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Abstract: Much attention has been given to the Internet of Things (IoT) by citi-
zens, industries, governments, and universities for applications like smart build-
ings, environmental monitoring, health care and so on. With IoT, network
connectivity is facilitated between smart devices from anyplace and anytime.
IoT-based health monitoring systems are gaining popularity and acceptance for
continuous monitoring and detect health abnormalities from the data collected.
Electrocardiographic (ECG) signals are widely used for heart diseases detection.
A novel method has been proposed in this work for ECG monitoring using IoT
techniques. In this work, a two-stage approach is employed. In the first stage, a
routing protocol based on Dynamic Source Routing (DSR) and Routing by
Energy and Link quality (REL) for IoT healthcare platform is proposed for effi-
cient data collection, and in the second stage, classification of ECG for Arrhyth-
mia. Furthermore, this work has evaluated Support Vector Machine (SVM),
Artificial Neural Network (ANN), and Convolution Neural Networks (CNNs)-
based approach for ECG signals classification. Deep-ECG will use a deep CNN
to extract critical features and then compare through evaluation of simple and fast
distance functions in order to obtain an efficient classification of heart abnormal-
ities. For the identification of abnormal data, this work has proposed techniques
for the classification of ECG data, which has been obtained from mobile watch
users. For experimental verification of the proposed methods, the Beth Israel Hos-
pital (MIT/BIH) Arrhythmia and Massachusetts Institute of Technology (MIT)
Database was used for evaluation. Results confirm the presented method’s super-
ior performance with regards to the accuracy of classification. The CNN achieved
an accuracy of 91.92% and has a higher accuracy of 4.98% for the SVM and
2.68% for the ANN.

Keywords: Internet of things; electrocardiographic signals; dynamic source
routing; routing by energy and link quality; convolution neural networks

1 Introduction

The Internet of Things (IoT) is defined as the inter-communication between an extensive range of smart
devices like Personal Digital Assistants (PDAs), laptops, mobile phones, sensors devices, etc. According to a
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recent UK-based report, by 20220, the number of Internet-connected devices will presumably increase from
20 billion to 100 billion; of late, network technologies have seen a marked improvement [1]. Among the
IoT’s various areas of application, the most engaging ones are medical care and health care. The IoT’s
potentiality had led to the emergence of numerous medical applications like fitness programs, remote
health monitoring, elderly care, and chronic diseases. Yet another significant potential application was
conformity with therapy and medication at home as well as by health care personnel. Hence, numerous
medical equipment, sensors, imaging and diagnostic devices were regarded as smart devices that
constituted the IoT’s core. It was possible to minimize costs, enhance the user experience and quality of
life with IoT-based health care services. From the health care personnel’s viewpoint, the IoT could
employ remote provisions to decrease device downtime [2]. The Cartesian representation of the heart's
electrical potentialis referred to as an Electrocardiograph (ECG). ECG has been utilized to measure the
heartbeats’ regularity and rate, the chambers’ position and size. It has also been utilized to detect any
heart damage and examine the effects of heart regulatory devices or drugs. ECG devices with a varying
number of electrodes (3-12) were employed [3] for the signal’s acquisition. The ECG signal has a non-
stationary nature. Due to this, a cardiologist or a medical expert may fail to analyze the heart’s condition.
As per the World Health Organisation (WHO) [4], Cardiovascular Diseases (CVDs) were the chief reason
behind deaths worldwide. Out of all these deaths, Cardiac Arrhythmias are chief among CVDs. An
occurrence of a disturbance in the heart rate because of irregular electrical conduction or impulse
formation in the heart has been called an ‘Arrhythmia’.

The regular heartbeat would get disrupted, and also the normal heartbeat’s morphology could get
affected by this improper functioning of the heart. An arrhythmia’s [5] two key consequences are Ectopic
Beats (EB) and Bundle Branch Block Beats (BBBB). As the overall system’s foundation, the ECG
sensing network is required for the collection of physiological data from the user as well as this data’s
transmission via a wireless medium to the IoT cloud. The IoT-based ECG monitoring network
architecture is shown in Fig. 1; it primarily contains an ECG sensing system, the IoT cloud, and the GUI.
Wearable ECG sensors are often employed for continual monitoring, and these sensors have minimal
impact on the everyday life of a user. With these sensors, it is possible to record ECG data for a long
period of time. Afterward, the ECG signals would get analyzed through a series of processes like
amplification, filtering, and so on, for the signal quality’s improvement as well as for the fulfillment of
the wireless transmission’s [6] requisites.

