing without
correct information. The nodes cannot be reached due to some climatic factors and unreachable
environments, creating the problem of communication and network structure in deploying nodes in
visible and needed places for future applications. The GPS system deploys sensor nodes in most places
without any constraints, leading to more energy consumption by transferring data with high cost. Node
localization can be defined as placing the sensor nodes in exact places and needed places. The
triangulation technique is suggested in previous studies for node localization [4]; some methods used so
far include arrival time [5], using signals of radio for localization [6–8], and arrival angles for choosing
location [9].

The location of a GPS system can be precisely identified using the help of anchor nodes. The sensor
nodes of GPS and non-GPS have their own localization methods based on range-based approaches [10].
These range-based algorithms identify the node distances with the help of angle measurement with
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unknown nodes. Here, the position of the unknown nodes is only known. Furthermore, this problem was
addressed using a triangulation technique to identify the coordinates. Topological data use range-free
algorithms for localization to identify target nodes. Past research proved that these algorithms are not
economically affordable to all users [11–13]. Sometimes, when focusing localization on indoor-based
environments that have walls, humidity and temperature are totally different. Range-based localization
cannot be used here. In this case, localization of nodes must be wirelessly done in areas within buildings.

The main goal in node localization is to place sensor nodes accurately at needed locations. In this article,
WSN places sensors for pollution prediction. Previous research mainly focuses on cost-effective sensor node
localization. Industries are commonly acknowledged to be the main sources of pollution in every location.
Our contributions in this research paper are as follows.

1. Industrial areas are identified by pollution level using random forest regression techniques.

2. Once the location is identified, we use the elephant herding algorithm to decide the number of sensors
and location in that industrial area.

3. Fringes of or places far away from industries do not need the number of sensors that we place near
industrial areas.

4. This focus can reduce the cost of sensors by reducing extra or wasted sensor locations.

Node localization is also a NP-hard scenario to identify accurate location for the sensor nodes. In this
article, we only attempted using industrial centric concepts.

This paper has been organized with five chapters. Chapter 2 provides a literature survey. Chapter 3 gives
details of the proposed methodology and its implementation strategy. Chapter 4 evaluates the result by
applying datasets. Chapter 5 concludes.

2 Literature Survey

The atmosphere is composed of different pollutant factors from industries, vehicles, and automobiles,
such as PM2.5, PM10, ozone, sulfur dioxide, and nitrogen oxides. These pollutants are highly spread
from manufacturing. However, pollution causes more damage to the environment and health that is
irreparable. Many studies have proved the health effects occurring due to pollution, necessitating
technological solutions to control and monitor the pollution concentration of various gases in the
industries as well as in the surroundings. Various sensor solutions have been used for environmental
quality assessment. At present, more sensor technologies are used, but they are expensive. The
unavailability of low-cost techniques and quality of data makes processing ineffective data very difficult.

Next, different swarm intelligence algorithms used in node localization problems are reviewed. Solving
NP-hard problems is very important. This case is also reviewed in the following section. Localizing the WSN
is considered a real-life problem as an optimization task. Domains that focus on optimization problems are
metaheuristic and artificial intelligence algorithms. Practically, NP-hard problems are addressed using
metaheuristic solutions.

The nature-inspired metaheuristic algorithms can be classified into evolutionary and swarm intelligence.
Genetic algorithm (GA) is a commonly used evolutionary algorithm for various NP-hard problems and
WSN. The node localization uses GA with a range-free distributed algorithm for 3D WSN [14]. GA-
based localization techniques provide accuracy with unknown sensor nodes in WSN [15]. The first swarm
intelligence method described in our review work is particle swarm optimization (PSO) [16]. Flocks of
fish and birds simulation are used in the search technique of PSO. This technique is highly applied in
WSN node localization. Addressing the problems in WSN localization are addressed by swarm-based
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topologies and variants of PSO for optimal solution [17]. Velocity PSO [18,19] improves the accuracy of the
localization in the WSN. Hybrid PSO in [20] improves localization performance.

