
Binary Multifold Encryption Technique for Complex Cloud Systems

N. Ansgar Mary1,* and T. Latha2

1Department of Information and Technology, St. Xavier’s Catholic College of Engineering, Tamil Nadu, 629001, India
2Department of Electronics and Communication Engineering, St. Xavier’s Catholic College of Engineering, Tamil Nadu,

629001, India
*Corresponding Author: N. Ansgar Mary. Email: ansgarmary123@gmail.com

Received: 06 August 2021; Accepted: 18 September 2021

Abstract: Data security is a major cloud computing issue due to different user
transactions in the system. The evolution of cryptography and cryptographic analy-
sis are regarded domains of current research. deoxyribo nucleic acid (DNA) cryp-
tography makes use of DNA as a sensing platform, which is then manipulated using
a variety of molecular methods. Many security mechanisms including knowledge-
based authentication, two-factor authentication, adaptive authentication, multifactor
authentication and single password authentication have been deployed. These cryp-
tographic techniques have been developed to ensure confidentiality, but most of
them are based on complex mathematical calculations and equations. In the pro-
posed approach, a novel and unique Hybrid helix scuttle-deoxy ribo nucleic acids
(HHS-DNA) encryption algorithm has been proposed which is inspired by DNA
cryptography and Helix scuttle. The proposed HHS-DNA is a type of multifold bin-
ary version of DNA (MF-BDNA). The major role of this paper is to present a multi-
fold HHS-DNA algorithm to encrypt the cloud data assuring more security with less
complexity. The experimentation is carried out and it reduces the encryption time,
cipher text size, and improves throughput. When compared with previous techni-
ques, there is a 45% improvement in throughput, 37% fast in encryption time,
54.67% cipher text size. The relevant experimental results and foregoing analysis
show that this method is of good robustness, stability, and security.

Keywords: Cryptography; cloud network; deoxy ribo nucleic acid (DNA);
encryption; security; cloud service provider (CSP)

1 Introduction

Data security is being the biggest roadblock to cloud computing since the data are complex and of varied
mode. Many security methods have been implemented to overcome this issue. Cryptography is particularly
advantageous since data may be viewed without authorization but not read. Before storing data in the cloud,
data owners must encrypt it. This ensures the confidentiality of sensitive information stored on public cloud
storage. There are several cryptographic approaches for ensuring secrecy. However, the majority of them rely
on complicated mathematical computations and ratios. Recently big data and cloud computing have been
used for secured data processing during the transmission of data to authorized persons. It can give more

This work is licensed under a Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

Computer Systems Science & Engineering
DOI:10.32604/csse.2022.022404

Article

echT PressScience

mailto:ansgarmary123@gmail.com
http://dx.doi.org/10.32604/csse.2022.022404
http://dx.doi.org/10.32604/csse.2022.022404

efficiency and more storage space to clients securely. Many investors and enterprises are willing to spend
their data on a cloud network. A recent report announced 76900 accounts are signing in to the Facebook in
a minute, 400360 videos are uploaded to YouTube in a minute, 7.2 million Google searches were updated
in a minute, 3.4 million Instagram posts are uploaded [1]. The data owner will upload the data into the
cloud network, where all the information from various services is stored. The owner has to encrypt the data
and finally, the encrypted data has been given to the cloud network [2]. The data uploaded for each minute
is 1.8 ZB, this storage has been provided by cloud service [3]. HHS-DNA is a symmetric key algorithm [4]
i.e., the same key is used for encryption as well as for decryption. The idea of this technique is based upon
DNA cryptographic technique [5]. According to the proposed scheme, if a data owner wants to upload the
data onto the cloud, he has to encrypt the data. Even if the cloud service providers are forced to reveal the
data, the data which has been encrypted cannot be read by unauthorized users. The traditional approaches
like DES [6], AES, Blowfish [7], RSA [8], DNA cryptography etc. are still in operation for the real-time
systems which are consuming enormous computing resources. So, it is required to develop a new
cryptographic technique [9] that generates a bridge between the existing and the new technology.

The Cloud computing network has a storage mechanism to store the data in a cloud platform. Cloud
computing networks consist of the data owner, data user, and mainly cloud data storage which is shown
in Fig. 1. Once the cloud receives the request from the data user, the encrypted data from the owner is
sent to the cloud for further processing.

