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Abstract: Some species of females, e.g., chicken, bird, fish etc., might mate with
more than one males. In the mating of these polygamous creatures, there is com-
petition between males as well as among their offspring. Thus, male reproductive
success depends on both male competition and sperm rivalry. Inspired by this type
of sexual life of roosters with chickens, a novel nature-inspired optimization algo-
rithm called Roosters Algorithm (RA) is proposed. The algorithm was modelled
and implemented based on the sexual behavior of roosters. 13 well-known bench-
mark optimization functions and 10 IEEE CEC 2018 test functions are utilized to
compare the performance of RAwith the performance of well-known algorithms;
Standard Genetic Algorithm (SGA), Differential Evolution (DE), Particle Swarm
Optimization (PSO), Cuckoo Search (CS) and Grey Wolf Optimizer (GWO).
Also, non-parametric statistical tests, Friedman and Wilcoxon Signed Rank Tests,
were performed to demonstrate the significance of the results. In 20 of the 23 func-
tions that were tested, RA either offered the best results or offered similar results
to other compared algorithms. Thus, in this paper, we not only present a novel
nature-inspired algorithm, but also offer an alternative method to the well-known
algorithms commonly used in the literature, at least as effective as them.

Keywords: Evolutionary computation; meta-heuristics; optimization; roosters
algorithm

1 Introduction

Nowadays, researchers have begun to get more inspiration from nature in order to model optimization
algorithms. Thus, these stochastic algorithms, which are also called meta-heuristics, have become popular for
some reasons:

Generally, meta-heuristics are based on a simple idea such as an evolutionary process, a behavior of an
animal or a plant, a physical event etc. Such ideas allow researchers to simply model and implement an
algorithm. Thus, researchers will quickly compare the performance of the algorithm with the performance
of other meta-heuristics.

On the other hand, meta-heuristics can solve an optimization problem efficiently. They can certainly
handle problems such as getting stuck in local optima or premature convergence, where former methods
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often encounter [1–4]. Thanks to their stochastic natures, meta-heuristics can avoid this type of problems,
and explore the search space efficiently. Therefore, they can be accomplished in challenging problems.

Another important reason is that meta-heuristic algorithms can find the optimum point(s) without taking
derivatives. As known, in mathematics, values that make the first derivative of a function zero give the
optimum point(s). However, when the number of variables is large, it will be challenging to perform this
operation. Meta-heuristic algorithms offer a straightforward technique that uses random solutions to arrive
at optimum points, rather than taking derivations. This makes meta-heuristics extremely suitable for types
of problems that are difficult to derive.

Meta-heuristic algorithms generally initiate with randomly creating the potential solutions, called initial
population. After the initial population is generated, they proceed by evaluating fitness values (via a fitness
function) of individuals in the population. Afterwards, their nature-inspired searching steps starts. Next, they
return to the beginning of the process and repeat it until the termination criteria are met; either the optimum
solution is found or maximum number of generations are reached.

In the literature of meta-heuristics, algorithms can be classified in four main groups [5,6]: Evolutionary
Algorithms (EAs), Swarm-based, Physics/Chemistry-based and Human-based algorithms, see Fig. 1.

EAs employ intelligent strategies, which are selection, recombination (also called crossover), and
mutation. By using these strategies, EAs iteratively improve the initial solution to produce new solutions.
The most popular EAs are Genetic Algorithms (GAs) [1], Differential Evolution (DE) [7] and
Biogeography-Based Optimizer (BBO) [8].

Swarm-based algorithms (SBA) inspire by living creatures as swarm, flocks or herds. One of the most
well-known SBA is Particle Swarm Optimization (PSO) [9]. Essentially, PSO was designed to simulate
social behavior of bird flock and fish swarm. However, it was comprehended that PSO actually performs
optimization. Unlike to GAs, each potential solution (particle) also includes a velocity to move around in

Figure 1: The taxonomy of well-known meta-heuristic algorithms
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the search space. Other famous SBA are Ant Colony Optimization (ACO) [10], Cuckoo Search (CS) [11],
Artificial Bee Colony (ABC) [12], Firefly Algorithm (FA) [13] and Grey Wolf Optimizer (GWO) [14].

Another group of meta-heuristics are Physics/Chemistry-based algorithms, which are inspired by the
physical or chemical laws. Some common ones are Simulated Annealing (SA) [15], Big-Bang Big-
Crunch (BBBC) [16], Gravitational Search (GS) [17] and Black Hole (BH) [18].