The IoT cloud is made up of three distinct functional modules, namely, collection and transmission of
data, ECG analysis, and disease warning.

� Data collection: For the diagnosis of heart diseases, a substantial role is served by the ECG data. It is
collected using portable devices and transmitted to the cloud. Routing protocol plays an important
role in the efficient transmission of data.

� ECG analysis: For the detection of potential heart diseases, critical features are extracted from ECG
signals. Despite that, the ECG signal may experience noise introduction during data collection and
transmission procedures. This, in turn, has an adverse impact on the diagnosis accuracy. One of
the IoT cloud’s most critical functions is the capitalization of data. As a result, the IoT cloud
usually offers a data analysis platform to extract suitable data from the ECG signal.

� Disease warning: It is crucial for safeguarding patients from any injuries and provide a warning
system to facilitate medical attention.

The GUI’s responsibilities involve data management, easy access to the data and visualization [7].
Webpages and mobile apps are the two typical kinds of GUIs available to users for ECG data
visualization. Webpages are more convenient with regards to maintenance as well as upgrade, whereas a
mobile app is able to offer an immediate response to the user input. Feature extraction, feature selection,
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and classification are the major phases in the ECG heartbeat classification framework. The raw ECG signals’
pre-processing is essential for the minimization of various noises. Feature extraction is the initial step where
the ECG is processed to get features that can be used to identify Arrhythmia. Feature selection is the second
stage. Its objective is to select a relevant feature subset of ECG data that achieves better classification
accuracy performance and offers a substantial contribution to diagnosing numerous cardiac diseases. For
solving problems, one must translate the patterns into features that turn into the patterns’ condensed
representations with just the critical information [8]. An optimization problem is identified as optimizing
the feature set to maximize classification accuracy. Nowadays, research efforts have employed
optimization techniques on feature selection to optimize or reduce the number of features and eliminate
irrelevant, noisy, or redundant features.

Moreover, the inclusion of only key properties or features to the pattern will simplify and, thus, usually
makes the classification more accurate. For the classification of ECG data under the extracted features,
diverse types of classification techniques have been employed with the aid of Swarm Optimisation
Algorithms (SOAs). There is a re-sampling of the ECG beats after segmentation. ECG signals, which
represent the heartbeats, get classified into either abnormal beats (representing cardiac Arrhythmia) or
normal beats in the final classification step. This work has put forward the DSR and REL routing, the
wavelet feature extraction, the SVM, ANN, and CNN classifiers for IoT-based ECG signal classification.

The contributions of this work are:

� Proposed a deep learning method for efficient Arrhythmia classification.
� Framework for transmitting ECG signals efficiently and classifying ECG in an IoT-based platform.

� MIT-BIH dataset was experimentally used and obtained 91.92% accuracy.

The remainder of the investigation has been organized into the following sections. Section Two has
detailed the associated literary works. Section Three has elaborated on the multiple techniques employed
in work. Section Four has discussed the experimental outcomes, and Section Five has offered this work’s
conclusions.

Figure 1: Internet of things based electrocardiogram monitoring systems [6]
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2 Related Works

Kulkarni et al. [9] had proposed a wireless wearable ECG monitoring process on an IoT platform. This
proposed system was able to offer a high-quality ECG signal, long battery life, and integrate the
heterogeneous nodes of ECG sensors and applications. With this system, it was possible to monitor one
or many patients in a comparatively large covered area (like nursing homes, buildings, homes, and so
on). The system was made up of a careful choice set at algorithms, circuit solutions, and components.
The overall sensor performance is dependent on the whole sensor’s optimization. In contrast to other
systems proposed on the basis of a purposely designed front-end chip, the proposed ECG sensor could
offer much better performance with regard to noise and power usage.

