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Abstract: In this study, a new feature is added to the smart message passing inter-
face (SMPI) approach (SMPIA) based on the prioritization method, which can
completely eliminate the task starvation and lack of sufficient resources problems
through prioritizing the tasks. The proposed approach is based on prioritizing the
tasks and the urgency of implementation. Tasks are prioritized based on execution
time, workload, the task with a more sensitive priority is executed earlier by the
free source. The idea of demand-bound functions (DBFs) was extended to the
SMPIA setting based on partitions and caps. For each task, two DBFs are con-
structed, DBFLO and DBFHI, for the LO and HI criticality modes, respectively.
The simulation results returned by MATLAB showed that with the optimized
SMPIA (O-SMPIA), the parameters of maximum service execution time,
response time, delay time, and throughput improved in this work. In addition,
the results confirmed that the reduction of execution time, completion time, and
resource consumption time did not affect the response time and throughput of
workflow tasks and did not cause inefficient use of resources in virtual machines
(VMs) and data centers (DCs). The evaluation of performance metrics showed
that the delay, response time of the Greedy algorithm was less than that of
Max-Min and Min-Min. At the same time, the execution time of Max-Min was
less than the others and the throughput of the Greedy was longer. The effect
and throughput of O-SMPIA became more obvious as change to the job count
and the number of cloud workloads increased. It is also worth mentioning that
one of the main advantages of the O-SMPIA to other methods is the efficient
use of time to execute all the defined tasks by CPU.
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1 Introduction

Cloud computing (CC) delivers computing resources like software and hardware as a service to the users
through a network. Due to the scale of the modern data centers (DCs) and their dynamic resources
provisioning nature, efficient scheduling techniques are required to manage these resources [1,2]. The
smart message passing interface (MPI) can be used as a new idea and scheduling technique in CC that
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has not been proposed in the literature yet. With the use of smart MPI in the CC structure, the task scheduling
process can be performed most effectively. MPI is a main component of high performance computing (HPC)
applications and it is essential to improving the HPC application performance in the cloud environment [3,4].
The communication network performance is a challenge and low latency MPI communication methods are
needed for that [5–8].

The main objective of scheduling is to minimize resource starvation and to ensure fairness amongst the
parties utilizing the resources. Scheduling deals with the problem of deciding which of the outstanding
requests is to be allocated resources [9,10]. Starvation is a kind of problem that arises when some
processes are never allocated despite the availability of resources for allocation. The priority-based
scheduling algorithm is mainly focused on starvation [11]. One of the major challenges that must be
taken into account in developing task scheduling is solving the starvation problem [12]. Balancing
between throughput, waiting time and response time may provide how to approach scheduling optimality
but on another level it is going to causes long tasks starvation [13].

In general, the optimization task starvation problems can be divided into discrete and continuous
problems. The decision variables for a combinatorial problem have discrete values, while the decision
variables for a continuous optimization problem can take up values within the domain of real values (Ri)
[14,15]. Moreover, generating a schedule to optimize the two most important, yet conflicting, scheduling
objectives (i.e., execution cost and execution make span (MS)) has become a complicated problem. For
example, optimizing the execution cost increases the execution MS. This is due to the interlink that exists
between these objectives. MS and cost optimization problem persist because the virtual machine (VM)
selection (which is a key to managing resource utilization (RU) to improve system throughput) is usually
ignored by researchers [16].

Based on the number of criteria involved in the optimization task starvation problem, this can be divided
into single-criterion and multicriteria. The task of single- criterion optimization is to find the optimal solution
according to only one criterion function. When the optimization starvation problem involves more than one
criteria function, the task is to find one or more optimal solutions regarding each criterion. In such condition,
a solution that is appropriate to one criterion can be inappropriate to another, and vice versa [17]. Therefore,
the goal of multi-criteria optimization is to find a set of solutions that are optimal with respect to all other
criteria. Note that, most real-world problems are of the multi-criteria type. The review of the literature
shows that some research gaps such as VM selection and task mapping criteria still exist, which require
further investigation [16]. The obtained results of the experiment indicate that the optimized smart MPI
approach (O-SMPIA) outperform the SMPIA [18] in terms of total execution time (TET), MS and RU.
Other details are listed in Tab. 1.