In addition the meta-heuristics mentioned above, there are also some algorithms that inspired from
human behaviors: Tabu Search (TS) [19], Harmony Search (HS) [20], Imperialist Competitive Algorithm
(ICA) [21], Teaching Learning Based Optimization (TLBO) [22] and Fireworks Algorithm (FA) [23].

However, one main problem of meta-heuristics is the lack of adjusting the balance between exploration
and exploitation, which directly affects the genetic diversity of the population.

Exploration is an activity that discovers information or resources while exploitation refers researching a
limited (but promising) area of the search space (owing to hope developing the promising solution). The
traditional technique that using large population sizes to make exploration efficiently is inadequate since
it causes to increase the computational budget. On the other hand, giving priority to good solutions is the
common way for exploitation. However, this technique might bring about losing genetic diversity as the
average and poor solutions are generally overlooked.

The aim of this paper is to create an algorithm to solve the main problem of meta-heuristics that
mentioned in the above paragraphs. For this purpose, we have designed a new algorithm called Roosters
Algorithm (RA). Owing to the step of RA, which benefits from the average and poor solution, it can
control the genetic diversity better than other meta-heuristics that were tested.

Based on the No Free Lunch (NFL) theorem [24], a single algorithm cannot perform well in every
optimization problem. This theorem allows researchers to present new algorithms to solve different
problems in the related fields, which also encouraged us to propose RA.

In this paper, the performance of RA was compared with the performance of the distinguished meta-
heuristic algorithms: Standard GA (SGA), DE, PSO, CS and GWO. In addition to utilizing thirteen basic
benchmarks, ten IEEE CEC 2018 test functions (shifted, rotated, expanded etc.) were also employed for
the comparison. Furthermore, non-parametric statistical tests, Friedman and Wilcoxon Signed Rank, were
performed to demonstrate the significance of the tests results.

According to the obtained results, RA performs better than other meta-heuristics that compared in this
paper. Thus, besides presenting a novel algorithm, we also offer an alternative method to the well-known
meta-heuristics, which is at least as effective as they are.

The rest of paper is organized as follow: Section 2 explains inspiration of RA besides to introducing it.
While Section 3 describes the tests, Section 4 discusses the results from these tests. Finally, Section
5 concludes the paper.

2 Roosters Algorithm (RA)

2.1 The Inspiration

Female creatures might mate with more than one males [25]. In the mating of these polygamous
creatures, the reproductive success of a male is based on the quality of his sperms, according to “sperm
competition” theory [25]. Since chickens are these type of creatures, they can mate more than one
roosters, especially attractive ones.

As in humans, the sexual life of roosters with chickens begins with flirting [26]. First of all, a rooster
presents some foods to a chicken, and shows his dancing skills to engage her. If she is impressed by him,
then they can mate.
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However, the rooster may want to mate a chicken without her permission. In this scenario, even if he
ejaculates his sperms to her ova, she nervously sprinkle them.

On the other hand, the age of the rooster is another important factor for mating [26]. For instance,
chickens do not want to mate with senior roosters as their proportions of fertilizing an egg is very low.

When mating procedure is completed, the sperm competition starts if the chicken has more than one
male. The VSL value, the most common estimator of sperm cell velocity, is significantly important in the
competition of sperms [25]. If the VSL of a male’s sperm is higher than others, he is more likely to
outstrip his opponents in the manner of fertilizing the egg.

Furthermore, if the chicken has fears about her life or she has a disease, it directly affects the formation
of her egg [26], i.e., disrupts the DNA of the egg.

2.2 The Algorithm

Algorithm 1: Roosters Algorithms (RA)

Initialize rooster size (n)
Create the initial population
i←1
while i ≤ populationsize do
Randomly identify roosters and chickens in the population
Randomly choose chickens from the population of chickens
Determine the attractive chicken for mating
Randomly choose roosters based on the rooster size
rj is the rooster j where j is 1,2,…,n
for j = 1:n do
if rj impresses the attractive chicken then
Allow mating

else
if rj wants to mate by force then
Kill his sperms

end if
end if

end for
if the attractive chicken has more than one male then
Calculate VSL values of all sperms
Allow sperm competitions
The winner offspring fertilizes the egg

else
The male of offspring fertilizes the egg

end if
if the attractive chicken is stressful then
Mutate the egg

else
Let it remain as it is

end if
i = i + 1

end while
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Inspired by the sexual life of roosters with chickens, a novel natured-inspired optimization algorithm
called RA, whose complexity is O (n) (where n is the population size), is proposed. Initially, the rooster
size, which is the number of roosters that desire to mate, is determined. Then, the algorithm sustains its
procedure by creating the initial population, as other meta-heuristics do. In RA, roosters and their
offspring are accepted as the candidate solution for the problem.