When the user wants to accept the data, the user must have the Re-enc key. With the help of the Re-enc key
[10], the data user can decrypt the content and view the data. The recent framework demonstrates privacy
information of cloud networks and amplified input is given to the multi-fold cloud system. But the major
center of this paper is to examine a component of this demonstration which could be a novel Re-enc
symmetric key encryption method that has been utilized to encrypt/decrypt the [11] information. Asymmetric
encryption techniques employs long keys to ensure the security which is a major drawback of it. Recent
encryption techniques utilize more resources such as CPU time, storage, and power. Existing techniques need
two keys for encrypt and decrypt the data. Most of the existing algorithms mainly involves complex and
arduous numerical expressions. To overcome the hurdles existing in the prior research, the proposed HHS-
DNA is a good contender for key encryption. Since this research paper utilizes symmetric key algorithm, it is
easier for encrypting and decrypting large amount of data in lesser time. Compared with asymmetric
algorithms, symmetric key algorithms provide more security in cloud data over the network. The speed of
DNA cryptography is unremarkably 100 times high while compared with a computer. Also DNA needs lesser
storage and can be perform using low power. This paper suggests reasonable encryption, which achieves high
security over many attacks with the usage of low resources for encryption with less time complexity.

Section 2 progress with the review of the existing methodologies, its measures, and precise problem
statements present in each methodology has efficiently emphasized. system model is presented in Section
3. Section 4 explains the proposed cryptographic algorithm and Section 5 has the results and discussion

Figure 1: Cloud computing network

1200 CSSE, 2022, vol.42, no.3

obtained by simulating the algorithm. Section 6 concludes the paper along with the future research direction
of this paper.

2 Literature Survey

Encrypting the data before uploading it onto the cloud prevents unauthorized users from accessing the
data. A lot of encryption algorithms have been developed to secure data stored on the cloud. Hiding the
messages in an organism is more reversible and scalable compared with other DNA techniques. Tacking
of message is negligible using [12] technique, it is more suitable for secret military information. DNA
cryptography-based encryption algorithm has been used in [13]. It generates encoding tables randomly
which enables the system to become more secure. Using this special encoding technique, the plaintext is
converted into a 7-bit character and finally a 5-bit character. The same plaintext provides different cipher
text each time; hence it is a more flexible and reliable technique. The multi-fold symmetric DNA
encryption key [14] enables the encryption process to transpire on the client side. The result was
compared with the previous technique to prove the function of the symmetric key.

Later investigations [15,16] demonstrate that some hidden function is established for DNA. The first
research on DNA hiding was achieved in 1997, in which “June 6 night: Normandy” was successfully
hidden. It was accomplished by encoding the secret message by substituting three successive characters
for one value. For example, Ä was represented as CGE”. Hence, a hidden secret may utilize keys as
groundwork’s of PCR amplification to crack DNA microdots. At later repetitive codes are used to hide
the secret message. RNA nucleotides have four distinctive sorts of nucleotides: adenine (A), guanine (G),
cytosine (C), and uracil (U). Therefore, there are 4 = 64 distinctive combinations, with almost twenty
essential amino acids.

The multi-fold symmetric-key cryptography technique is based upon DNA cryptography [17]. A
consistent view about both data security concerns and privacy issues presented in the survey that are
faced by clients in cloud storage environments has been carried out [18]. Further to study the security in
a cloud network, Secure Hidden Layer (SHL) and Application Programming Interface (API) for data
encryption explained in [19]. The SHL is consisting of two major modules (i) Key Management Server
(KMS) and (ii) Share Holder Server (SHS) which is used for storing and sharing cryptographic keys. A
server-side encryption algorithm, has been employed which is based on the asymmetric algorithm (RSA
and CRT) for providing end-to-end security of multimedia data. A novel DNA-based data encryption
scheme was introduced in [20] for the cloud computing environment. Here, a 1024-bit secret key is
generated based on DNA computing, user’s attributes and Media Access Control (MAC) address of the
user, and decimal encoding rule. American Standard Code for Information Interchange (ASCII) value,
DNA bases, and complementary rule are used to generate the secret key that enables the system to protect
against many security attacks.

A data security based strategy through DNA sequence by the virtue of Steganography has been
employed by Raniyah Wazirali and Zenon Chaczko (2016). A new data concealing method based on
DNA characteristics has been devised in the research. The encrypted image was represented by a DNA
helix. Following, that DNA matrix was transformed to a QR (Quick Response) form, which has a wide
range of applications. In addition, the article offers suggestions for selecting the best QR sites in order to
get the rightmost position. A novel genetic algorithm-based model has been built [21]. Suyel Namasudra
et al. (2017) have established a DNA based approach to overcome the time complexity in terms of data
security. A lengthy 512-bit DNA based novel sequence has successfully utilized to improve data security,
and it is protected from collision attacks, internal attacks, and other types of attacks. The suggested
scheme is assessed in terms of both theoretical and experimental findings, which demonstrate its
superiority to current schemes. In the future, an authorization mechanism might be implemented to

CSSE, 2022, vol.42, no.3 1201

improve security towards cybercriminals or bad users [22]. Chirakkarottu and Mathew [23] recommended a
encryption method to encrypt the medical images. This paper mainly focused on providing security without
minding the storage visual aspect. The images are initially re-arranged randomly and then DNA encrypt the
images. Though the method provide security, the execution time is high. Balaraju and Rao [24] implemented
Secure Hadoop Cluster using DNA Cryptography (SHCDNA) for securing data as a individual security that
keeps the authenticated data in encrypted form. Although, SHCDNA reduces computations encryption of
metadata is still questionable which is to be enhanced. Das et al. [25] explained the cryptography
algorithm DNA in diverse facets like details about input and outputs and their nature. Yet a detailed
implementation results are missing.