The aim of this work was to solve the problem of starvation of tasks and lack of sufficient resources
using O-SMPIA. To this end, we combined the Greedy, Max-Min and Min-Min [18] algorithms, with the
O-SMPIA. In this matter, O-SMPIA was used at the DCs level due to the increase in the use of DCs in

Table 1: Performance evaluation of SMPIA and O-SMPIA

Data set SMPIA O-SMPIA Improvement (%)

TET MS RU% TET MS RU% TET% MS% RU%

MCITI 75523 12027 12.28 21992 9901 23.87 70.88 17.67 11.59

MCITI 76008 7919 11.80 15326 5639 22.34 79.83 28.79 10.54

MCITI 63430 8884 11.86 16491 6556 25.87 74.00 26.20 14.01
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different geographical locations and unclear the number of servers. This study attempts to run tightly coupled
applications on a wide area network in DCs level in order to improve throughput, delay time, response time,
and execution time. Dynamic workflow can be improved to change the workflow characteristics at runtime.

In this paper, the earliest deadline first with virtual deadlines (EDF-VD) algorithm was applied to the
utilization caps. EDF-VD was combined with O-SMPIA, which resulted in the improvement of the
system performance. The O-SMPIA helpeds to shorten the execution time, response time, and delay time
and increased the throughput.

The main contributions of this paper are as follows:

(1) A priority-based task scheduling algorithm was developed. O-SMPIA developed in this study is
based on the prioritization method that can completely solve the problem of task starvation and
resource consumption. SMPIA was extended to consider tasks execution time, MS and RU as
metrics for the performance evaluation and optimization goals.

(2) O-SMPIA solves the starvation problem by considering the type of urgency of the execution time.
Tasks are prioritized based on the execution time; the tasks with the highest priority is executed
earlier by the free source.

(3) O-SMPIA also improved the system throughput, hence significantly improving the system
performance. O-SMPIA helps to efficiently use the time in a way to execute all the tasks by CPU.

(4) The idea of demand-bound functions (DBFs) was extended to the SMPIA setting based on partitions
and caps. For each task, two DBFs, DBFLO and DBFHI, are constructed for the low- and high-
criticality modes, respectively.

The motivation for this research is the implementation of workflow on the telecommunications
transaction application in order to achieve proper processing time and manage cloud systems. It also aims
to improve the performance of algorithms, increase the quality of service (QoS), solving the problem of
task starvation and lack of sufficient resources considering the priority of tasks in MPI communications
of the desired virtual networks. The need for this research is to delay MPI communication in the virtual
MPI bus (VMPIB) [18]. Using O-SMPIA and SMPIA in a telecommunications transaction application
increases the performance of the application.

The remainder of this paper is organized as follows: related work is presented in Section 2; cloud
computing and task starvation model based on SMPIA in Section 3; the proposed optimized SMPIA
method in Section 4; optimization criteria in Section 5; the performance evaluation in Section 6, and;
ultimately, conclusions and future scope are presented in Section 7.

2 Related Work

In [18], the SMPIA aimed to improve the starvation problem for workflow tasks and lack of sufficient
resources at the VM level. This problem was solved with Greedy, Max-Min, and Min-Min algorithms. These
algorithms, especially Max-Min and Min-Min, solves the above-mention problems based on run times of
alternative virtual machines (AVMs) and priority scheduler algorithm. The TET and MS were prioritized
as well.

In [16], the multi-objective workflow optimization strategy (MOWOS) employs the tasks splitting
mechanism to split large tasks into sub-tasks to reduce their scheduling length. The simulation results
showed that, the MOWOS algorithm had less execution cost and, better execution MS, and also it
utilized the resources better than the existing HSLJF [15] and SECURE [19] algorithms.

In [13], a hybrid of shortest-job first (SJF) and round robin (RR) is one among the foremost used and
powerful hybrids for solving starvation where we will enjoy SJF performance in reducing the turnaround
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and from RR in reducing task waiting time. But the task quantum value was always the obstacle in having the
optimum hybrid.