After stochastically identifying roosters and chickens, the attractive chicken is determined among
chickens by looking at their fitness values which are acquired by the fitness function that needs to be
optimized. The age of a rooster, which means the number of existences of the rooster during its life cycle,
shows how effectively he dances. On the other hand, the fitness value also refers whether the rooster is
accomplished to find food resources. For instance, the rooster having better fitness value can present
adequate foods for a chicken.

If a rooster impresses the chicken by dancing or presenting food, he can mate with her. Otherwise, he
may try to mate by force, which is randomly determined. However, in this case, the chicken kills sperms of
the rooster by sprinkling them.

When the attractive chicken may have more than one male, the competition occurs among the sperms of
males. In this case, the sperm quality of males is identified by VSL value, which is obtained by the fitness
function. The offspring who has better VSL value than others gets a chance to fertilize an egg. If the chicken
has only one male, then his offspring fertilizes the egg.

Furthermore, if the chicken has fears about her life or she has a disease, then the offspring is mutated.
Random Mutation, which randomly select gene(s) by replacing any value within the range of corresponding
dimension(s), has been utilized for the mutation.

The process of RA is repeated until the termination criteria are met; either the optimum solution is found
or maximum number of generations are reached, shown in Algorithm 1.

3 Tests

3.1 Test Functions

In the field of meta-heuristics, researchers have generally employed benchmarks as test functions. On the
other hand, with the advancement of technology, the number of proposed algorithms in meta-heuristics has
increased; therefore, different types of functions has been needed to test them. To do that, researchers has
created new test functions by shifting, rotating, expanding and hybridizing the well-known benchmarks.

These functions are grouped into two classes; unimodal and multimodal. Unimodal class comprises
sensitive functions that accomplish to converge slowly to the global extremum. Multimodal class includes
functions having more than one local extremum.

In addition to utilizing thirteen well known benchmarks in the field of meta-heuristics [27,28], ten IEEE
CEC 2018 test functions [29] were also operated to test the performance of the compared algorithms, see
Tab. 1.

3.2 Statistical Tests

Hypothesis testing has been commonly used in order to infer the comparison of the algorithms [30].
However, the null hypothesis, H0, and the alternative hypothesis, H1, are supposed to be defined in order
to make inferences. The null hypothesis is a proposition that generally refers no differences between
compared algorithms. Conversely, the alternative hypothesis is an expression of the differences. In our case;

H0: There is no difference between compared algorithms

H1: There is difference between compared algorithms
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Moreover, the probability value of a statistical test, α, decides which hypothesis should be rejected. For
our test, α is accepted as 0.05.

In this paper, Friedman andWilcoxon Signed Rank tests were performed to demonstrate the significance
of the results. While IBM SPSS Statistics 22 was utilized to obtain the results of the Friedman test, the
signrank function of Matlab 2019a was used to get the results of the Wilcoxon Signed Rank test.

3.2.1 Friedman Test
The Friedman test, introduced by Friedman [31,32], is a non-parametric statistical test. It has been

utilized to specify differences in behaviour of more than one algorithm. In the Friedman test, test cases
are represented in rows and results of compared algorithms takes places in columns.

The test initiates its procedure by giving rank to each row based on the values of columns in the row,
then, it computes the total rank values for each column. The significance of the test is determined by X 2

(Chi-square) distribution with k-1 degrees of freedom (df) where k is the number of compared algorithms.
Appropriate X 2 values corresponding to df can be found in [33]. From the table in [33], expected