Based on the above researches reviewed, it is clear that the asymmetric key encryption algorithms take
larger execution time. Moreover, the keys are larger and more complex for asymmetric encryption algorithm
when compared to the symmetric encryption. Furthermore, the major drawbacks of existing techniques
includes more power consumption, high storage and longer execution time. Hence, this paper presented
an HHS-DNA to overcome the aforementioned hurdles. The subsequent Section 3 copes with the system
model and structure.

3 System Model

The system model has five components such as Third-Party Examiner (TPE), Data owner (DO), Data
User (DU), Trusted Privilege (TP), Cloud Service Provider (CSP). The system model for the proposed
methodology is shown in Fig. 2.

The major application of the proposed methodology is to provide security for the data owner side. The
data owner is responsible for making a key index and data accessing policy. Trusted privilege duty is
updating, canceling and distributing the keys for the Data holder and Cloud Service Provider. The data
holder is the entity that can outsource the data files. If the data holder has the key to satisfy the terms and
policies, it will outsource the data files. CSP has two semi-honest entities such as Storage-CSP and
decryption-CSP for storage and qualified decryption of cipher text respectively. When data outsourced
requires, it updates its cipher text. The result is checked by a third party examiner either matched or not.

Figure 2: Cloud system model

1202 CSSE, 2022, vol.42, no.3

3.1 Trusted Privilege (TP) Set Up

The inputs of TP are ‘i’ and outputs are private R encrypt key (Rpi) and master R encrypt key is (Rmi),
explained in this section (input k: output Rpi, Rmi).

3.1.1 R-Key
It takes a user’s role roleuias input, and returns a role key rkeyj, rkeyj ¼ roleui :rolekey. The specific user

ui is associated with the role key rkeyj. Upon receiving an authorization request with the user’s role, it returns
the role key rkeyj. Each role is associated with a unique role key and has the corresponding privilege.

3.1.2 Encryption
The user executes the algorithm to encrypt the data blocks with the convergent key. It takes a set of file blocks

{bi}i∈[1,n] as input, and returns the cipher text Cm = {Pm + KA × PB}. The user runs the hash over level blocks
{bi}i∈[1,n] to obtain the convergent key{ki}i∈[1,n], ki = h(bi). Then, the user symmetrically encrypts the blocks with
the convergent public key, PB = KB × M to obtain the cipher text Cm = {Pm + KA × PB}.

The subsequent section deals with the comprehensive emphasize of the proposed system and functions.

4 Proposed Methodology

The proposed methodology is based on three levels as user level, security level, cloud storage level
which are shown in Fig. 3. At the user level, encryption key generation and encryption processes have
been done. At the security level, encrypted data has been uploaded to the cloud and the encryption
process has been done based on key level management. At the same time, the receiver receives the
encrypted data along with key management. The receiver decrypts the data based on their requirement.

4.1 User Level

At the data user level, the data is transferred with the correct key for the authentication process. The key
selection is processed based on node selection and Re-enc key processing. For node selection, we define
three parameters as hold, children, and grade for TP. In between TP and DH, many nodes are present. So,
we have to select the best node for the transmission of keys over the network. In holder stores the
parameters of the nodes which is defined as V= {v1|v2} (left to right index). Children nodes contain child
node f, corresponding nodes such as left, right, and middle nodes. The grade represents the number of
elements present in the nodes. If grade = 2 means, it will save 2 elements, and order 3 saves 3 elements.

Figure 3: Different cloud levels

CSSE, 2022, vol.42, no.3 1203

Algorithm 1: Check Zk

Input: Correspondent node Zk

Output: inhold (Zk), grade (Zk)

1: obtain grade (Zk)

2. if (grade (Zk)=2) then

3. get inhold (Zk)={zt||zt+1}

4. return inhold (Zk) and grade (Zk)

5. end if

2. if (grade (Zk)=3) then

3. get inhold (Zk)={zt||zt+1||zt+2}

4. return inhold (Zk) and grade (Zk)

5. end if

Step 1: Trusted authority gets in hold and grade of current nodes between the networks.

Step 2: if (grade (Zk) = 2) then trusted privilege checks the node value with xi; xiþ1 of node Xi.

