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Abstract: In this study, a Discriminator Model for Glaucoma Diagnosis (DMGD)
using soft computing techniques is presented. As the biomedical images such as
fundus images are often acquired in high resolution, the Region of Interest (ROI)
for glaucoma diagnosis must be selected at first to reduce the complexity of any
system. The DMGD system uses a series of pre-processing; initial cropping by the
green channel’s intensity, Spatially Weighted Fuzzy C Means (SWFCM), blood
vessel detection and removal by Gaussian Derivative Filters (GDF) and inpainting
algorithms. Once the ROI has been selected, the numerical features such as col-
our, spatial domain features from Local Binary Pattern (LBP) and frequency
domain features from LAWS are generated from the corresponding ROI for
further classification using kernel based Support Vector Machine (SVM). The
DMGD system performances are validated using four fundus image databases;
ORIGA, RIM-ONE, DRISHTI-GS1, and HRF with four different kernels; Linear
Kernel (LK), Polynomial Kernel (PK), Radial Basis Function (RBFK) kernel,
Quadratic Kernel (QK) based SVM classifiers. Results show that the DMGD sys-
tem classifies the fundus images accurately using the multiple features and kernel
based classifies from the properly segmented ROI.

Keywords: Glaucoma; support vector classification; clustering technique; spatial
domain and frequency domain features

1 Introduction

Glaucoma is the second leading cause of vision loss globally, and the estimated number of people
suffering from this eye disease worldwide in the year 2040 will be 111.8 million [1]. Loss of sight in
glaucoma is the result of progressive damage to the optic nerve, particularly in its upper and lower parts,
with a resulting characteristic pattern of visual field loss, superiorly, inferiorly and nasally, with eventual
tunnel vision. The commonest form of this disease is chronic simple glaucoma. Fortunately, in chronic
glaucoma, the damage often progresses slowly. Patients may not experience any problems with their
vision for years as good central vision is usually retained until the later stages of the disease. In many
cases, the condition is discovered by an optician during a regular eye examination. To aid the diagnosis
of glaucoma, a new computerized classification system based on soft computing is designed after
reviewing the following existing techniques.
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Ensemble classifier fusion is discussed for glaucoma diagnosis in [2]. Features based on the structure of
the vascular using local binary pattern and from the segmented Optic Disc (OD) and Optic Cup (OC) such as
energy of OD, radius of OD and OC and their ratio are utilized. Consensus based fusion approach is
employed using the outputs of SVM, K-Nearest Neighbour [3] and Random Forest (RF) classifiers. A
super pixel classification approach is discussed in [4] for glaucoma diagnosis. After segmentation by
simple linear iterative clustering approach, feature extraction and classification by SVM are performed
based on super pixel approach.

Discrete wavelet transform is discussed in [5] for fundus image classification. Texture features from
horizontal, vertical and diagonal directions are obtained from the DWT decomposition and are fetched to
Neural Network (NN) classifier for the diagnosis. Complex wavelet transform based glaucoma diagnosis is
discussed in [6]. For OD segmentation, fuzzy-c-means clustering is applied on the value component of the
HSV colour space. Multilayer perception, SVM, RF and Adaboost classifiers utilize the features such as ratio
of OD and OC, neo-retinal rim area, blood vessels ratio and complex wavelet features for the classification.

LAWS based micro statistical feature are employed in [7] for glaucoma diagnosis. After extracting the
OD region with an assumption that OD region is brightest in the green channel, texture energy features are
extracted and NN classifier is used for the classification. Shearlet based texture energy feature is utilized in
[8] for glaucoma diagnosis. The selected ROI is decomposed by Shearlet and then statistical and occurrence
features are extracted. The classification is performed by the SVM classifier.

Generative adversarial network based glaucoma diagnosis is discussed in [9]. As the network is a
generative model, the model is reconfigured to diagnose glaucoma in a semi-supervised mode. The output
layer is modified to classify the fundus images. An 18-layer convolutional NN is employed in [10] for
glaucoma diagnosis. Batch normalization is utilized for faster learning and max pooling layer is used for
dimension reduction.

Recently, deep learning architectures are designed in [11] for many image processing applications
including glaucoma diagnosis. Though they provide promising results, their architectures are very
complex to understand [12]. They have many parameters such as batch size, optimizer, epochs and
activation functions in both hidden and output layer to fine tune the network in order to get proper results
[13]. The conventional classifiers can achieve better performance if dominant features are extracted from
the OD region [14].

The measurement of OC and OD region is discussed in [15] for glaucoma diagnosis. Different machine
learning techniques are reviewed o diagnose the damage of the optic nerve head and to diagnose the
glaucoma. Deep learning based glaucoma diagnosis systems are discussed in [16–18]. Transfer learning is
utilized successfully in classifying fundus images recently. In transfer learning, the pretrained neural
architectures such as visual geometric group, residual network and GoogleNet are employed. Super pixel
segmentation approach is discussed in [19] for glaucoma diagnosis. CDR is the main parameter used for
glaucoma diagnosis after segmentation of OC and OD regions by super-pixel classification.

In this study, soft computing based discriminator model for glaucoma diagnosis is presented. The rest of
this study is as follows: Section 2 describes the DMGD system design and the methods used in three stages of
the system. Section 3 validates the DMGD system using cross validation on four different databases;
ORIGA, RIM-ONE, DRISHTI-GS1, and HRF. The final section concludes the DMGD system
performances for glaucoma diagnosis.