Table 1: Test functions, their classes and global values, respectively

Function Definition Class Global values

F1 Ackley Multimodal 0

F2 Booth Unimodal 0

F3 Branins Multimodal .3978

F4 Fifth Function of De Jong Multimodal .998

F5 Drop Wave Multimodal 0

F6 Easom Unimodal –1

F7 Goldstein-Price Unimodal 3

F8 Michalewicz Multimodal –1.8013

F9 Rastrigin Multimodal 0

F10 Rosenbrock’s Valley Unimodal 0

F11 Schubert Multimodal –210.482

F12 Schwefel Multimodal –837.9658

F13 Six Hump Camel Back Multimodal –1

F14 Shifted Sphere Function Unimodal –450

F15 Shifted Schwefel’s Problem 1.2 Unimodal –450

F16 Shifted Rotated High Conditioned Elliptic Function Unimodal –450

F17 Shifted Schwefel’s Problem 1.2 with Noise in Fitness Unimodal –450

F18 Schwefel’s Problem 2.6 with Global Optimum on Bounds Unimodal –310

F19 Shifted Rastrigin’s Function Multimodal –330

F20 Shifted Rotated Rastrigin’s Function Multimodal –330

F21 Schwefel’s Problem 2.13 Multimodal –460

F22 Expanded Extended Griewank’s + Rosenbrock’s Multimodal –130

F23 Expanded Rotated Extended Scaffe’s Multimodal –300
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X 2 = 11.07 since df = 5 and α = 0.05. If found X 2 value is greater than the expected one, then, we need to
reject the null hypothesis. Found X 2 value can be obtained by utilizing Eq. (1):

X 2
found ¼

12

n:k: k þ 1ð Þ �
X

R2
i � 3n: k þ 1ð Þ (1)

where k means number of columns, n refers number of rows and R2
i means sum of ranks.

3.2.2 Wilcoxon Signed Rank Test
Wilcoxon signed rank test is another non-parametric statistical test that has been used to state the

differences between two samples or algorithms [34]. As a common way, the test initially takes differences
between the results of the two algorithms whose sizes are N*1 (where N means the number of tests) in
order to obtain the difference vector. Then, it ranks to each row of the vector from 1 to N, i.e., min. value
is ranked 1. Afterwards, it computes Rþ and R� values of the difference vector. Based on the values, T
value of the test, min Rþ; R�ð Þ is determined. Thus, the probability value (p) of the test is computed by
utilizing the T value.

4 Results and Discussions

All algorithms were implemented by usingMatlab 2019a, except CS and GWO. TheMatlab codes of CS
and GWO were taken from [35] and [36] respectively.

The tests were repeated with 30 runs that have 30 different random seeds in order to minimize the effects
of randomization. The results were achieved by utilizing default parameter settings of algorithms. All
algorithms were analyzed where population sizes are equal to 50, 100 and 200. As expected, all
algorithms show their best performance when population size is 200. Therefore, population size is taken
as 200 throughout tests. Furthermore the number of iteration is accepted as 100. The results in the
following tables are acquired based on the best results of algorithms. On the other hand, rooster size,
which is an experimental value, was accepted as 4 during the tests.

4.1 Results of the Test Functions

According to Tab. 2, RA offers better performance than the compared algorithms, albeit with small
differences. In all basic benchmark functions (from F1-F13), RA offers the best performance in all cases.
Moreover, in IEEE CEC 2018 functions (except F14, F20 and F21), RA is either only the winner or there
is a tie between some of compared algorithms.

Table 2: The results of benchmarks (the better performances are highlighted)

Function SGA DE PSO CS GWO RA

F1 7.17323E-08 6.37213E-09 8.88178E-16 0.002783962 8.88178E-16 8.88178E-16

F2 2.49514E-09 0.072225393 0 5.97887E-08 1.42128E-06 0

F3 0.397887358 0.421523434 0.397887358 0.397887564 0.397891663 0.397887358

F4 0.998003838 0.998004606 0.998003838 0.998003839 0.998003839 0.998003838

F5 –0.995729297 –0.99999959 –1 –0.99962353 –1 –1

F6 –0.999997398 –0.97147606 –1 –0.98483282 –0.99999751 –1

F7 3.000018397 3.112127106 3 3.000002445 3.000002907 3

F8 –1.80130341 –1.84467615 –1.80130341 –1.80130336 –1.80129302 –1.80130341
(Continued)
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Moreover, PSO is the second algorithm that present the best performance. It achieves global values in all
basic benchmark functions. However, it is not as successful as RA in IEEE CEC 2018 functions.

Even though RA proved its effectiveness on the test functions, non-parametric statistical tests should be
applied in order to show the significance of obtained results.