The artificial bee colony (BC) optimization algorithm is used in localization of NP-hard problems. In
[21], BC localization is used in optimizing the nodes in the network. The firefly algorithm is an effective
optimization algorithm in swarm intelligence techniques. It uses the light properties of the fireflies in
addressing the localization. Many hybrid versions of the firefly algorithm are used in WSN localization
[22]. The virtual node projection in the anchor nodes for analyzing target nodes for localization uses
firefly concepts [23]. A novel swarm intelligence approach, namely, the monarch butterfly optimization
(MB) method, is widely used in solving NP-hard problems. It was first introduced in 2015 by Wang et al.
[24]. The MB algorithm is highly effective in optimizing NP solutions. WSN localization that uses MB
produced accurate results. MB also addressed the multi-localization stage of WSN nodes in the network
[25]. Moth search optimization is another swarm intelligent technique for WSN node localization
strategy. It is highly appreciated using axis of photo and levy. It also proved its performance in solving
benchmark problems [26]. Moth search is used in real-time problems like machine movement, drone
control, and node localization in WSN [27]. The hybridized technologies in WSN have also been are
tested and implemented [28]. The 5G cloud computing environment [29] and adversarial networks
generation [30] address next-generation demands for parallel computing. Low energy consumption [31]
with image color recognition [32] are reconfigured for the network connectivity actions.

3 Proposed Hybrid RFR–EHO Methodology

Our goal is to place the nodes similar to IoT devices based on an industrial-centric environment. Placing
more nodes in empty areas without any industries is a waste of sensor cost. In this proposed work, we use
random forest regression to decide the number of nodes based on parallel processing of the decision from
the algorithm indicating industrial or non-industrial areas. Then, the swarm intelligent technique called
elephant herding optimization (EHO) is further used for node localization to place the number of sensors to
increase the accuracy of data prediction. A previous study [33] proved that random forest regression predicts
the air quality accurately with a low error rate and proved that among the various swarm intelligence
algorithms in WSN for localization, EHO is efficient and robust to address WSN localization problems.

Our proposed work is smart environment pollution prediction on industries based on random forest
regression for decision-making on the type of area and elephant herding to localize the sensors in that
area. The overall workflow of the proposed work is diagrammatically presented in Fig. 1.

Fig. 1 illustrates the workflow of the proposed work to predict air pollution in industrial and non-
industrial areas. The proposed work is divided into 4 phases, as follows:

1. Data gathering–air pollutants such as CO2, SO2, and PM.

2. Prediction of the area-Random forest regression–Industrial or non-industrial areas

3. Localization–EHO-Placing sensors on needed areas

4. Data management-Sensor result storage and alerts about the current environment status.

3.1 Data Gathering

The data that are used for this prediction model are gathered from the various heterogeneous nodes
similar to IoT devices that are connected to the areas. Pollutants of industries are ozone gas (O3), nitrogen
dioxides (NO2), carbon monoxides (CO), sulfur dioxides (SO2), and particulate materials (PM). These
pollutant data are collected and pre-processed because each pollutant format may vary. Pre-processing is
the step to filter out unnecessary information and make the data ready for the next level of processing. In
this preprocessing stage, the missing values are handled and the data are normalized.
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Algorithm 1: Normalization of data

Input: Air pollutant data

Output: Normalized data in the range of [0,1]

Step 1: for each row

Step 2: //Split the data based on the collected area

Figure 1: Proposed RFR-EHO working overview

(Continued)
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Create file called area, and add concentration that collected in that area

Step 3: // Handle missing values

For each column
If value of column=Not a Null

Extract that row which contain that column
End if

End for

End for

Step 4: //Normalize the data

For i = 1 to n // for each row

For j = 1 to n //for each column

Call min-max scaler (feature_range=(0, 1),*, copy=true) // from python sklearn

End for

End for

Step 5: End

3.2 Prediction Analysis (Random Forest Regression)

Random forest is a decision tree algorithm that uses a tree structure. Each tree is generated from the data
sample from the training data. When generating the tree, the random subset of the selected features is
considered the best split among all the other alternatives. The process of random forest regression
is shown in Fig. 2. Owing to random choice, the bias may increase and variance may decrease. In
this proposed work, on the basis of this random forest regression, the polluted area that has a high air
quality index (AQI) is considered an industrial area and that with a low AQI value is considered a non-
industrial area.

The AQI value is calculated using Eq. (1) from China's Environmental Protection Ministry. AQI is the
maximum value of the IAQI of one air pollutant p.