Satija et al. [10] presented continuous cardiac health monitoring with signal quality-aware IoT-enabled
ECG telemetry system. This work’s key objectives were inclusive of a light-weight ECG SQA design as well
as development for automatic classification of the acquired ECG signal into either the abnormal class or the
normal class, and also a real-time implementation with the cloud server, Bluetooth, Android phone, Arduino,
and ECG sensors. The proposed framework was tested with both real-time ECG signals and the MIT-BIH
arrhythmia database, which had been recorded under various physical activities and the Physionet
challenge database. The proposed method has the potentiality for assessing the ECG signals’ clinical
acceptability to improve an unsupervised diagnosis system’s reliability and accuracy.

Thilagavathy et al. [11] had presented a Discrete Wavelet Transform (DWT) and SVM combination for
ECG analysis. This methodology had three steps: pre-processing, feature selection, and the ECG beats’
category identification. The DWT would be employed for signal pre-processing, de-noising as well as the
extraction of wavelet coefficients. Each ECG beats’ features were offered as the classifier’s inputs.
Among the various classifiers, the SVM could classify the input ECG into six different classes. The SVM
classifier had attained an average accuracy of 98.67% when it used the MIT-BIH database’s ECG signals.
HealthyPi V3 Kit was used to record the real-time ECG signals. These signals had accomplished an
average accuracy of 98.61% when tested with the classifier model.

Ihsanto et al. [12] had proposed Depthwise Separable Convolutional (DSC) NNs for the cardiac
arrhythmia categorization. The ECG classification generally had four stages: QRS detection, pre-
processing, feature extraction, and classification. The ECG classification was reduced to just two stages
with this proposed method: QRS detection and classification. While there was no requirement for the pre-
processing, feature extraction got incorporated into classification. To minimize the computational cost as
well as maintain the accuracy, there was the implementation of numerous methods like ensemble CNNs,
Batch Normalisation (BN), and All Convolutional Network (ACN). The MIT-BIH arrhythmia database
was utilized for the assessment of the proposed ensemble CNNs’ performance. The proposed algorithm
could classify the data into sixteen classes. In addition to that, the sensitivity was 99.03%, specificity was
99.94%, positive predictivity was 99.03%, and accuracy was 99.88%.

Using the Hilbert transform-based feature, Sahoo et al. [13] had made a presentation of five types of
arrhythmia beat. During pre-processing, wavelet transform was employed for the removal of the recorded
signal’s noise interference, while the Hilbert transform method was employed for the identification of
precise R-peaks. These features were fed to the SVM classifier for automatic classification of arrhythmia
beats. The proposed technique’s effectiveness was better compared to the published results; it could be
efficiently utilized in the ECG analysis.

Shaker et al. [14] had propounded a data-augmentation method that used Generative Adversarial
Networks (GANs) for the restoration of the balance in the dataset. Experimental outcomes demonstrated
that the imbalance in the original dataset augmentation with heartbeats produced by these proposed
techniques was more effective in the ECG classification’s performance improvement instead of the
utilization of the same techniques, which were only trained with the original dataset. In addition to that,
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augmentation of the heartbeats with GANs surpassed the performance of other well-known data
augmentation techniques. These experimental outcomes also surpassed many other ECG classification
techniques’ performances.

Li et al. [15] presented a deep learning method for cardiac arrhythmia classification in accordance with
deep Residual Network (ResNet). In this work, there was a 31-layer one-dimensional (1D) residual CNN’s
development. Furthermore, this work had proposed the usage of a combination of 2-lead ECG signals as well
as deep learning methods for automatic identification of the five different heartbeat types. For single-lead
ECG heartbeats, the average accuracy was 99.06%, sensitivity was 93.21%, and positive predictivity was
96.76%.

Atal et al. [16] used the optimization-based deep CNN to propose an automatic arrhythmia classification
strategy. The newly devised Bat-Rider optimization algorithm (BaROA) utilized the Multi-Objective Bat
Algorithm (MOBA) as well as the Rider Optimisation Algorithm (ROA). Initially, wavelet and Gabor
features were extracted. Eventually, the signals were fed to the BaROA-based DCNN classifier for
identification of the patient’s conditions as Arrhythmia and non-arrhythmia.

Li et al. [17] presented a method of fusing the heartbeats into a two-dimensional feature vector which is
processed by CNNs. The experiments proved that the proposed CNN was efficient in detecting arrhythmias
via automatic feature extraction. A framework of e-home health monitoring of cardiovascular disease was
presented.