Step 3: if (grade (Zk) = 3) then trusted privilege checks the node value with xi; xiþ1; xiþ2 of node Xi.

Step 4: These steps are continued until the child node Zk is obtained. From algorithm. 1 the Trusted
privilege gets grade = 2, then, trusted privilege has two nodes such as {zt||zt+1} and returns inhold (Zk),
grade (Zk)

Step 5: From algorithm. 1, whether Trusted Privilege (TP) gets grade = 3, then, TP had three nodes such
as {zt||zt+1||zt+2} and returns inhold (Zk), grade (Zk).

Re-enc key: Keys are classified as private Re-enc key and master Re-enc keys that are generated for
public parameters. Rpi and Rmi are the keys that are used for accessing the Data Holder (DH) from
Trusted Privilege (TP). Model description algorithm for key generation is described in algorithm 2. User
means token value or h(h(f)) function. In each process, a specific user token is uploaded and
corresponding key is generated by rekeyj ¼ aspectui :aspectkey formula. Each user generates an authorized
request. After the request is received, TP checks the node zk for Re enc key. Each grade has unique keys
for different TP. User aspect aspectui is given to Re enc key for key generation. Initially, aspectui is used
instead of Upload or download. aspectkey is a constant key generated by each node zk. Constant key and
aspect value of user is multiplied and obtained a rekeyj.

Algorithm 2: Re-enc key

Input: Users aspect aspectui
Output: rekeyj ¼ aspectui :aspectkey

1. user ui = token = h(h(f))

2. Upload specific user token aspect =aspectui
3. authorized request from user’s aspect

4. After receive the request, TP checks the node

zk for Re-enc key.

5. Each grade has unique keys for different TP.

1204 CSSE, 2022, vol.42, no.3

4.2 Security Level

The implementation of the encryption process was developed by two encoding tables, the 14-bit
encryption key and number N. This encryption process is more dynamic and depends on the n value.
Based on n values, the value in the tables is shifted. Even though the intermediate persons have the
access to encoding tables, they can't access the data. First table will move the data continuously until it
stops. First table will keep on moving, so it is unbreakable.

After shifting the table values, the data owner changes the plain text into a binary sequence. If the
intruder has access, they can decrypt the sequence. It is a secured technique compared with the previous
technique. After the conversion, the binary sequence is converted into encryption data using Tab. 1.
Finally, the cipher text is obtained using an encryption table, and the original cipher data is obtained
using the table. On the receiver side, if the user has the key to access the data, the user can perform the
decryption process based on a random number N.

The proposed methodology uses 14-bit data for encryption before using 14 bits it generates a 7-bit
encryption key for data processing. It is derived from the first bit of the encryption key. Further, it
improves the proposed technique; hence multi-fold cryptography methodology is accomplished.

4.2.1 Multi-Fold Encryption
Proposed encryption is a client-based encryption process, hence there is no encryption process in the

cloud. The encryption data will be stored in the cloud while the Input is 14 bits of data. The plain text is
converted into a binary sequence. When the plaintext is entered into a table, the text values are shuffled.
The shuffled 14 bits (input) are generated. If the initial bit is 1, then the odd values are extracted,

Table 1: Final cryptography code

000000-F 000010-O 000100-c 000110-+

001000-g 001010-t 001100-W 001110-N

010000-Z 010010-X 010100-y 010110-v

011000-I 011010-3 011100-6 011110-R

100000-r 100010-V 100100-G 100110-8

101000-l 101010-7 101100-0 101110-B

110000-C 110010-J 110100-u 110110-4

111000-j 111010-l 111100-z 111110-x

000001-S 000011-a 000101-P 000111-U

001001-b 001011-i 001101-k 001111-2

010001-L 010011-M 010101-5 010111-/

011001-w 011011-s 011101-T 011111-H

100001-Q 100011-Y 100101-e 100111-p

101001-o 101011-h 101101-q 101111-E

110001-A 110011-D 110101-K 110111-f

111001-m 111011-n 111101-9 111111-d

CSSE, 2022, vol.42, no.3 1205

otherwise even bits are extracted. If the initial bit is 0, the even values of the bits are extracted. After the
extraction process, the 7-bit key is an original key, which is processed for further operation. Then XOR
operation is performed between 7-bit actual key with plaintext. The XOR-operated bits are divided into
several blocks and each block has 7 bits. The position of each bit is calculated. The bits are divided into
two halves, left half and right half. These two halves are interchanged and the resulting bit sequence is
converted into cipher text characters which are represented in Tab. 1.

Algorithm 3: Multifold Encryption Algorithm

Start

Input: The plain text

Random Number N

1. If (N≠ 0)

Shuffle the plaintext values.

