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Abstract: In this study, we construct a family of single root finding method of
optimal order four and then generalize this family for estimating of all roots of
non-linear equation simultaneously. Convergence analysis proves that the local
order of convergence is four in case of single root finding iterative method and
six for simultaneous determination of all roots of non-linear equation. Some
non-linear equations are taken from physics, chemistry and engineering to present
the performance and efficiency of the newly constructed method. Some real world
applications are taken from fluid mechanics, i.e., fluid permeability in biogels and
biomedical engineering which includes blood Rheology-Model which as an inter-
mediate result give some nonlinear equations. These non-linear equations are then
solved using newly developed simultaneous iterative schemes. Newly developed
simultaneous iterative schemes reach to exact values on initial guessed values
within given tolerance, using very less number of function evaluations in each
step. Local convergence order of single root finding method is computed using
CAS-Maple. Local computational order of convergence, CPU-time, absolute
residuals errors are calculated to elaborate the efficiency, robustness and
authentication of the iterative simultaneous method in its domain.

Keywords: Biomedical engineering; convergence order; iterative method;
CPU-time; simultaneous method

1 Introduction

Finding roots of non-linear equation

f ðxÞ ¼ 0; (1)

Is the one of the primal problems of science and engineering. Non-linear equation arise almost in all fields of
science. To approximate the root of Eq. (1), researchers and engineers look towards numerical iterative
techniques, which are further classified to approximate single [1–7] and all roots of Eq. (1). In this
research paper, we work on both types of iterative methods. The most popular method among single root
finding method is classical Newton method having locally quadratic convergence:
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vðiÞ ¼ xðiÞ � f ðxðiÞÞ
f 0ðxðiÞÞ

� �
: i ¼ 0; 1; 2; . . . (2)

Engineers and mathematician are interested in simultaneous methods due to their global convergence
region and implemented for parallel computing as well. More detail on simultaneous iterative methods
can be seen in [8–17] and reference cited there in.

The main aim of this paper is to propose a modified family of Noor et al. method and generalize it into
numerical simultaneous technique for parallel estimation of all roots of Eq. (1).

This paper is organized in five sections. In Section 2, we construct optimal fourth-order family of single
root finding method and generalize it to simultaneous method of order six. In Section 3, computational aspect
of the newly constructed simultaneous method is discussed and the method is compared with existing method
of the same convergence order existing in the literature. In Section 4, we illustrate some engineering
applications as numerical test examples to show the performance and efficiency of the simultaneous
method. Conclusion is described in Section 5.

2 Construction of Simultaneous Method

Noor et al. [18] present a two-step 4th order method (abbreviated as AS):

uðiÞ ¼ yðiÞ � f ðyðiÞÞ
f 0ðyðiÞÞ � bf ðyðiÞÞ

� �
; (3)

where yðiÞ ¼ xðiÞ � f ðxðiÞÞ
f 0ðxðiÞÞ�bf ðxðiÞÞ

� �
and b 2 <.

According to Kung and Traub [19] conjecture, the iterative method (AS) is not optimal as it requires
2 evaluations of functions and 2 of its first derivatives. To make iterative method (AS) optimal, we use
the following approximation [20]:

f 0ðyðiÞÞ ffi 2
f ðyðiÞÞ � f ðxðiÞÞ

yðiÞ � xðiÞ

� �
� f 0ðxðiÞÞ; (4)

in Eq. (3).

uðiÞ ¼ yðiÞ � f ðyðiÞÞ
2

f ðyðiÞÞ�f ðxðiÞÞ
yðiÞ�xðiÞ

� �
�f 0ðxðiÞÞ�bf ðyðiÞÞ

0
@

1
A

where
yðiÞ ¼ xðiÞ � f ðxðiÞÞ

f 0ðxðiÞÞ�bf ðxðiÞÞ
� �

:

8>>>><
>>>>:

; (5)

The method Eq. (5) is now optimal and the convergence order of Eq. (5) is 4 if ζ is simple root of
Eq. (1). Let ε = x − ζ, then by using Maple-18, we find error equation as:

uðiÞ � f

ðxðiÞ � fÞ4
! ð�a3 þ 3a2C2 � 3aC2

2 þ C3
2 þ aC3 � C2C3Þ; CkðxÞ ¼ f ðkÞðxÞ

k!f 0ðxÞ ; (6)

k ¼ 2, 3, : : : or

uðiÞ � f ¼ Oð24Þ: (7)
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Suppose, Eq. (1) has n simple roots. Then f(x) and f′(x) can be written as:

f ðxÞ ¼ ðx� x1Þðx� x2Þ . . . ðx� xnÞ ¼
Yn
j¼1

ðx� xjÞ and (8)

f 0ðxÞ ¼ ðx� x2Þðx� x3Þ . . . ðx� xnÞ þ ðx� x1Þðx� x3Þ . . . ðx� xnÞ þ . . .