Naz et al. [18] proposed deep learning approaches for detecting Arrhythmias. The ECG signals are
converted into images and fed as input to deep learning models(VGG-16,AlexNet and Inception-v3).
Deep features are extracted from different layers; transfer learning is performed to train the models. The
obtained features are concatenated, and the best are chosen using a heuristic entropy.

Survey-based on ECG monitoring process on IoT platform, feature extraction methods, optimization
methods and classification methods with ECG signals are presented. It is observed that works are
available for ECG classification, e-health frameworks are presented, but transmitting data is not
considered. In e-health applications, it is essential to have seamless communication. In this work, both
aspects that are ECG classification and transmitting of ECG data efficiently through a novel routing, are
presented.

3 Methodology

In this framework, DSR and REL routing were used for transmitting data. Wavelet feature extraction and
classifiers for classification of ECG. This section has discussions about the DSR as well as REL routing, the
wavelet feature extraction, and classifiers, which use methods like SVM, ANN, and CNN for IoT-based ECG
signal classification.

3.1 Dataset

The MIT–BIH Arrhythmia Database has been utilized in this work. Since 1980, this dataset of standard
test material has been employed in numerous researches works for the assessment of arrhythmia detection as
well as classifiers. Its compilation was based on the collection of ECG recordings from 47 subjects
(22 women and 25 men) aged between 23 to 89 years for 24 h [19]. A Del Mar Avionics model was used
for the ECG recordings’ acquisition. Afterward, a Del Mar Avionics model 660 playback unit was
utilized for each signal’s digitization. There was the selection of a digitization rate of 360 samples per
second per channel to utilize simple digital notch filters to remove the main frequency interference at
60 Hz. The entire database is a total of 84,615 items, excluding every record’s (subject’s) first five
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minutes. Since it is impossible to evaluate the global average RR interval, there is an exclusion of every
subject’s first five minutes.

3.2 Dynamic Source Routing (DSR) Protocol

Source routing forms the basis of the DSR protocol. There must be the cooperation of the network nodes
for packet forwarding. This, in turn, will facilitate the transmission of data packets between nodes over
multiple hops outside the transmission range. Each packet’s originator will determine an ordered list of
nodes for transmitting the data packets will traverse for arrival at the destination. Route discovery and
maintenance constitute the DSR protocol’s main key mechanisms [20].

When a new packet is originated by the source node, it assigns a “source route” in the header. The data
packet will traverse along this route to arrive at the destination. When commencing data transmission, the
source node will search its cache to find a route or commence a Route discovery. For the route
discovery’s initiation, a local broadcast packet with route request is transmitted from the source node. All
existing nodes within this particular node’s wireless transmission range will be in receipt of the route
request. A route reply is transmitted by these nodes if it finds a route in its cache. Upon the route reply
packet’s receipt, the source node will record the new source route in its cache. This newly discovered
route to send its packet is used.

Route maintenance [21] is the process that has the ability to identify any network topology variations in
such a way that it would not be able to deliver a data packet via a path due to a broken link along the path. In
DSR, all packet-transmitting node’s responsibility is to confirm that the data cantransmit over the link to the
next hop. In DSR, the routing decision is made on the basis of the minimum hop. Depiction of the minimum
hop-based routing decision is given in Fig. 2. While Node A will be the source, Node E will be the
destination. Through the mechanism of route discovery, the source will discover two paths: A−B−C–E
and A−D−E. The source node A will opt for path A−D−E due to its lesser number of hops. When a
routing decision is taken, the source node will begin packet transmission to the next hop’s position. Node
D will also transmit at full transmit power when it sends the packet towards the destination Node E.

3.3 A Routing Protocol Based on Energy and Link Quality (REL)

REL is popularly used for WSNs/IoT applications like smart cities, environmental monitoring, health
care as well as comfortable offices and homes. REL will employ the residual energy and link quality for
finding routes for enhancingthe system’s QoS support and reliability. In addition, it will include an event-
driven mechanism for the provision of load balancing and the avoidance of the early death of nodes [22].
In WSN communication, the links are generally erratic and frequently suffer from weak connectivity as
well as quality fluctuations. The links’ unreliability is partly because of the usage of low-powered radios,
which are quite susceptible to interference, noise, and multipath distortion. Thus, the efficiency of a route

A
B

D

C

E

Figure 2: Routing in dynamic source routing
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selection procedure is dependent on the correctness of the Link Quality to enhance its reliability. In general, a
single value of the link quality is assessed like LQI or RSSI. Though a single Link Quality Estimator (LQE)
value is just a representation of the value at a specific time and is unable to offer any extra information with
regards to the end-to-end link quality, hop count, as well as residual energy.