N value decrement

2. End

3. Plaintext is converted into 7 bits key

4. Input the 14-bit binary value

5. If (initial bit = 0)

Extract the even binary value

6. Else

Extract odd binary value

7. XOR Operation for 7 bits key with extracted key (7bit)

8. Find position of each block in i-th bit

9. Substitute each block with the block located at (127-i) the position

10. Partition the binary bits into two halves

11. Left half is first part, right half is second part

12. Interchange the two halves (left and right)

13. Divide each binary bit into blocks, each block contains 6 bits

14. If (Resulting is not divided equal)

Add padding at last

15. After the partition, cipher text is applied according to Tab. 1.

4.2.2 Multi-Fold Decryption
The decryption process is performed on the user side. If the user has access only to decrypt the data, they

can access the data alone. For authentication, the Re-enc key is transmitted to the data user. If the user has this
key on the client-side, the decryption operation will be performed. The data from the cloud is in the encrypted
format, it has to be decrypted. Hence the user must have the Re-enc key, N random number, and access rights.
The values in Tab. 1 are shuffled according to cipher text, finally, a binary bit sequence is obtained. The
obtained binary sequence is further processed to obtain the original text with the help of Tab. 1. Binary
sequences from First table is divided into two halves, right half and left half. The two halves are

1206 CSSE, 2022, vol.42, no.3

interchanged. Finally, the binary bits are divided into seven blocks. Each block is replaced with 127bits. The
resultant binary sequence is XOR with an actual 7-bit key. The binary sequence is processed and the plaintext
is retrieved from a binary sequence. Multi-fold Decryption algorithm is shown below,

Algorithm 4: Multifold Decryption Algorithm

Start

Input: Cipher text

Random Number N

Actual key

1. Partition the binary bits into two halves

2. Interchange the two halves (left and right)

3. Divide each binary bit into seven blocks, each block contains 6 bits

4. Substitute each block with the block located at (127-i) th position in Tab. 1

5. Find position of each block in i-th bit

6. XOR Operation for 7-bit actual key with extracted key (7bit)

7. If (initial bit-=0)

Extract the even binary value

8. Else

Extract odd binary value

9. Generate plaintext

4.3 Cloud Storage Level

The cloud storage level has a storage mechanism to store the data in the cloud platform. A Cloud interface
is used to upload the data to a cloud storage system. When a user wants to accept the data, the user must have
the Re-enc key. With the help of the Re-enc key, data requests from the cloud and encryption will be processed
by the security framework. The verification and analysis has been carried out in the following section.

5 Verification and Analysis

For searching and verification Index In, user token (ωui) is used, while output access rights for decrypt
the data. For (1 < i < n), many users have the right to access, hence i is defined as 1 < i < n, where n is the last
user. If (xui ¼ x0

ui), the user has access rights, otherwise the user has the right to decline the access request.
Fig. 4 shows the signature-based verification scheme and search methodology.

Figure 4: Signature-based verification theme and search methodology

CSSE, 2022, vol.42, no.3 1207

TP: The attribute authority (TP) takes input as the security algorithm β, and then it returns the master
secret key MSK and the public parameter PK.

Extract: The AA enters the master secret key MSK, the public parameter PK, and a signing predicate Γ
as input, this algorithm outputs the partial signing key psk and the user signing key usk.

Server: The server takes the partial signing key psk, the public parameter PK as an attribute set S and the
message m as input, and returns the partial signature γ′ to the signer.

Signer (Data Signer): This algorithm takes input as the user signing key usk, the partial signature γ′, the
attribute set S, the message m and the public parameter PK, and then the signer computes and outputs the
signature €.

Transform: The verifier randomly selects the Transferred signature key tk, and inputs the signature σ and
the public parameter PK. This algorithm outputs the transformed signature €̂.

Server: This algorithm takes input as the transformed signature € and the public parameter PK and
returns the intermediate signature €̂.

Verifier: The verifier takes input as the intermediate signature €̂, the transformation key tk and the public
parameter PK, then this algorithm outputs true or false.

5.1 Configuration

TP extracts the user signing key and the public parameter (PP) for generating partial signing key and user
signing key. A clipping algorithm can be performed to generate partial signing and user signing key. The
server takes input as a partial signing key, attribution set, public parameter as input, and produced output
as a partial signature. Data user takes partial signature, attribution set, and public parameter and message
data as input and produces original signature for verification. Verifier randomly selects the transformation
key tk, attribution set and public parameter to generate the transferred signature key. The server takes a
transferred signature key, attribution set and public parameter for generating intermediate signature key €̂.
Verifier takes the transferred signature key and an intermediate signature key as input and this algorithm
returns true or false.