þ ðx� x1Þðx� x2Þ . . . ðx� xn�1Þ

f 0ðxÞ ¼
Xn
k¼1

Yn
j6¼k
j¼1

ðx� xjÞ:
(9)

This implies,

f 0ðxÞ
f ðxÞ ¼

Xn
j¼1

1

ðx� xjÞ
� �

; or (10)

f ðxÞ
f 0ðxÞ ¼

Xn
j¼1

1

ðx� xjÞ
� ��1

¼ 1

1
x�xk

þPn
j 6¼k
j¼1

1
ðx�xjÞ

� � ; (11)

or

x� xk ¼ 1

f 0ðxÞ
f ðxÞ �

Xn
j6¼k
j¼1

1
ðx�xjÞ

� � : (12)

This gives, Albert Ehrlich method (see [21]).

vðiÞk ¼ xðiÞk � 1

1
NðxðiÞk Þ �

Pn
j 6¼k
j¼1

1
ðxðiÞk �xðiÞj Þ

� � ; where NðxðiÞk Þ ¼ f ðxðiÞk Þ
f 0ðxðiÞk Þ

: (13)

Now from Eq. (11), an estimation of
f ðxðiÞk Þ
f 0ðxðiÞk Þ is formed by replacing xðiÞj with uðiÞj from Eq. (5) as follows:

f ðxðiÞk Þ
f 0ðxðiÞk Þ

¼ 1

1
NðxðiÞk Þ �

Pn
j6¼k
j¼1

1
ðxðiÞk �uðiÞj Þ

� � ; (14)

Using Eq. (14) in Eq. (2), we have new family of simultaneous method (abbreviated as MS):

vðiÞk ¼ xðiÞk � 1

1
NðxðiÞk Þ �

Pn
j 6¼k
j¼1

1
ðxðiÞk �uðiÞj Þ

� � ; ðk; j ¼ 1; . . . ; nÞ: (15)
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In case of multiple roots:

vðiÞk ¼ xðiÞk � rk

1
NðxðiÞk Þ �

Pn
j 6¼k
j¼1

rj

ðxðiÞk �uðiÞj Þ

� � ; (16)

where uðiÞj ¼ yðiÞj � f ðyðiÞj Þ

2
f ðyðiÞj Þ�f ðxðiÞj Þ

yðiÞj �xðiÞj

� �
�f 0ðxðiÞj Þ�bf ðyðiÞj Þ

0
BB@

1
CCA and yðiÞj ¼ xðiÞj � f ðxðiÞj Þ

f 0ðxðiÞj Þ�bf ðxðiÞj Þ

� �
:

Convergence Analysis

Here, we discuss the convergence of simultaneous schemes (MS) as:

Theorem: Let f
1
; . . . ; fn be simple roots with multiplicity σ1,…, σn of Eq. (1). If xð0Þ1 ; . . . ; xð0Þn be the

initial calculations of the roots respectively and sufficiently close to actual roots, then MS has convergence
order six.

Proof: Let ɛk = xk − ζk and e0k ¼ vk � fk be the errors in xk and vk estimations respectively. For
simplification, we omit iteration index i. Considering method MS, we have:

vk ¼ xk � rk
rk

NðxkÞ �
Pn
j6¼k
j¼1

rj
ðxk�ujÞ

� � ; (17)

where NðxkÞ ¼ f ðxkÞ
f 0ðxkÞ

� �
: Then, obviously for distinct roots:

1

NðxkÞ ¼
f 0ðxkÞ
f ðxkÞ

� �
¼

Xn
j¼1

1

ðxk � fjÞ
� �

¼ 1

ðxk � fkÞ
þ
Xn
j 6¼k
j¼1

1

ðxk � fjÞ
� �

: (18)