In [12], to solve the starvation, a hybrid shortest–longest scheduling algorithm was presented. The
capabilities of each VM and the length of the task to allocate the tasks to most convenient VMs were
considered. Thus, their algorithm overcame the starvation problem through considering both the provider
and user’s requirements. The experimental results proved that the proposed HSLJF algorithm
outperformed the existing algorithms in terms of minimizing the average MS, response time, and the
actual execution time of tasks, while maximizing the RU and throughput.

In [20], EDF-VD was applied to each subset or partition independently. Dividing the processor into two
halves has almost no performance degradation compared to EDF-VD (with a totally dedicated processor).
The use of smaller caps of a partition led to, lower performance in terms of a set of scheduled tasks. If
one HI task switches to HI mode, then only those LO task within the same partition or subset will be
discarded, whereas LO tasks in other partitions continue running. The main advantage over the sever-
based approach is that there is no starvation period, i.e., the time interval between two runs/repetitions
where no service is provided to tasks within the server. In contrast to this, tasks in a partition run as long
as they have not used up their assigned utilization, i.e., as long as they are below their utilization cap.

In [11], a priority-based process scheduling (PRIPSA) algorithm was presented, which was developed
with the block-based queue in CC. The proposed algorithm gives the high priority to the processes supported
their lead time then burst time. Therefore, it is able to solve the starvation problem. The priority-based
scheduling algorithm was focused on moderating the starvation problem. For the preventive algorithm,
the starvation increased linearly, while for the priority-based scheduling algorithm, the increase rate was
extremely slow.

The resources are used good in case of improved genetic algorithm, but some resources are not used
efficiently in case of standard genetic algorithm, there is a large gap in the percentage usage of resources
[21]. The proposed cuckoo PSO (CPSO) algorithm achieves minimal deadline violation rate when
compared with algorithms such as PBACO, ACO, Min–Min, and FCFS [22]. The standard PSO easily
got trapped into the local optimum solution, which results in improved being premature convergence
[23]. The comparison of the improved PSO algorithm (in crossover and mutation) with PSO showed that
improved PSO was not only converged faster, but also it was executed in a large scale faster than the
other two algorithms [24]. According to dynamic nature of cloud and deficiencies of methods presented,
proposals and solutions have been suggested to improve the accuracy and the efficiency of the prediction
methods [25]. The new methods should be able to consider all dimensions of the application to making
the appropriate learning model. The efficient learning model could enhance the prediction accuracy. Also,
suggested new approaches to develop prediction models in a way of hybrid nature [26].

In the current paper, an important feature was added to the SMPIA based on the prioritization method,
which improves the system performance to an acceptable degree and leads to higher priority tasks that need
to be implemented sooner.

Tab. 2 reports the details of the comparison of performance parameters of the algorithms and methods in
terms of optimization.

3 Cloud Computing and Task Starvation Model Based on SMPIA

3.1 Cloud Computing Model Based on SMPIA

The CC model is aimed at providing resources and services through a network; resource allocation and
workflow scheduling are two focal points of CC [27–29]. Workflow as a service (WaaS) of deal and tenders
from ministry of communication and information technology of Iran (MCITI) was defined as small and big

662 CSSE, 2022, vol.42, no.2



transactions. All the flows of the selected WaaS were logged into the system after selecting the small or big
WaaS of the waiting queue. Each DC had a number of servers, each of which had several VMs in VMPIB.
VMs can have a two-way communication. As depicted in Fig. 1, all VMs were connected to VMPIB. The
problem in the current work is task starvation and lack of sufficient resources in VMs and DCs level to
optimize the performance parameters simultaneously. To this end, the O-SMPIA is presented in this
study. To define the concept of the VMPIB and the VM connection approach, first, a topology was
considered with the connected graph G = (D, V), where V = {VM1, VM2, VM3, …, VMm} and
D = {DC1, DC2, DC3, …, DCd}. D and V represent the entire number of DCs and VMs, respectively.
The function φ: V → D was considered to regulate the dependencies of flows and their tasks including
the F = {F1, F2, F3, …, Ff} set. Moreover, the function θ: F→ V and T = {T1, T2, T3, …, Tt}. φ is a
function, in which VM is assigned to each DC in VMPIB. θ is a function, in which the flow that could
be executed by VM in VMPIB is determined. F is the total flows depending on each other. And T is
defined as the total transactions [18].