In the process of route discovery, the LQE representing cross-layer information is reliant. The nodes
should have the ability to recognize network environments, assess end-to-end link quality, and also have
some information of their neighbouring node’s residual energy. Moreover, prior to arrival at the
destination node, these nodes should assess the required number of hops for every potential route. In
accordance with this approach, the nodes should dynamically plan as well as adapt the routing selection
procedure and also execute appropriate decisions in order to ensure IoT applications’ energy efficiency as
well as QoS. In addition to that, since REL utilizes all the received packets for the LQI value’s
continuous analysis, it will have an opportunistic behaviour. Therefore, this solution will offer a more
accurate measurement of the link quality’s frequent updates for a given route. Unlike other schemes, the
proposal will evaluate routes using a given destination’s average of the LQI value. REL will store n
values of LQI for every destination and will evaluate the average LQI values instead of the individual
LQI values. There is a risk that the constant switching between available routes can result in an additional
delay as well as overhead. With the utilization of the LQI’s average values, it is possible to mitigate this
risk. Hence, upon utilization of WeakLinks, REL has less susceptibility to extensive variations in link quality.

The constraints of node hardware, as well as the quality difference of wireless links, pose a huge trial to
the provision of high service availability, particularly in WSN/IoT applications. In such applications,
methods to detect as well as minimize or resolve the problem of energy hole (a route’s congestion or
overutilization), which in turn results in the nodes’ premature deaths is essential. Therefore, routing
solutions should utilize load balancing mechanisms capable of diverting traffic in order to minimize
energy usage and also increase the QoS (low delay rate as well as packet loss).Utilization of multiple
paths for dividing/controlling traffic along different routes is the chief tactic for load balancing as well as
fault tolerance in WSNs/IoT applications. With the multiple routes’ utilization, nodes can achieve
balanced energy usage and improve throughput and reliability for data transmission.

REL will exploit a reactive method to identify routes on demand in order to minimize the overhead and
to enhance the scalability. The RREQ, as well as the RREP messages, are broadcasted during the route
discovery procedure. These messages will search for the available routes and also will aid in selecting the
route procedure by gathering information related to link quality as well as residual energy. Every received
RREP will represent an active route to the destination node. As per the REL design, storage of n possible
routes to a given destination node is possible.

3.4 Wavelet Transform Feature Extraction

Definition of the WT [23] of a signal f(x) is given below as Eq. (1):

Wsf ðxÞ ¼ f ðxÞ ��sðxÞ ¼ 1

s

Z þ1

�1
f ðtÞ� x� t

s

� �
dt (1)

In this equation, s will denote the scale factor. �sðxÞ = 1

s
�

x

s

� �
will be the dilation of a basic wavelet

Ψ(x) by the scale factor s. Suppose that s = 2j (j ∈ Z, Z is the integral set), then, the WT is referred to as
dyadic WT. Evaluation of the dyadic WT of a digital signal f(n) with Mallat algorithm can be given as
per the below Eqs. (2) and (3):
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S2j f ðnÞ ¼
X
k2Z

hkS2j�1 f ðn� 2j�1kÞ (2)

W2j f ðnÞ ¼
X
k2Z

gkS2j�1 f ðn� 2j�1kÞ (3)

These equations S2j will indicate a smoothing operator. S2j f ðnÞ = aj, aj will be the low-frequency
coefficients, which are the original signals’ approximation. The Discrete Wavelet Transform (DWT) is
efficient for analysing a presented pattern’s adaptive time-frequency decomposition. With multi-resolution
representation, just a small number of coefficients in the wavelet domain are needed for the signal
structure’s description. For signal analysis with WT, the selection of appropriate wavelet as well as the
number of decomposition levels is quite critical. The signal’s dominant frequency components form the
basis for the selection of the number of decomposition levels. The levels are picked in such a way that
the wavelet coefficients will retain those signal parts which have a good correlation with the signal’s
required frequencies.