AQIp ¼ IAQIHi � IAQILo
BPHi � BPLo

ðCP � BPLoÞ þ IAQILo (1)

where

CP – mass concentration of each air pollutant p

BPHi– high value of pollutant's concentration limit

BPLo– low value of pollutant's concentration limit

IAQIHi , IAQILo– corresponding value of BPHi and BPLo

The corresponding AQI with air pollution level is categorized in Tab. 1.

Algorithm 1: (Continued)
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Algorithm 2: AQI prediction using Random forest regression with EHO

Input: normalized data set with features labeled with AQI level, unlabeled dataset UD, trees quantity T,
features quantity m

Output: prediction of the area using AQI level

Step 1: For T trees

Step 2: Random selection of m features from s

Step 3: For feature m in each tree node

To split the data set, Calculate information gain as

Entropy ðcÞ ¼ �Pk
i¼1

pðciÞ log2 pðciÞ

Figure 2: Random forest regression prediction of the proposed work

Table 1: AQI level for area prediction

AQI Air pollution area category

0–50 Not polluted

51–150 Low pollution

151–200 Moderate pollution

201–300+ Severe pollution

(Continued)
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pðciÞ ¼ NiPk
i¼1 Ni

Information Gain ðIG ðfiÞÞ ¼ EntropyðcÞ �Pn
j¼1

jf ji j
jfij � Entropyðf ji Þ (3)

where

ci – AQI level of i

k – total number of AQI levels

Ni – quantity of records

fi – records of ith level of T

f ji – records of jth node of ith level of T

n – number of nodes in the level

Step 4: Split the data set node using max(IG)

Step 5: Remove selected features from S

Step 6: Input UD into T. The final probability of the ith level AQI is calculated as

p0ðciÞ ¼ 1

T

XT
k¼1

pðciÞ (4)

Step 7: Predict the area based on AQI level using

PC0ðiÞ ¼ maxðp0ðciÞ (5)

On the basis of the air pollution quality index, the polluted area is categorized as not polluted, low,
medium, and high. An AQI level more than 200 is considered the industrial area. For our proposed work
area, industry classification is greatly needed for sensor placement for better prediction because greatly
polluted areas need more sensors for accurate prediction.

3.3 EHO Algorithm for Node Localization

The localization procedure in WSN consists of anchor nodes and unknown nodes. The process has two
phases. First is the ranging phase where the algorithm finds the distance between anchor nodes and unknown
nodes. In the second phase, a sensor is fitted based on the position of the nodes based on angle of arrival,
round trip time, radio signal strength, time of arrival, and time difference of arrival. The principle of
localization to place wireless sensor consists of M sensors located in N unknown nodes using the
information of the location of M–N anchors and transmission range. If a sensor is placed within the
transmission range of three or more anchors, then it is considered localized. In this paper, the EHO
algorithm is used for localization problems. This algorithm has been proven to be the best method for
localization in WSN.

EHO has been used to solve global optimization problems [34,35]. They proposed a heuristic search that
is based on the co-existence of the elephants in the clan that are guided by the leader or the matriarch, which
is the oldest female in the clan. The other members of that clan are females and calves, while the male
elephants leave the clan and live separately. The male elephants can also communicate with the clan. This
concept can be used in node localization in WSN. On the basis of structural differences, this EHO can
have two environments such as elephants living under the guidance of the matriarch and males living
separately but still in communication with the clan. These environments are used as a separating operator.

Algorithm 2: (Continued)
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The general structure of the EHO algorithm is shown in Fig. 3. In EHO, each possible solution of clan ci is
updated with the current position and matriarch ci using the updating operation. The population difference is
updated using a separating operator. Initially, the population is divided into n clans.

Algorithm 3: EHO localization

Input: Predicted features of the pollutant area using algorithm 2

Output: Best possible solution of the positions to place sensors

Step 1: Initialization: generate the predicted features from algorithm 2 as population; divide the population
into ‘n’ clans; calculate fitness of each individual of the population; initialize the generation counter as c =
1 and maximum gen (MG)

Step 2: while c <MG do

Step 3: Arrangement of the solutions based on fitness value

Step 4: For all clans ci do

Step 5: For all solution j in the clan ci do

Step 6: Compute updating operation of the clan using Eq. (6)
xnewcðijÞ ¼ xcðijÞ þ a� ðxbestci � xcðijÞÞ � r (6)