Table 2: Comparison of the performance parameters of the algorithms andmethods in terms of optimization [18]

Data set Non-SMPIA SMPIA Improvement (%)

TET MS RU% TET MS RU% TET% MS% RU%

MCITI 155445 19668 74.72 75523 12027 87 51.10 38.84 12.28

MCITI 143172 17976 75.72 76008 7919 87.52 49.91 55.94 11.80

MCITI 143517 18921 76.87 63430 8884 88.73 55.80 53.04 11.86

Figure 1: The cloud computing model based on SMPIA [18]
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3.2 Task Starvation Model Based on Optimized SMPIA

In the present article, a new feature was added to SMPIA based on the prioritization method, which can
completely eliminate the problem of task starvation and resource consumption. In this matter, the starvation
of tasks and resources is addressed by prioritizing the tasks as suggested in [13,20,30]. High priority tasks are
considered HI and low priority tasks are considered LO in O-SMPIA to schedule the sporadic tasks that run
under preemptive uniprocessor scheduling. Each job consists of task count, job size, job priority, position,
type, etc. The minimum separation between any two jobs or instances of a task is denoted by Ti, and we
assume implicit deadlines, i.e., 8i:Di ¼ Ti where Di is a task’s relative deadline. There is no self-
suspension, and the context-switch overheads are assumed to be negligible on different processors.
According to Eq. (1), LO a task dos not in the other subsets but only those in τx, where x, m ∈ {LO, HI}.

Um
x :¼

X
xi¼x

Cm
i

Ti
(1)

Finally, among the four potential criticality-to-mode combinations, note that only ULO
LO, U

LO
HI , and U

HI
LO are

defined. UHI
LO does not exist for a particular τx ⊂ τ, since LO tasks are dropped when an HI task in τx changes

the HI mode and, hence, do not run in the τx’s HI mode. In the second part, we use the same system model as
in previous work on the scheduling tasks on each partition. Formally, each task τi set τ = {τ1, …, τm} is
defined by tuple (Ci(LO), Ci(HI), Di, Ti, Li). For such a system to be successfully scheduled, all (non-
discarded) jobs on the same partition must always meet their deadlines. A similar concept is the supply-
bound function (SBF) (l), which lower-bounds the amount of supplied execution time of the platform in
any time window of size l. For instance, a unit-speed, dedicated uniprocessor has SBF (l) = l. Other
platforms, such as virtual servers used in hierarchical scheduling, have their own particular SBFs. SBF is
of the maximum unit speed if in accordance with Eq. (2) [20,31].

SBFð0Þ ¼ 0�8l; k � 0: SBFðl þ jÞ � SBFðlÞ � j (2)

Its basic idea for solving the starvation problem in this paper is to promote HI jobs in the LO mode by
shortening their deadlines so as to reserve the processor capacity for the HI mode. From the above
description, the LO and HI tasks need to be schedulable with their corresponding cLOi in the LO mode.
Similarly, in the HI mode, the HI tasks also need to be schedulable with their corresponding cLOi . As a
result, the following two schedulability conditions expressed by Eqs. (3) and (4) are necessary.

ULO
LO þ ULO

HI � 1 (3)

UHI
HI � 1 (4)

In the following, Algorithm 1 (Tab. 3) is presented for schedule tasks.

Although using fixed UL is more straightforward, in some cases, we would like to find an optimum
value of UL for a given τx ⊂ x such schedulability could be guaranteed. A DBF (τi , l) gives an upper
bound on the maximum possible execution demand of task τi in any time interval of length l, where
demand is calculated as the total amount of required execution time of jobs with their whole scheduling
windows within the time interval. The idea of DBFs was extended in this article to the SMPIA setting
based on partitions and caps. For each task, two DBFs are constructed, DBFLO and DBFHI, for the low
and high-criticality modes, respectively. While the system is in low-criticality mode, each task τi behaves
as a traditional sporadic task with parameters Ci(LO), Di(LO), and Ti. Note that it uses relative deadline
Di(LO), where Di(LO) = Di if Li = LO and Di(LO) <= Di(HI) = Di if Li = HI. A tight DBF of such a task
is known as expressed in Eq. (5) [20,31,32].