5.2 Clipping Algorithm

This algorithm is used to generate a partial signing key and user signing key. The algorithm is explained
with LSSS structure (D,ω)

1) Define an LSSS matrix M with size nr × nc. For each row k ∈ [1, nr] in M, select a labeling function
(k) ω∈VP, which corresponding to an attribute in UA.

2) Vector v⃗ = {ρ1, v1, …, vn}. Compute; ’xðkÞ ¼ Dk
�!

vt
! . Where ~D denotes the k-th row of the

matrix D.
3) TP computes fk ¼ m’xðkÞ

Similarly, AA calculates fe ¼ mq1ðr0:reÞxe and f 0e ¼ mxe . Hence partial signature key under the server is
expressed as PK = ffk ; f 0k ; f

00
k gk2½1;nr�. For user key UK = ffe; f 0eg.

5.2.1 Signing
Partial signature produces with the help of message d, and attribution set S which satisfies (D, ω). Define

K={k}p(k)∈S, select set of constant
P
k2K

lk’xðkÞ ¼ 1:

Partial signature after an attribution set S is expressed as c0 ¼ fc00; c01; c02; dg.

1208 CSSE, 2022, vol.42, no.3

5.2.2 User Signer
This algorithm is performed after the reception of partial sign from the server, γ′. The signer calculates,

c0 ¼ c00:fe:ðre; roÞx
0
e :HðdÞ, c1 ¼ c01:g

x0e and c2 ¼ c02:g.

The signer output the signature such as γ = {γ0, γ1, γ2, d} of message d, with attribution set S.

The signature γ is converted into the transferred signature.

Randomly select transferred key tEVp

Compute bc0 ¼ ct0 and bc1 ¼ ct1
Transferred signature ĉ ¼ fbc0; bc1; dg

5.2.3 Intermediate Key

This algorithm is designed to delegate the server for heavy computations of verification. The server
performs the following computations and obtains the intermediate key č1

ec1 ¼
eðec0; mÞ

eðec1; r0
Q

ieS riÞ
(1)

5.2.4 Verification
After receiving an intermediate key from the server, the signature verification is processed.

First it checks,

ec2 ¼ eðct2; HðdÞÞ:V tÞ (2)

Check whether the equation ec2 ¼ ec1
If bc2 ¼ bc1 then the signature is valid and true otherwise the signature is invalid or false. In this way, the

authentication process is accomplished with the SKVS algorithm.

5.3 Analysis of SKVS

For SKVS, two parameters are needed which are the public parameter and master key. The input of the
first setup is security parameter β and multiplicative group such as M, MT with prime number is taken as
output.

5.3.1 Set Up
Bilinear pairing: M ×M =MT. The multiplicative group (M) of integers modulo n is the group under

multiplication of the invertible elements. Where ρ1, ρ2 are the parameter which is used for security purpose.

Algorithm 5: Verification & Search

Input: Index In, user token (ωui)

Output = Access Accept (AA)

1: user ui = token = h(h(f))

ec1 ¼
eðec0; mÞ

eðec1; r0
Q

ieS ri

ec2 ¼ eðct2; HðdÞÞ:V tÞ
2. if (bc2 ¼ bc1)

(Continued)

CSSE, 2022, vol.42, no.3 1209

3. user has access rights

4. User hold the state

5. else

6. decline the access request

7. return

Steps:

Step.1. Randomly choose r0, uA0, uA1,…, uAn from G and collision resistance has function is defined as

H(d) = uA0
Qn
j¼1

uAd½j�
j , d[j] is j th bit of data (d).

Step. 2. Set the attributes set as A = {1, 2… t}, for each attribute i ∈ A, r ∈ M.

Step. 3. Set additional attributes (Ω), attribution set denoted as r ∈ Ω.

Step. 4. Randomly select some parameter (ρ1, ρ2), M∈m, and calculate V ¼ eðm; mÞq1þ q2

Public parameter = {m, e,M,MT,H, V, r0, u0, u1,…, un}, where master key is expressed as MK={ρ1, ρ2}.

5.3.2 File Corruption Check
Initialize – Start Holder, and Call TPA

Holder – file ids and Hash values

TPA – Log in Cloud

File id 1: number of files File

Check files id and reference id

If (file id)

H = Check file has value

K=user given hash value of file

If (H==K)

Send (the file is ok)

Else

If (H≠K)

Send (File is corrupted)

End

TPA-Next File-User

Section 4 comprises the result and discussion of the proposed methodology.

6 Result and Discussion

In the result section, the proposed methodology is compared with the previous technique based on
experimental and theoretical aspects. Computational cost and storage overhead are the parameters that are
used to calculate the proposed methodology. We have compared and evaluated symmetric algorithms for
different encryption and encoding techniques and came up with the conclusion that the recent encryption
techniques utilize more resources such as CPU time, storage, and power. Also, HHS-DNA is a good

1210 CSSE, 2022, vol.42, no.3

contender for key encryption. The proposed encryption achieves high security over many attacks and usage
of low resources for encryption.