Step 7: Select better solution between xc(i,j) and xnew,c(i,j)

Step 8: Update the fittest value of xbest,ci and generate new population xnew,c(i,j)

Using Eq. (7)

initial 
population

Clan 
updating 
operator

Separating 
Operator

Best current 
Solution

Stopping 
Criteria

Localization

Figure 3: EHO localization structure

(Continued)
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xnewcðijÞ ¼ b� xcentercid (7)

xcentercid ¼ 1

nci
�
Xd
j¼1

xcijd (8)

Step 9: Select better solution between xbest,ci and xnew,c(i,j)

End for

End for

Step 10: For all clan ci in the population do

Replace the worst solution using the separating operator as Eq. (9)
xworstci ¼ xmin þ ðxmax � xmin þ 1Þ � rand (9)

End for

Step 11: Compute the population and fitness value

Step 12: End while

Step 13: Return the best possible solution

where, xc(i,j) – old position of j in clan ci

xnew,c(i,j) – new position of j in the clan ci
xbest,ci – best solution of clan ci

α, β, r and random∈ [0, 1] – scale indicator, factor on xcenter,ci and random variable

xmax and xmin – upper and lower bound position of the individual
xworst,ci – individual with the worst fitness value in the clan ci

On the basis of this EHO, the multi-stage WSN localization for our proposed work is shown in Fig. 4. In
multi-stage localization, unknown sensor nodes with three or more anchor neighbors can be localized. In
single-stage localization, the unknown node that has more neighbors can be localized. The multi-stage
localization of the industrial area results in more sensors placed on highly polluted positions for accurate
prediction of air pollution levels.

3.4 Data Management

Storing and managing the localized data is an important step for analysis in real-time processing. Given
that our proposed work is for smart environment pollution prediction, the data must be stored and processed
rapidly. Our processed data are stored in an HDFS system. The stored information is then communicated to

Figure 4: Multi-stage localization of sensor nodes using EHO

Algorithm 3: (Continued)
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the application with an interface. The communication is frequently sent to the end user about the levels of
polluted areas. This communication will announce all the information about the polluted areas so that
people can monitor pollution there and make precautions and decisions accordingly.

Our proposed work for finding the air polluted area based on the air pollutant index with random forest
regression tree will categorize the area affected by pollution as industrial and non-industrial areas. This
process will help to localize the sensor count as needed according to air pollution using EHO localization.
Such localization will improve the efficiency and prediction accuracy because more sensors will be placed
in the most affected areas, leading to improved prediction with quick response time. Thus, authorities will
take necessary actions to prevent that. The aim of this work is to place more sensors in needed areas than in
normal areas, creating a smart environment to predict air pollution with fast response time and high accuracy.

4 Results and Discussion

4.1 Data Description

The experimental analysis of our proposed smart air pollution prediction environment has been tested
using data from the KDD Cup 2018, which contains the names of 35 stations with concentrations of air
pollutants such as PM, SO2, CO, NO2, and O3. The raw dataset has missing values and is not
normalized. During the data-gathering phase of our proposed work, the raw data are preprocessed to
obtain normalized data [36]. The normalized data set is shown in Tab. 2. The algorithms are implanted
using Python programming. The preprocessing stage is done by Panda. The evaluation metrics are
calculated using sklearn in Python.

4.2 Experimental Evaluation

To evaluate the proposed work with the simulation data set, the error between actual and predicted
values are calculated using different types of error measure such as mean absolute error (MAE), root
mean square error (RMSE), and accuracy. MAE is the measure of the average magnitude of the errors in
the set of predictions. MAE is the measure of the difference between the actual and predicted values
using Eq. (7). RMSE is the measurement of the average of the squared differences between the actual and
predicted value using Eq. (8).