664 CSSE, 2022, vol.42, no.2
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0

(5)

According to Fig. 2 and also as suggested in [20,33], first of all, tasks from different parts of the system will
be sent to the central processor.

The task checker interface will process all incoming tasks. Then each of the inputs LO and HI are
checkeds. After diagnosis of the LO or HI tasks assigned to each tag, they are sent to the corresponding
queues. Each queue, after receiving the tasks, sends them to the sorter interface. The sort by priority
interface set the HI tasks on top of the table and other tasks based on priority are sorted on table. All the
tasks are then entered into SMPIA, and the algorithm tasks between partitions generated by caps
distribution and scheduling tasks can be done.

Table 3: Algorithm 1. The algorithm for schedule utilization caps

01 start

02 Require: τ = τA ∪ τB ∪ … ∪ τZ

03 Require: UL

04 for each τx ⊂ τ do

05 Compute ULO
LO þ ULO

HI and UHI
HI

06 if ULO
LO þ ULO

HI > 1 then

07 Return (“not scheduable”)

08 else if UHI
HI > 1 then

09 Return (“not scheduable”)

10 else if ULO
HI

UL� ULO
LO

UL� UHI
HI

ULO
LO

then

11 U = U + UL

12 Compute x

13 else

14 Return (“not schedulable”)

15 end if

16 end for

17 if U > 1 then

18 Return (“not schedulable”)

19 else

20 Return (“schedulable”)

21 end if

22 end
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During the parallel execution of tasks on each partition, the bounding techniques are also applied to the
HI and LO tasks. Then, the sensitivity of HI is checked. At this time, there is no need to time the processing of
LO tasks. One of the main advantages of the proposed method to other methods is the efficient use of time to
execute all the tasks by CPU.

4 The Proposed Optimized SMPIA Method

According to the ideas presented in this paper for solving the problem of task starvation and lack of
sufficient resources, the Algorithm 2 (Tab. 4) is proposed as follows:

Therefore, one important advantages of the O-SMPIA method is that the prioritization of tasks and their
scheduling using VMs in a way to solve; the starvation problem. As explained during this section, the
O-SPMIA method is based on task prioritization. By prioritizing the tasks, the schedule is changed,
which causes the selection of the desired VM to be done using the Greedy algorithm. The Greedy
algorithm, based on calculating its variance and HI and, LO tasks, selects the acceptable VM. Therefore,
the best VM is first selected according to the Max-Min or Min-Min algorithm; then, the tasks with higher
priority are executed. In SMPIA and O-SMPIA, all the created processes will be submitted to one node;
as a result, the first machine will have the whole load, whereas no tasks will be submitted to the other
machines. The working procedures of the SMPIA and O-SMPIA are shown in Fig. 3.

Tasks

Tsak Checker LO/HI?

LO Queue

Is LO

HI Queue

Is HI

Sort HI , LO
with running

priority

Scheduling Tasks To
Partitions

Si
ng

le
 P

ro
ce

ss
or Partition 1

Partition 2

Partition 3

Partition n

Set Bounding
Technique On HI and

LO Tasks

Transform Task To
Other Parts End

Figure 2: The flowchart of the proposed method according to [18] and also as suggested in [20,33]
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Table 4: Algorithm 2. The algorithm of the O-SMPIA proposed method

01 start

02 Function My_Approach_starvation (Tasks T)

03 {

04 HI_Queue = null

05 LO_Queue = null

06 for i = 1 to Count (T)

07 {

08 if (Type (T[i]) == HI)

09 HI_Queue.Add (T[i])

10 else

11 LO_Queue.Add (T[i])

12 }

13 List <SORTED_TASKS>= Sort_By_Priority (HI_Queue, LO_Queue)

14 pc =Partitioning_CPU_Caps (PartitionCount)