Thus, for multiple roots we have from MS:

vk � fk ¼ xk � fk �
ri

rk
ðxk�fkÞ þ

Pn
j6¼i
j¼1

rjðxk�uj�xkþfjÞ
ðxk�fjÞðxk�ujÞ

� � ; (19)

e0k ¼ ek � ri
rk
ek
þPn

j6¼i
j¼1

�rjðuj�fjÞ
ðxk�fjÞðxk�ujÞ

� � ¼ ek � riei

rk þ ek
Pn
j 6¼i
j¼1

�rjðuj�fjÞ
ðxk�fjÞðxk�ujÞ

� � ; (20)

¼ ek � rk :ek

rk þ ek
Pn
j 6¼k
j¼1

ðEke4j Þ
; (21)

where uj � fj ¼ Oðe4j Þ from Eq. (7) and Ei ¼ �rj
ðxk�fjÞðxk�ujÞ

� �
:

Thus,

e
0
k ¼

e2k
Pn
j6¼k
j¼1

ðEke4j Þ

rk þ ek
Pn
j 6¼k
j¼1

ðEke4j Þ
: (22)
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If we assume |ɛj| =O|ɛ|, then from Eq. (22), we have:

e0k ¼ OðeÞ6:
Hence the theorem.

Figure 1: Shows location of exact real roots of f2(x) on x-axis

Figure 2: Shows location of exact real roots of f3(x) on x-axis

Figure 3: Shows location of exact real roots of f4(x) on x-axis
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3 Computational Aspect

In this section, computational efficiency of the Petkovic et al. [22] method (abbreviated as MP)

xðiþ1Þ
k ¼ xðiÞk � 1

1
NkðxðiÞk Þ�

Pn
j6¼k
j¼1

1
ðxðiÞk �ZðiÞ

j Þ
; (23)

where ZðiÞ
j ¼ xðiÞj � uðxðiÞj Þ bjþcjtðxðiÞj Þ

1�djtðxðiÞj Þ

� �
; tðxðiÞj Þ ¼ f ðxðiÞj �hjuðxðiÞj ÞÞ

f 0ðxðiÞj Þ

� �
; hj ¼ 2rj

rjþ2; bj ¼ �ðrjÞ2
2 ; dj ¼ rjþ2

rj

� �rj
;

cj ¼ rjðrjþ2Þ
2 dj and the new method is presented as MS. Efficiency of iterative method is given by

ELðmÞ ¼ logr
D

; (24)

where r is the convergence order and D is the computational cost:

D ¼ DðmÞ ¼ waqAqm þ wmMm þ wdDm: (25)

Thus, Eq. (24) becomes:

ELðmÞ ¼ log r
waqAqm þ wmMm þ wdDm

� �
: (26)

Using data given by in Tab. 1 and Eq. (26), we calculate ρ((MS), (X)) as follows:

qððMSÞ; ðMPÞÞ ¼ ELðMSÞ
ELðMPÞ � 1

� �
� 100

qððMPÞ; MSÞÞ ¼ ELðMSÞ
ELðMPÞ � 1

� �
� 100

8<
: (27)

Figs. 5–6, graphically illustrates these percentage ratios. It is evident from Figs. 5–6 that MS method has
dominating efficiency as compared to MP method.

Figure 4: Shows location of exact real roots of f5(x) on x-axis

694 CSSE, 2022, vol.42, no.2



4 Numerical Results

Here, we compare numerical results of our newly constructed method MS with Petković et al. method
MP of convergence order 6. All numerical computations are performed using CAS Maple 18 with 64 digits
floating point arithmetic with stopping criteria as follows.

ðiÞ ek ¼ jf ðxðiÞÞj, e

where ek represents the absolute error. Take ε = 10−30 as tolerance for simultaneous methods. In all Tables
stopping criteria (i) is used, CPU represents computational time in seconds and qðiÞk represents local
computational order of convergence [23].

Table 1: The number of basic operations

Method ASm Mm Dm

MS 9m2 þ OðmÞ 1m2 þ OðmÞ 2m2 þ OðmÞ
MP 8m2 +O(m) 6m2 þ OðmÞ 2m2 þ OðmÞ

Figure 5: Shows computational efficiency of methods MS w.r.t method MP

Figure 6: Shows computational efficiency of methods MP w.r.t method MS
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Applications in Engineering

In this section, we discuss some applications in engineering.

Example 1: [24] Blood Rheology Model

Blood, which is a non-Newtonian fluid is modeled as a Caisson Fluid. Caisson fluid model predicts that
simple fluid like water, blood will flow through a tube in such a way that the central core of the fluids will
move as a plug with little deformation and velocity gradient occurs near the wall.