MAE ¼ 1

n

Xn
j¼1

ðyj � y0jÞ (7)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
j¼1

ðyj � y0jÞ2
vuut (8)

n-number of observations, yj- actual value, y0j- predicted value

Table 2: Data set description after pre-processing

PM SO2 CO NO2 O3

Count 200.00 200.00 200.00 200.00 200.00

Mean 134.376 27.180 17.205 15.788 11.212

Standard Deviation 123.790 56.373 20.671 11.056 2.788

Min 4.600 0.200 0.200 2.000 2.000

Max 561.000 208.000 79.000 61.000 37.000
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The data set is split by station and saved as a separate file to identify the stations with high air pollution.
Each station consists of these six types of pollutant concentrations. Thus, the data set is split into 35 stations
with 6 features and 8,886 records. For our evaluation, we consider five stations core stations and use our
proposed algorithm to predict air pollution in a smart way. The error value for the proposed method in
these five stations are calculated as shown in Tab. 3, with the illustrated chart in Fig. 5. The MAE,
RMSE, and accuracy of the proposed smart prediction method for the five stations are computed and
stated with minimum MAE and minimum error value. To analyze the performance of the proposed
scheme, it is compared with existing air prediction techniques such as decision tree regression (DTR)
[33], hybridized elephant herding optimization (HEHO) [5], multi-layer perceptron (MLP) [33], and
particle swarm optimization (PSO) [36].

The performance evaluation of the proposed algorithm with the existing algorithms is shown in Tab. 4.
The observed result of the table values shows that our proposed algorithm obtains a low error value compared
with other existing algorithms. The proposed algorithm obtains an average of 11.916% of MAE and
0.0617 of RMSE, representing a high level of prediction accuracy. The graphical representation of these

Table 3: Error value of proposed scheme

Stations MAE (%) RMSE

ST1 11.2 0.0621

ST2 10.5 0.07352

ST3 14.83 0.0523

ST4 12.22 0.03828

ST5 10.83 0.0823

0

5

10

15

20

ST1 ST2 ST3 ST4 ST5

MAE(%) of Proposed scheme

0

0.02

0.04

0.06

0.08

0.1

ST1 ST2 ST3 ST4 ST5

RMSE of Proposed Scheme

Figure 5: Proposed scheme error value calculation
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data values is shown in Figs. 6 and 7. The proposed method has lower representation than do other methods.
The next best method to the proposed method is the HEHO algorithm with an average of 16.27% of MAE,
which is close to MLP, and 0.1233 of RMSE.

Table 4: Performance evaluation of proposed work

Stations DTR HEHO MLP PSO Proposed hybrid RFR-EHO

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

ST1 17.32 0.142 10.23 0.0972 14.93 0.21 15.34 0.24 11.2 0.0621

ST2 15.34 0.163 17.56 0.173 12.38 0.293 18.35 0.192 10.5 0.07352

ST3 16.92 0.134 19.34 0.0893 17.35 0.234 18.25 0.153 14.83 0.0523

ST4 14.82 0.103 16.83 0.124 15.39 0.123 19.38 0.0937 12.22 0.03828

ST5 12.542 0.192 17.39 0.133 13.59 0.162 16.34 0.154 10.83 0.0823

0

5

10

15

20

25
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M
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Figure 6: Performance evaluation of MAE of the proposed algorithm with existing methods
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Figure 7: Performance evaluation of RMSE of the proposed algorithm with existing methods
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The proposed algorithm performs better in prediction and localization. This method results in a smart
environment with a smart air pollution prediction system with quick response. The method also reduces
the cost of the sensors that are unnecessarily placed in less polluted areas.

5 Conclusion

The present work focuses on localizing nodes and reducing sensor cost by accurate placement using the
using swarm intelligence algorithm. To achieve efficiency, we first implement the random forest regression
technique to classify industrial areas. Then, the classified areas are localized using elephant herding
techniques. The work has two advantages in deciding the number of sensors to be placed and solving
node localization. The accuracy of sensor node localization is achieved by working with target nodes.
WSN is very important in day-to-day life. Sensor information is important to various information
processing applications. Localizing the nodes and knowing how many sensors are to be placed in what
type of location is very important for economical computation. This process also helps to avoid
redundancy in sensing the same locations in the network. Our approach overcomes all problems by using
a hybridized solution for various problems. The performance and error rates are computed for the
proposed algorithm, with a mean error value of less than 1. Existing techniques such as PSO, EHO,
DTR, and MLP are compared with the proposed RFR–EHO approach. The performance of localization is
markedly higher than all existing techniques. In our article, we focus only on industrial areas, but urban
areas also have high pollution. The future scope of this article is to use an industrial- and urban-centric
approach using deep learning with the swarm intelligence technique. Highly proven algorithms will be
used in this approach.
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