15 SchedulingByEDF-VD (pc)

16 for i = 1 to Pc

17 {

18 Set_Bounding (pc[HI, LO])

19 }

20 }

21 end

Figure 3: Process management for parallel jobs with SMPIA and O-SMPIA in VMPIB
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4.1 Implementation of MPICH-3.0.4

The nfs-kernel-server and MPICH-3.0.4 packages are installed to implement MPI, thanks to a special
feature in the master system. After that, the Htop software is installed to monitor the processes running in
parallel in MPI. Then, in the Hosts file, the master system is defined for IP systems. The copy of the
program file was compiled in the “Mirror” folder using the MPI compiler. At the end, the program file is
copied to the mirror folder and compiled it using the MPI compiler. Then, the program compiled by
MPICH is executed using the following command: /nfsshare$ mpirun –f hosts –n number. /MPI_sample.

It should be mentioned that instead of number, the number of processors desired to be involved with the
program could be entered. Moreover, the program names are entered instead of MPI_sample. Afterwards, the
program is run well on all systems and the performance of the processors is observed on each of the Slave
computers with the assistance of Htop. Ultimately, the user code is copied in the AVM buffer by MPI, and
then is prepared for parallel execution [18]. MPICH-3.0.4 runs using multi-purpose daemon (MPD), that is a,
process manager that is able to launch the execution of a parallel program on multiple machines.
Additionally, it provides communication between all launched processes to exchange data. MPD starts on
all the nodes participating within the cluster. Using mpdboot, MPD launches itself on all nodes of the
cluster. The MPD clusters configuration has a ring topology, where each node is connected to the next
node, and therefore the last node is connected to the first one. When a parallel program calls
MPI_Comm_spawn, without specifying where to run the newly spawned process through the [mpi info]
parameter, the process manger MPD starts the new spawned processes on the next node in the MPD’s
ring. For the newly created processes, the default is that follow the RR algorithm starting from rank (0)
every time.

Therefore, the creation of processes by using MPI_Comm_spawn has two scenarios:

1. The first scenario happens when using one MPI_Comm_spawn function to create many processes by
using the [Maxproc] parameter. It will follow the Greedy algorithms to distribute processes starting
from rank (0), and this will distribute the load equally.

2. The second scenario suffers from a significant problem when the MPI_Comm_spawn function is
called many times. For example, when calling the function iteratively inside a loop, or when
making recursive calls for this function, in both cases, each call of this function will submit the
new process every time to the first rank. In this case, all the created processes will be submitted to
one node, the first machine. As a result, the first machine will have the whole load, whereas no
tasks will be submitted to the other machines. As stated above, the decision of submitting new
tasks to hosts is made in the function level. In every call to this function, the submission of tasks
happens according to the Greedy algorithms starting from the clusters’ first host independent of
any MPI_Comm_spawn previously named. This unbalanced load happens because of the
decentralization in decision made by MPI_Comm_spawn about submitting the new spawned
process to a host since MPI-2 does not introduce any way of scheduling [13,34].

5 Optimization Criteria

This section explains the metrics used to measure the effectiveness of O-SMPIA in task scheduling.
Different kinds of optimization criteria were addressed, e.g., MS, cost, budget, deadline, TET, RU,
throughput, load balancing, and energy efficiency. In General, these optimization criteria are categorized
into two types based on cloud service: cloud users’ type and cloud service provider’s type [1,12,18,19].
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5.1 User Type Criteria

5.1.1 Make Span
It is defined as the completion time of the last task that is required to complete and leave the cloud system

[18,35,36]. It is calculated using Eq. (6).

Make Span ¼ Max fðCompletion TimeÞig (6)

5.1.2 Execution Time
Execution time is defined as the TET of every single task from the beginning to the end. TET of all

tasks from the beginning to the end [18]. The ET is equal to execution time of task that is calculated
based on Eq. (7) [12].