6.1 Encryption Time

Encryption time is defined as the time required to convert plaintext into cipher text. The efficiency of the
encryption technique is evaluated based on encryption time. If the plaintext size is large, then encryption time
will also increase. At the plaintext size of 5Kb, encryption time is increased by 21%. At the plaintext size of
30 kb, the encryption time will also increase to 56.78%. The encryption time calculated using different
algorithms is shown in Fig. 5.

Whenever the number of plaintexts increases, the cipher text will also increase linearly. When compared
to the proposed method with BDNA, the cipher text is decreased to 9% at 5Kb of plaintext while compared
with AES cipher text is reduced to 15.5%. When compared to the proposed method with DES, the cipher text
is decreased to 7.45% at 5Kb of plaintext while compared with DNA cipher text is reduced to 5.5%. Fig. 6
shows the performance of plaintext vs. cipher text.

6.2 Throughput

Based upon the recorded encryption time, the throughput for the proposed and the existing techniques
(BDNA, AES, Bf, DES) have been calculated using the formula,

Throughput ¼ Plaintext size

Encryption Time
(3)

Figure 5: Comparison of encryption time with the vs. plaintext (Kb)

Figure 6: Cipher text (Kb) vs. plain text (Kb)

CSSE, 2022, vol.42, no.3 1211

The throughput of HHS-DNA is higher than all the other techniques which are shown in Fig. 7. Hence, it
can be concluded that the proposed method performs better than other symmetric key algorithms. Higher
throughput gives better performance.

From the above results, it is obvious that the proposed HHS-DNA encryption algorithm outperforms
other algorithms. The proposed algorithm has high throughput which indicates that the HHS-DNA has
high performance efficiency than the other methods. Likewise, higher throughput symbolizes the
reduction of power consumption, since throughput is inversely proportional to power consumption.
Besides, the lesser encryption time determines that HHS-DNA’s speed in encrypting the given data.

7 Conclusion

In the proposed approach, a novel and unique Hybrid Helix Scuttle - Deoxyribo nucleic Acids (HHS-
DNA) encryption algorithm have been proposed. HHS-DNA encryption reduces the encryption time, cipher
text size and improves the throughput. The reduction of time complexity and improved data security is
comprehended in the proposed strategy. The simulation contrasts with the proposed algorithm, DNA, and
other previous techniques. When compared with previous techniques, there is a 45% improvement in
throughput, 37% in encryption time, 54.67% cipher text size. Simulation outputs showed that the
proposed HHS-DNA technique is a proficient scheme for encrypting the data in the cloud and improving
data security. The relevant experimental results and foregoing analysis show that this method is of good
robustness, stability, and security. The performance measures of the proposed scheme are correlated with
the prior art techniques and acquired a performance improvement of 0.9% to 0.99%. Future research will
be focused on reducing CPU processing time and CPU workload.

Acknowledgement: The authors would like to thank Anna University and also we like to thank Anonymous
reviewers for their so-called insights.

Funding Statement: The authors received no specific funding for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] J. Xu, E. C. Chang and J. Zhou, “Weak leakage-resilient client-side deduplication of encrypted data in cloud

storage,” in Proc. ACM SIGSAC, IEEE, Hangzhou, China, pp. 195–206, 2013.

[2] J. Xiong, Y. Zhang, S. Tang, X. Liu and Z. Yao, “Secure encrypted data with authorized deduplication in cloud,”
IEEE Access, vol. 7, no. 2, pp. 75090–75104, 2019.

Figure 7: Throughput

1212 CSSE, 2022, vol.42, no.3

[3] Z. Yan, L. Zhang, W. Ding and Q. Zheng, “Heterogeneous data storage management with deduplication in cloud
computing,” IEEE Transactions on Big Data, vol. 5, no. 3, pp. 393–407, 2019.

[4] S. Wang, Y. Wang and Y. Zhang, “Block chain-based fair payment protocol for deduplication cloud storage
system,” IEEE Access, vol. 7, pp. 127662–127668, 2019.

[5] Y. Zhao, Y. Li, Q. Mu, B. Yang and Y. Yu, “Block chain based fair payment with reputation for reliable cyber
physical systems,” IEEE Access, vol. 6, no. 8, pp. 12295–12303, 2018.

[6] H. Li, M. Dong, X. Liao and H. Jin, “Deduplication-based energy efficient storage system in cloud environment,”
the Computer Journal, vol. 58, no. 6, pp. 1373–1383, 2015.

[7] J. Li, J. Li, D. Xie and Z. Cai, “Secure auditing and deduplicating data in cloud,” IEEE Transactions on
Computers, vol. 65, no. 8, pp. 2386–2396, 2015.