3.5 Support Vector Machine (SVM) Classifier

The SVM is a popularly adopted classifier algorithm [24]. For data in the d-dimensional feature space X
with two classes of training vectors xi 2 <n; i ¼ 1;…:; l, and an indicator vector y 2 <l, such that yi ∈
{+1, −1}. An optimal hyperplane is mapped to separate the classes by the linear SVM classifier, that is,
to resolve the following optimization problem in Eqs. (4) & (5):

min
W ;b;n

1

2
wTwþ C

Xl

i¼l

ni (4)

subject to yiðwTfðxiÞ þ bÞ � 1� ni; ni � 0; i ¼ 1;…:; l (5)

Due to the vector w’s probable high dimensionality. Lagrange functional is used to reformulate the
above problem in order to resolve the below equivalent dual problem Eqs. (6) & (7):

min
a

1

2
aTyiyjKðxi; xjÞa� eTa (6)

subject to yTa ¼ 0; 0 � ai � C; i ¼ 1;…:; j (7)

Wherein Kðxi; xjÞ will indicate the kernel function [25] and is defined as per the below Eq. (8):

Kðxi; xjÞ ¼ ’ðxiÞT’ðxjÞ (8)

This work has employed the Gaussian Radial Basis Function (RBF), defined as Kðx; zÞ ¼ e�cjjx�zjj2 .

3.6 Artificial Neural Networks (ANN) Classifier

ANNisan interconnected set of artificial neurons that are the constituents of a neural network.
Interconnection of an input layer, a hidden layer as well as an output layer by modifiable weights will
constitute a simple three-layer neural network [26]. Popular ANN’s are the Multi-Layer Perceptron
(MLP). In general, for the classification of static patterns, a universal pattern classifier has been the MLP
with two hidden layers. To put it in another way, as per the input data clusters’ requirements, the
discriminant functions are able to take any shape. Furthermore, upon the weights’ proper normalization as
well as the output classes’ 0/1 normalization, the MLP can accomplish the maximum a posteriori
receiver’s performance [27].
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In general, the ANNs are trained using the Back Propagation (BP) algorithm. The BP rule will propagate
the errors through the network and also will permit the hidden Processing Elements (PEs) to adapt. The
ANN’s two key characteristics are its non-linear PEs that have a non-linearity which should be smooth
(the most extensively utilized ones being the hyperbolic tangent, the linear Tanh function, and the logistic
function); and its interconnectivity (neurons of layer connected to the subsequent layer). As the ANN has
been trained with error-correction learning, it would imply that there is a known desired system response.
This is usually the case in pattern recognition, as it has the input as well as the desired data labeled. The
process of error correction learning is based on the system response yiðnÞ at the ithPE in the nth iteration
and the expected outcome diðnÞ for a given input pattern, Eq. (9) will define an instantaneous error eiðnÞ
as below:

eiðnÞ ¼ diðnÞ � yiðnÞ (9)

With the utilization of the gradient descent learning theory, there is an adaptation of every weight in the
network through correction of the weight’s existing value with a term which is in proportion to the weight’s
existing input as well as error, that is, as per below Eq. (10):

wijðnþ 1Þ ¼ wijðnÞ þ gdiðnÞxjðnÞ (10)

As a gradient descent procedure, this algorithm is only able to utilize the local information and hence,
can get stuck in the local minima. In addition to that, this algorithm is inherently noisy as it uses a poor
estimate of the gradient and this, result in slow convergence. Momentum learning can improve the
straight gradient descent in such a way that a memory term is utilized to speed up as well as stabilize the
convergence [28].

3.7 Convolutional Neural Networks (CNN) Classifier

The CNN’s architecture is made up of convolution layers, max-pooling layers, Local Response
Normalization (LRN) layers, a fully connected layer as well, as a Soft-max layer. LRN allows for the
detection of high-frequency features with large activations in relation to their neighbourhood, and also
minimizes the large responses’ impact in a local neighbourhood. Hence, it can imitate the beneficial
neurobiological concept of lateral inhibition. Moreover, it will utilize dropout regularisation, which allows
for improvements in generalization as well as avoidance of co-adaptation through the random setting of
the activations’ fraction to zero. The network’s final layer is a Soft-max layer, which is employed for
CNN training as well as carrying out closed-set identifications. This layer’s output is an integer label that
is associated with the user’s identifier. When there is a training dataset that has instances relating to nu
users, the CNN’s output will be an integer value 2 ½1; 2;…:; nu�.