Execution Time ¼ L

MIPSj
(7)

L indicates the length of the task which is measured with the amount of million instructions. MIPS indicates
the amount of million instructions per second allocated to VMi and loadVMj indicates the previous existing
tasks performed by VMj as allotted in Eq. (8), N is the number of tasks into specific VM [12,18].

LoadVMj ¼
XN
i¼1

ETi (8)

5.1.3 Deadline
It represents the termination of running tasks at a particular time [37].

5.1.4 Response Time, Delay or Latency
Indicates the total time needed to respond by a cloud computing system and this metric should be

minimized. It is calculated based on the Eq. (9) [12].

Response Time ¼ ðCompletion TimeÞi � ðSubmission TimeÞi (9)

The expected completion time can be determined by calculating the expected completion time of task in
each VM based on Eq. (10) [12].

Completion Time ¼ Execution Timeþ Load VMj (10)

5.2 Provider Kind Criteria

5.2.1 Resource Utilization
It refers to making the most of the available resources and keep resources as busy as possible. It is useful

for service providers to get again by leasing the finite resources to the cloud user on-demand [18,38].

5.2.2 Throughput
It measures the number of completed tasks per unit time [11,12,39,40]. The throughput is calculated

through the following Eqs. (11), n is total number of tasks.

Throughput ¼ n

Make Span
(11)

5.2.3 Load Balancing
This criterion in CC refers to the distributions of loads among VMs over physical resources. Many

techniques have been introduced by the authors in [41–43].
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6 The Performance Evaluation

The O-SMPIA was simulated to optimize the system performance to achieve the least response time,
delay time, and execution time as well as the highest throughput, and also to solve the problem of
insufficient resources. In addition, the proposed O-SMPIA was compared with SMPIA. With O-SMPIA,
the performance of the system was significantly improved, which is discussed in this section. The tests
were conducted on the actual data in a homogenous environment including 4 DCs, 22 servers, 132 VMs,
132 flows, and 324 telecommunication equipment. To do so, 201535 records were collected on
transactions (deals and tenders) of the telephone company from 2011 to 2017. We took average of
50 simulation results for each graph. The simulation and implementation were performed in MATLAB.
The experiments were done on a system with the following features: Windows 10, CPU 2.5 GHz, core
i7–2450 m, and 16 GB RAM. In this research, data sets of telecommunication transactions applications
(deals and tenders) in MCITI and workflows were used for simulation purposes [18]. In this section, the
results of O-SMPIA, including throughput, response time, delay time and execution time are presented
based on three Min-Min, Max-Min, and Greedy algorithms. This section explains the metrics used to
measure the effectiveness of SMPIA and O-SMPIA in task scheduling. Different kinds of optimization
criteria were addressed, e.g., MS, cost, budget, deadline, TET, RU, throughput, load balancing, and
energy efficiency. General, these optimization criteria are categorized into two types based on cloud
service: cloud users’ type and cloud service provider’s type [1,12,18,19]. The details of simulation by
data values parameters are shown in Tab. 5.

Table 5: The details of simulation by data values parameters

Data Center ID Server ID CPU (Number) CPU Freq (HZ) Memory (MB) Bandwidth (Mb/S) VM ID Flow ID

1 1 4 1000 2000 100 12 12

1 2 2 2000 2000 50 9 9

1 3 1 1000 4000 100 9 9

1 4 4 1200 1000 100 3 3

1 5 2 1000 1000 100 9 9

1 6 1 1000 2000 100 6 6

1 7 4 1200 2000 100 6 6

2 8 2 1800 2000 50 9 9

2 9 2 2000 1000 50 3 3

2 10 2 1800 4000 20 6 6

2 11 2 1000 1000 50 6 6

2 12 1 1000 1000 100 3 3

2 13 1 1000 1000 100 3 3

2 14 1 1200 1000 100 9 9

3 15 4 1800 1000 50 3 3

3 16 4 1800 2000 20 6 6

3 17 1 1200 1000 20 3 3

3 18 1 1000 1000 20 6 6

4 19 2 1000 1000 20 6 6

4 20 1 1200 2000 100 6 6

4 21 1 1800 4000 50 3 3

4 22 2 1200 1000 100 6 6
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6.1 SMPIA Performance

6.1.1 Delay Time
Fig. 4a, shows the delay time of SMPIA based on the number of iteration. As can be seen in this figure,

the delay time in Max-Min_SMPIA based on the number of iteration is better than that of the other
algorithms, and also it is faster. Therefore, the delay time for workflow in the CC systems using
Max-Min_SMPIA was found more efficient than the other methods.