[8] B. Mao, H. Jiang, S. Wu and L. Tian, “Leveraging data deduplication to improve the performance of primary
storage systems in the cloud,” IEEE Transactions on Computers, vol. 65, no. 6, pp. 1775–1788, 2016.

[9] J. Hur, D. Koo, Y. Shin and K. Kang, “Secure data deduplication with dynamic ownership management in cloud
storage,” IEEE Transactions on Knowledge and Data Engineering, vol. 8, no. 11, pp. 3113–3125, 2016.

[10] T. Jiang, X. Chen, Q. Wu, J. Ma, W. Susilo et al., “Secure and efficient cloud data deduplication with randomized
tag,” IEEE Transactions on Information Forensics and Security, vol. 12, no. 3, pp. 532–543, 2016.

[11] Y. Wang, Q. Han, G. Cui and J. Sun “Hiding messages based on DNA sequence and recombinant DNA
technique,” IEEE Transactions on Nanotechnology, vol. 18, pp. 299–307, 2016.

[12] M. Sohal and S. Sharma, “Enhancement of cloud security using DNA inspired multifold cryptographic
technique,” International Journal of Security and Its Applications, vol. 11, pp. 15–26, 2017.

[13] S. Marwan, A. Shawish and K. Nagaty, “DNA-Based cryptographic methods for data hiding in DNA media,”
Biosystems, vol. 150, pp. 110–118, 2019.

[14] H. Houa, J. Yu and R. Hao, “Cloud storage auditing with deduplication supporting different security levels
according to data popularity,” Journal of Network and Computer Applications, vol. 134, pp. 26–39, 2019.

[15] Y. Miaoa, J. Maa, X. Liub, Q. Jianga, J. Zhanga et al., “Verifiable conjunctive keyword search over mobile e-
health cloud in shared multi-owner settings,” Pervasive and Mobile Computing, vol. 40, pp. 205–219, 2017.

[16] C. M. Yu, S. P. Gochhayat, M. Conti and C. S. Lu, “Privacy aware data deduplication for side channel in cloud
storage,” IEEE Transactions on Cloud Computing, vol. 14, no. 8, pp. 1–13, 2015.

[17] M. Sohal and S. Sharma, “BDNA-A DNA inspired symmetric key cryptographic technique to secure cloud
computing,” Journal of King Saud University-Computer and Information Sciences, vol. 7, no. 1, pp. 11–32, 2018.

[18] N. Kaaniche and M. Laurent, “Data security and privacy preservation in cloud storage environments based on
cryptographic mechanisms,” Comupter Communications, vol. 111, no. 1, pp. 120–141, 2017.

[19] K. Sinhaa, A. Priyaa and P. Paul, “K-RSA: Secure data storage technique for multimedia in cloud data server,”
Journal of Intelligent & Fuzzy Systems, vol. 39, no. 3, pp. 3297–3314, 2020.

[20] S. Namasudra, D. Devi, S. Kadry, R. Sundarasekar and A. Shanthini, “Towards DNA based data security in the
cloud computing environment,” Computer Communications, vol. 151, no. 1, pp. 539–547, 2020.

[21] R. Wazirali, Z. Chaczko and L. Carrion, “Bio-informatics with genetic steganography technique,” in
Computational Intelligence and Efficiency in Engineering Systems, 1st ed., vol. 595, Springer, Cham, Studies
in Computational Intelligence, pp. 333–345, 2015.

[22] S. Namasudra, P. Roy, P. Vijayakumar, S. Audithan and B. Balusamy, “Time efficient secure DNA based access
control model for cloud computing environment,” Future Generation Computer Systems, vol. 73, pp. 90–105, 2017.

[23] S. Chirakkarottu and S. Mathew, “A novel encryption method for medical images using 2D zaslavski map and
DNA cryptography,” SN Applied Sciences, vol. 2, no. 1, pp. 1–10, 2020.

[24] J. Balaraju and P. P. Rao, “Investigation and finding a DNA cryptography layer for securing data in hadoop
cluster,” International Journal of Advance Soft Computing Applications, vol. 12, no. 3, pp. 55–64, 2020.

[25] A. Das, S. K. Sarma and S. Deka, “Data security with DNA cryptography,” in Transactions on Engineering
Technologies, 1st ed., vol. 3, Springer, Singapore, Transactions on Engineering Technologies, pp. 159–173, 2021.

CSSE, 2022, vol.42, no.3 1213

	Binary Multifold Encryption Technique for Complex Cloud Systems
	Introduction
	Literature Survey
	System Model
	Proposed Methodology
	Verification and Analysis
	Result and Discussion
	Conclusion
	flink8
	References