4.2 Results of Friedman Test

It is obvious to clarify which algorithm is more successful by looking at Tab. 3. An algorithm having
minimum rank value means that the algorithm has better performance comparing to other. According to
Tab. 3, RA presents better performance in all test functions.

Table 2 (continued).

Function SGA DE PSO CS GWO RA

F9 0 2.27015E-10 0 0.000195412 0 0

F10 0.000153179 0.001154752 0 2.78322E-05 2.20208E-06 0

F11 –210.482294 –210.239015 –210.482294 –210.467487 –210.482281 –210.482294

F12 –837.9657278 –2.651E+15 –837.965774 –837.963581 –837.962243 –837.965774

F13 –1.03162845 –1.03162845 –1.03162845 –1.03162844 –1.03162841 –1.03162845

F14 –448.8252407 –449.548996 –449.999431 –448.992061 –449.826721 –449.994552

F15 –445.2118105 –449.402914 –449.947382 –441.037998 –449.924910 –449.975981

F16 –327.1640237 –251.947602 –212.876198 –398.758905 –398.758905 –446.467086

F17 –449.890517 –449.917623 –449.991860 –449.725902 –449.209686 –449.993037

F18 –309.9987051 –222.982043 –310 –310 –310 –310

F19 –319.325687 –329.485785 –329.98695 –324.770717 –328.574193 –329.998351

F20 –329.093457 –329.428306 –329.987779 –319.123109 –329.551886 –329.955300

F21 –458.478203 –459.605756 –459.947636 –459.681576 –458.540232 –459.768463

F22 –129.990875 –129.988147 –130 –129.978882 –129.999228 –130

F23 –299.902356 –299.919912 –299.979724 –299.951066 –300 –300

Table 3: Mean ranks of the algorithms (the better performance is highlighted)

Method Mean rank

SGA 4.24

DE 4.52

PSO 2.00

CS 4.65

GWO 3.72

RA 1.87
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In addition to having probability values that are less than α = 0.05, X 2
found value (54.9472295514512) is

also greater than the expected one in Tab. 4, which is 11.07. Thus, the null hypothesis must be rejected which
refers that “There is difference between compared algorithms”.

4.3 Results of Wilcoxon Signed Rank Test

p values describe the significant differences between the compared algorithms. These values must be
less than α = 0.05 to reject null hypothesis. Otherwise, it is required to accept it, which means that
compared algorithms have similarity in terms of performance.

Based on the results in Tab. 5, the performance of RA is only similar to the performance of PSO since the
p value is 0.08984375. On the other hand, CS and SGA behaves similarly in the terms of the performance.

5 Conclusions

In this paper, a novel nature-inspired optimization algorithm called RA has been introduced. The
algorithm is modelled by inspiring the sexual behaviour of roosters with chickens.

In order test its performance in 23 test functions (13 basic benchmarks, 10 IEEE CEC 2018), it was
compared with well-known algorithms; SGA, DE, PSO, CS and GWO. Furthermore, non-parametric
statistical tests, Friedman and Wilcoxon Signed Rank, were utilized to make sense of the obtained results.

To summarize all the test results that have been made, RA has presented successful results in both
unimodal and multimodal functions, thanks to its step that takes advantage of average and potentially
poor results. However, although PSO performed very close to RA, it was the second best method among
the compared methods.

On the other hand, the statistical results not only confirms the test results, but also approve that RA offers
the best performance comparing the other algorithms that were tested.

Table 4: Statistical values for the Friedman test

Statistical variant Value

X 2
found 54.9472295514512

Probability value 1.33840337036795E-10

Table 5: p values for the Wilcoxon test

Algorithm SGA DE PSO CS GWO RA

SGA 1 0.064822869 0.001507287 0.831401318 0.02842059 0.000120422

DE 1 0.010623171 0.008551984 0.017110154 0.001405252

PSO 1 0.000692174 0.008903385 0.08984375

CS 1 0.043450861 4.00996E-05

GWO 1 0.000624865

RA 1
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Considering the results that were acquired, the following remarks can be made:

� Besides to simple test functions, compelling test functions such as IEEE CEC’18 should be also used
to observe the performance of an algorithm.

� RA is accomplished in either basic or challenging (shifted, rotated, hybrid and expanded) functions.

� It does not exist an algorithm that solve all optimization problem, according to the NFL theorem. As
the performance of RA is reasonable, it can be considered as an alternate optimizer.

As a future work, testing the performance of RA in real world engineering optimization problems can be
recommended.
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