The input signal x is processed by the convolutional layers by its convolution with a bank of K filters f,
through the use of biases b. Therefore, an output signal y will be obtained in Eq. (11) as below:

x 2 RH�W�D; f 2 RH 0�W 0�D00
; y 2 RH 00�W 00�D00

(11)

wherein H will indicate the height, W will indicate the weight, and D will indicate the depth. In the
convolutional layer’s fundamental configuration, Eq. (12) will evaluate the output for every coordinate (i,
j, d) as:

yi00j00d00 ¼ bd00 þ
XH 0

i0¼1

XW 0

j0¼1

XD
d0¼1

fi0j0d � xi00þi0�1;j00þj0�1;d0;d00: (12)

For certain layers, it is essential to execute padding of the input signal x or a subsampling stride of the
output. To be specific, it will take into account top-bottom-left-right paddings (P�

h ;P
þ
h ;P

�
w ;P

þ
w ) and strides
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(Sh, Sw). For such cases, Eq. (13) will evaluate the output as below (in which x is implicitly expanded utilizing
zeros as required):

yi00j00d00 ¼ bd00 þ
XH 0

i0¼1

XW 0

j0¼1

XD
d0¼1

fi0j0d � xShði00 � 1Þ þ i0 � P�
w ; Swðj00 � 1Þ þ j0 � P�

w (13)

For the feature space’s reduction, the pooling layers will employ a max-pooling operator. The below
Eq. (14) is used by this operator to evaluate the maximum response in a H′ × W′ patch for every feature
channel:

yi00j00d ¼ max
1�i0�H 0;1�j0�W 0

xi00þi0�1;j00þj0�1;d0: (14)

In Eq. (15), the LRN layers will employ the below operator:

yijk ¼ xijk jþ a
X
t2GðkÞ

x2ijt

0
@

1
A

�b

(15)

Here, for every output channel k;GðkÞ 	 1;…::;D will be the related input channel set. In Deep-ECG,
all LRN layers will utilise the parameters D = 5, j = 1, a = 2 × 10−4 and b = 0.75.

A non-saturating activation function yi = max (0, xi) is utilised by the ReLu layers. The output of the

Softmax classifier will be evaluated as yj ¼ exjPn
i0¼1 e

xi
, in which n will denote the neuron’s number of

inputs. The empirical tuning of the size of the convolution kernels, the number of layers, stride as well as
max-pooling kernels is required.

4 Results and Discussion

In this section, DSR, REL, SVM, ANN, and CNN methods are used. Experiments are carried out using
500 to 3000 nodes and 3150 Left Bunch Bundle Block (L), 9200 Normal (N), and 2950 Right Bunch Bundle
Block (R). The results for IoT routing for average Packet Delivery Ratio (PDR) and average end-to-end delay
as shown in Tabs. 1 & 2 and Figs. 3 & 4. The ECG classification for accuracy, sensitivity, specificity, and f
measure is shown in Tabs. 3–6 and Figs. 5–8.

Table 1: Average packet delivery ratio for REL for varying number of devices

Number of devices DSR REL

500 0.7993 0.8667

1000 0.7601 0.8562

1500 0.7743 0.8392

2000 0.7035 0.7971

2500 0.6677 0.7256

3000 0.6254 0.6904
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From Fig. 3, it can be observed that the REL has a higher average PDR of 8.09% for 500 nodes, by
11.89% for 1000 nodes, by 8.04% for 1500 nodes, by 12.47% for 2000 number of nodes, by 8.31% for
2500 number of nodes and by 9.88% for 3000 number of nodes when compared with DSR respectively.
As the link quality is considered during the selection of the routes, the REL has a higher packet delivery ratio.
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Figure 3: Average packet delivery ratio for REL for varying number of devices

Table 2: Average end to end delay for REL for varying number of devices

Number of devices DSR REL

500 0.00089 0.0008

1000 0.00107 0.00097

1500 0.00223 0.00211

2000 0.00433 0.00407

2500 0.00742 0.00716

3000 0.01226 0.01134
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Figure 4: Average end to end delay for REL for varying number of devices
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From Fig. 4, it can be observed that the REL has a lower average end to end delay by 10.65% for
500 nodes, by 9.8% for 1000 number nodes, by 5.53% for 1500 number nodes, by 6.19% for
2000 number of nodes, by 3.56% for 2500 number of nodes and by 7.79% for 3000 number of nodes
when compared with DSR respectively. If the link quality is poor or if the energy is lower, the REL
ignores these paths and transmits data through optimal paths leading to lower end-to-end delay.