To elaborate the plug flow of Caisson fluid flow, we used the following non-linear equation:

G ¼ 1� 16

7

ffiffiffi
x

p þ 4

3
x� 1

21
x4; (28)

where reduction in flow rate is measured by G. Using G = 0.40 in Eq. (28), we have:

f1ðxÞ ¼ 1

441
x8 � 8

63
x5 � 0:05714285714x4 þ 16

9
x2 � 3:624489796xþ 0:36 (29)

The exact solutions of Eq. (29) are graphed using maple command smartplot3d [f1(x)], shown in Fig. 7.

The exact roots of Eq. (29) up to ten decimal place are:

f1 ¼ 0:1046986515; f2 ¼ 3:822389235; f3 ¼ 1:553919850þ :9404149899i;

f4 ¼ �1:238769105þ 3:408523568i; f5 ¼ �2:278694688þ 1:987476450i

f6 ¼ �2:278694688� 1:987476450i; f7 ¼ �1:238769105� 3:408523568i;

f8 ¼ 1:553919850� :9404149899i:

and

x1
ð0Þ ¼ 0:1; x2

ð0Þ ¼ 3:8; x3
ð0Þ ¼ 1:5þ 0:9i; x4

ð0Þ ¼ 1:2þ 3:4i:

x5
ð0Þ ¼ �2:2þ 1:9i; x6

ð0Þ ¼ �2:2� 1:9i; x7
ð0Þ ¼ �1:2� 3:4i; x8

ð0Þ ¼ 1:5� 0:9i:

are chosen as initial guessed values. Tab. 2, clearly shows the dominance behavior of MS over MP iterative
method in terms of CPU time and absolute error. Roots of f1(x) are calculated at third iteration.

Figure 7: Shows the analytical solution of f1(x) graphically
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Example 2: [25] Fluid Permeability in Biogels

Specific Hydraulic Permeability relates the pressure gradient to fluid velocity in porous medium (agarose
gel or extracellular Fiber matrix) results the following non-linear polynomial equation:

k ¼ Rex3

20ð1� xÞ2 ; (30)

or Rex3 � 20kð1� xÞ2 ¼ 0 (31)

where k is specific hydraulic permeability, Re radius of the fiber and 0 ≤ x ≤ 1 is the porosity.

Using k = 0.4655 and Re = 100*10−9, we have:

f2ðxÞ ¼ �100 � 10�9x3 þ 9:3100 � x2 � 18:6200 � xþ 9:3100 (32)

The exact solution are 3D-plot for different values of Re and k are graphed using maple command
smartplot3d [f2(x) and f3(x)] shown in Fig. 8 for f2(x) and Fig. 9 for f3(x) respectively. Fig. 10, shows
combined graph of f2(x) and f3(x) for − 5 ≤ k ≤ 5, − 5 ≤ Re ≤ 5, − 400 ≤ x ≤ 400.

The exact roots of Eq. (32) are

ζ1 = 0.9999999997, ζ2 = 1.000000000, ζ3 = 9.31*1018. The locations of exact root of Eq. (31) on x-axis
as shown in Fig. 1.

We choose the following initial estimates for simultaneous determination of all roots of Eq. (32):

Table 2: Simultaneous finding of all distinct roots of non-linear function f1(x)

Method CPU eð3Þ1 eð3Þ2 eð3Þ3 eð3Þ4 eð3Þ5 eð3Þ6 eð3Þ7 eð3Þ8 qð2Þk

MP 0.407 9.8e-20 1.4e-15 7.2e-14 6.8e-16 2.0e-13 4.0e-14 2.7e-15 2.4e-14 5.98

MS 0.235 1.8e-39 1.6e-31 1.6e-27 0.0 1.5e-26 0.0 0.0 1.3e-31 6.35

Figure 8: Shows graphically the analytical solution of f2(x) using maple command “smartplot3d [f2(x)] for
k ¼ 0:4655; Re ¼ 100
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x1
ð0Þ ¼ 0:9; x2

ð0Þ ¼ 1:1; x3
ð0Þ ¼ 9:3 � 1017:

Using k = 0.3655 and Re = 10*10−9, we have:

f3ðxÞ ¼ �100 � 10�9x3 þ 9:3100 � x2 � 18:6200 � xþ 7:3100 (33)

The exact roots of Eq. (33) are

ζ1 = 0.9999999997, ζ2 = 1.000000000, ζ3 = 7.31*1018. The locations of exact root of Eq. (33) on x-axis
are shown in Fig. 2.