6.1.2 Load Balancing
Fig. 4b, shows the load balancing of SMPIA based on iteration. As this figure displays, the load

balancing of Max-Min_SMPIA based on the iteration is best and more efficient than that of the other
methods.

6.2 Optimized SMPIA Performance

6.2.1 Throughput
Fig. 5a, shows the throughput of the O-SMPIA algorithms. Throughput counts the number of job count

completed within the task in the per unit time. As can be seen in the figure, the throughput in O-SMPIA based
on the Greedy algorithm is better than that of the other algorithms, and also has a better performance. In all
three methods, throughput gradually increased. Therefore, the throughput rate for workflow in CC systems
using O-SMPIA based on the Greedy algorithm was found more optimal.

6.2.2 Response Time
Fig. 5b, shows the response time of the O-SMPIA algorithms. As can be seen in this figure, the response

time in O-SMPIA based on the Greedy algorithm is better than that of the other of other algorithms, and it is
faster.

6.2.3 Execution Time
Fig. 5c, shows that the execution time in O-SMPIA based on the Max-Min algorithm is better than that

of the other algorithms, and it is faster. Therefore, the execution time for workflow in CC systems using
intelligent MPI based on the Max-Min algorithm was found more efficient than the other methods.

Figure 4: Impacts of iteration on the performance of SMPIA. (a) Delay time (b) Load balancing
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6.2.4 Delay Time
Fig. 5d, shows the delay time of the O-SMPIA algorithms. As demonstrated by this figure, the delay time

in O-SMPIA based on the Greedy algorithm is better than that of the other algorithms, and it is faster.
Therefore, the delay time for workflow in CC systems using Greedy_O-SMPIA was shown to be more
efficient than the other methods.

The evaluation of performance metrics showed that the delay and response time of the Greedy algorithm
were less than those of the others. At the same time, the execution time of Max-Min was less than those of the
others and the throughput of the Greedy was longer.

7 Conclusions and Future Scope

In this work, O-SMPIA was presented, which was designed based on task prioritization. O-SMPIA
succeeded in alleviating the problem of task starvation and lack of resource by taking into account the
urgency of execution time. It also increased the throughput of the system. The HI tasks were assigned to
the best available selected resource. In this paper, the EDF-VD algorithm was applied to a fixed version
of utilization caps. The EDF-VD algorithm was combined with O-SMPIA, which caused the
improvement of the system performance. O-SMPIA shortened the execution time, response time, and
delay time and, at the same time, it increased the throughput. O-SMPIA was simulated in the MATLAB

Figure 5: Impacts of job counts on performance of the O-SMPIA. (a) Throughput (b) Response time (c)
Execution time (d) Delay time
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environment. The best mode was greedy, in which with O-SMPIA, delay, response time, and throughput
were improved. The results with actual data of the environment showed that O-SMPIA was more efficient
than SMPIA in the cloud system. Comparing the performance metrics showed that the Greedy algorithm
was better than the Max-Min and, Min-Min algorithms in terms of delay, throughput and response time.
On the other hand, Max-Min was found better than Greedy and Min-Min in terms of execution time.
These results reflect the effectiveness of O-SMPIA on the cloud resource consumption time and resource
efficiency. The simulation results show that O-SMPIA was able to increase the system throughput by
quickly selecting VMs and responding to the assignment of tasks to choose VMs during a timely manner.
The effect and throughput of O-SMPIA is more obvious as change within the job count and the number
of cloud workloads increase. One among the most advantages of the O-SMPIA to other methods is
efficient use of your time to execute all the tasks by CPU. In the future, it is recommended to analyze
multiple modes (prerequisite and post-requisite) and the quality of SMPIA and O-SMPIA with scientific
and artificial workflows.
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