From Fig. 5, it can be seen that the CNN has higher accuracy by 4.98% for SVM and by 2.68% for ANN,
respectively. The effectiveness of the CNN is due to its capability of feature engineering; this is an added
advantage in improving classification accuracy.

Table 3: Accuracy for CNN in classifying arrhythmia

Accuracy

SVM 0.8745

ANN 0.8949

CNN 0.9192
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Figure 5: Accuracy for CNN

Table 4: Sensitivity for CNN in classifying arrhythmia

Sensitivity SVM ANN CNN

L 0.8546 0.8673 0.8962

N 0.9095 0.9282 0.944

R 0.7868 0.8207 0.8661
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From Fig. 6, it can be seen that the CNN has higher sensitivity by 4.75% & 3.27% for L beats, by 3.72%
& 1.68% for N beats, and by 9.59% & 5.38% for R beats when compared with SVM and ANN respectively.

From Fig. 7, it can be seen that the CNN has higher specificity by 3.88% & 1.89% for L beats, by 2.89%
& 1.74% for N beats, and by 1.28% & 0.78% for R beats when compared with SVM and ANN respectively.
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Figure 6: Sensitivity for CNN in classifying arrhythmia

Table 5: Specificity for CNN in classifying arrhythmia

Specificity SVM ANN CNN

L 0.9177 0.9362 0.9541

N 0.8957 0.9061 0.922

R 0.967 0.9718 0.9795
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Figure 7: Specificity for CNN in classifying arrhythmia
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From Fig. 8, it can be seen that the CNN has a higher f measure by 9.07%& 5.02% for L beats, by 2.68%
& 1.33% for N beats, and by 7.87% & 4.54% for R beats when compared with SVM and ANN respectively.

5 Conclusion

Classification is a well-known topic in healthcare and bioinformatics, specifically with regards to the
detection of Arrhythmia. Hence, abnormal heartbeats’ automatic recognition from a huge amount of ECG
data is a significant and crucial task. Wavelet transform has been utilized for signal pre-processing,
denoising, and extraction of the transform’s coefficients as features of every ECG beat used as the
classifier’s inputs. This work has used the DSR and REL protocols for routing. It is evident from the
experimental outcomes that, in comparison with the DSR, the REL has a higher average PDR by 8.09%
for 500 number nodes, by 11.89% for 1000 number nodes, by 8.04% for 1500 number of nodes, by
12.47% for 2000 number of nodes, by 8.31% for 2500 number of nodes, and by 9.88% for 3000 number
of nodes. For the classification of ECGs, this work has evaluated the SVM, the ANN, and the CNN
methods. The basic concept of SVMs is the identification of the optimal hyperplanes between different
classes’ data points. Deep-ECG will analyze sets of features extracted from ECG signals. A deep CNN is
used for the generation of a set of extracted features. The proposed deep-ECG system significantly
improves detection. The CNN has a higher accuracy of 4.98% for the SVM and 2.68% for the ANN.

The proposed method is evaluated using only the MIT-BIH dataset; it is required to evaluate the
algorithms using different datasets. The proposed IoT-enabled Arrhythmia monitoring system needs to be
implemented in real-time. An automatic alert system in real-time through IoT and mobile devices can be
designed. Though the proposed methods are efficient in classifying Arrhythmia using the MIT–BIH
Arrhythmia Database, it is required to explore the efficacy of the proposed methods with real-time data.
Investigations on noise removal, pre-processing of ECG need to be explored.

Table 6: F measure for CNN in classifying arrhythmia

F Measure SVM ANN CNN

L 0.7916 0.8243 0.8668

N 0.922 0.9346 0.9471

R 0.8219 0.8498 0.8893
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Figure 8: F measure for CNN in classifying arrhythmia
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