We choose the following initial estimates for simultaneous determination of all roots of Eq. (33):

x1
ð0Þ ¼ 0:9; x2

ð0Þ ¼ 1:1; x3
ð0Þ ¼ 7:3 � 1017:

Tab. 3, clearly shows the dominance behavior of MS over MP iterative method in terms of CPU time and
absolute error. Roots of f2(x) are calculated at third iteration.

Figure 9: Shows the analytical solution of f3(x) in maple using command “smartplot3d [f3(x)]” for
�5 � k � 5; Re ¼ 10

Figure 10: Shows graphically the analytical solution of f1(x) using maple command “smartplot3d [f2(x) or
f3(x)].” for − 5 ≤ k ≤ 5, − 400 ≤ x ≤ 400
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Tab. 4, clearly shows the dominance behavior of MS over MP iterative method in terms of CPU time and
absolute error. Roots of f3(x) are calculated at the third iteration. Figs. 7–10, shows analytical approximate
solution of f1(x) − f3(x) using maple command smartplot3d. Figs. 1–10, clearly show that analytical
approximate and exact solutions match.

Example 3: [26] Beam Designing Model (An Engineering Problem)

An engineer considers a problem of embedment x of a sheet-pile wall resulting a non-linear function
given as:

f4ðxÞ ¼ x3 þ 2:87x2 � 10:28

4:62
� x: (34)

The exact roots of Eq. (34) are represented in Fig. 3 on x-axis and ζ1 = 2.0021, ζ2 = −3.3304, ζ3 =
−1.5417. The initial guessed values are taken as:

x1
ð0Þ ¼ 1:17; x2

ð0Þ ¼ �7:4641; x3
ð0Þ ¼ �0:5359:

Tab. 5, clearly shows the dominance behavior of MS over MP iterative method in terms of CPU time and
absolute error. Roots of f4(x) are calculated at the third iteration.

Example 4: [27]

Consider

f5ðxÞ ¼ sin3
x� 1

2

� �
sin3

x� 2

2

� �
sin3

x� 2:5

2

� �
; (35)

with multiple exact roots of Eq. (35) as represented in Fig. 4 are ζ1 = 1, ζ2 = 2, ζ3 = 2.5. The initial guessed
values of the exact roots have been taken as:

Table 3: Simultaneous determination of all distinct roots of f2(x)

Method CPU eð3Þ1 eð3Þ2 eð3Þ3 qð2Þk

MP 0.018 0.002 0.002 3.7e-30 5.64

MS 0.015 1.2 e-7 2.5e-7 4.5e-45 6.01

Table 4: Simultaneous determination of all distinct roots of f3(x)

Method CPU eð3Þ1 eð3Þ2 eð3Þ3 qð2Þk

MP 0.019 0.002 0.002 3.7e-35 5.01

MS 0.012 1.2 e-4 2.5e-4 4.5e-45 5.91

Table 5: Simultaneous determination of all distinct roots of f4(x)

Method CPU eð3Þ1 eð3Þ2 eð3Þ3 qð2Þk

MP 0.016 5.3e-21 5.2e-20 2.2e-20 5.41

MS 0.015 0.0 0.0 0.0 6.38
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x1
ð0Þ ¼ �0:2; x2

ð0Þ ¼ 1:7; x3
ð0Þ ¼ 3:

For distinct roots, we have:

f5�1�ðxÞ ¼ sin
x� 1

2

� �
sin

x� 2

2

� �
sin

x� 2:5

2

� �
: (36)

Tab. 6, clearly shows the dominance behavior of MS over MP iterative method in terms of CPU time and
absolute error. Roots of f5−1*(x) and f5(x) are calculated at the third iteration.

5 Conclusion

In this research article, we developed an optimal family of single root finding method of convergence
order 4 and then extended this family to an efficient numerical algorithm of convergence order 6 for
approximating all roots of Eq. (1). The computational efficiency of our method MS is very large as
compared to MP as given in Tab. 1, which is also obvious from Figs. 5–6. From all Figs. 1–10, Tabs. 1–
6, residual error and CPU time clearly show the dominance efficiency of iterative scheme MS as
compared to MP on same number of iterations.
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