2 Methods and Materials

The system designed for glaucoma diagnosis is considered as a discrimination problem. It is defined by
“Given a particular member of the population, whose class is unknown, predict this individual’s class from its
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attributes”. Let us consider a population of individuals, i = 1, …N. Suppose this population is a mixture of
distinct sub-populations or classes. In this study, the classes will be described as normal and abnormal
(glaucoma). Let yi denote the class of individual i and a set of variables (called the features) that can be
measured for any individual in the population. The particular values of the features measured on
individual i will be denoted by the vector xi. The vector xi will be referred to as the attributes of
individual i. The training set with known features and classes is then used to produce a discrimination
that classifies the unknown samples.

Fig. 1 shows the DMGD system using soft computing techniques. The DMGD system consists of three
stages; preprocessing, multiple features extraction, and kernel-based classification. The preprocessing steps
includes colour component separation, initial segmentation, SWFCM based OD segmentation, blood vessel
detection and blood vessel removal by inpainting algorithm. All preprocessing steps except blood vessel
removal are applied on the green channel and the outputs are superimposed on the colour images. Only
the inpainting algorithm is applied on the colour image. Colour based statistical features, LBP and LAWS
based features are extracted in the multiple feature extraction stage and finally kernel based classification
is employed using SVM classifier for fundus image classification.
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Figure 1: Soft computing discriminator model for glaucoma diagnosis
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2.1 Preprocessing

The first stage of the system is crucial in any classification system as the system’s performance mainly
depends on it. If the input data has unwanted information such as background information, image details and
noise, then they will degrade the system performance. A series of image processing techniques are applied to
extract the OC and OD region [7]. Initial cropping around the OD region is made automatically based on the
intensity of the green channel [8]. It is well known that OD is the brightest region in the fundus image, and
thus this property is utilized for initial segmentation. Fig. 2 shows the colour components of the fundus image
and Fig. 3 shows the results of initial segmentation.

After initial segmentation, SWFCM [20] clustering approach is utilized to segment the OD region from
its background. As SWFCM uses spatial information between the pixels and thus provides better

Figure 2: Colour components of a fundus image

Figure 3: Outputs of initial segmentation (a) input image (b) initial segmentation
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segmentation than FCM and k-means clustering. Fig. 4 shows the obtained OD region from the ROI
using SWFCM.

To remove the blood vessels inside the OD region, it should be segmented at first. A 2nd Order Gaussian
Derivative Filter (GDF) [21] is designed to extract the blood vessels in the fundus image. Fig. 5 shows the
segmented blood vessels inside the OD region.

After blood vessel segmentation, inpainting approach [22] is employed to remove the blood vessels
inside the OD region. Fig. 6 shows the results of inpainting to remove the blood vessels. A fast non-
iterative inpainting algorithm based on the 1st order transport equations is employed. While transporting,

Figure 4: Obtained OD region using SWFCM (a) input for SWFCM (b) OD region by SWFCM

Figure 5: Segmented blood vessels in the OD region (a) input for GDF (b) blood vessel detection by GDF
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the image values are estimated coherently by means of structure tensor and fast marching method. The
coherence strength determines the transport methods such as directional transport or diffusion transport.

2.2 Multiple Feature Extraction

The second stage of the DMGD system extracts multiple features from the OD region obtained from the
first stage. The feature set contains spatial as well as frequency domain features. In the spatial domain, a
standard set of commonly used statistical features [23] such as mean, standard deviation, skewness and
kurtosis are extracted at first from red, green and blue channel independently. As the colour features are
varied against illumination, Local Binary Pattern (LBP) [24] is extracted and added to the feature set,
which has illumination invariant property. Though the spatial domain features provide colour and texture
information, they are unable to provide image singularities. The LBP defined for a gray scale image is as
follows;

LBP ¼
X7
m¼0

2nTðIn � IcÞ (1)

where c in the sub-script denoted the center pixel and n represents the neighbourhood pixels. The definition
for T (threshold function) is defined by

T ¼ 1 if in � ic � 0
0 if in � ic, 0

�
(2)

To add image singularities to the feature set, LAWS features [25] are extracted from the OD region.
LAWS employ local masks to detect various types of textures. Each mask is designed to respond to a
different local property. Law’s provides variation such as ripple (wavy texture), spot (point texture), level
(flat surface) and edges within a specified fixed-size window. Features derived from laws masks provide
good spatial discrimination since the determined measure is well localized. Fig. 7 shows the Laws texture
map obtained from the green channel of the blood vessel removed image. All the extracted features in
this stage are combined to form the feature space.

Figure 6: OD region with no blood vessels (a) input for inpainting (b) blood vessel removed image
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2.3 Kernel Based Classification

The third stage of the DMGD system classifies the given fundus image as either glaucomatous or normal
based on the feature space. SVMs construct a hyper plane as the decision surface in such a way that the
margin of separation between the positive and negative samples is maximized in an appropriate feature
space, known as the maximal margin rule. SVMs combined the kernel function with large-margin hyper
planes, leading to kernel-based SVMs [26] that are highly successful in solving various nonlinear and
non-separable problems in machine learning. The hyper plane in the kernel (k) defined feature space with
bias (b) is given by

f ðxÞ ¼ kðx; xiÞ þ b (3)

Also, the following regularized (reg) optimization risk is expected to be minimized.

min
x;b

Rreg ¼ 1

2
kxk2k ;

s:t: yiðkðx; xiÞ þ bÞ � 1: i ¼ 1; 2; . . . :l
(4)

where ‖‖ denotes the norm in the transformed feature space k with support vectors (ω) for xi samples. By the
Lagrange multipliers (β = [β1, β2,……βl]

T), the above equation is equivalent to solve the following quadratic
programming problem.

Figure 7: LAWS texture map
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min
b

Xl

i¼1

bi�
1

2

Xl

i¼1

Xl

j¼1

yiyjbibjkðxi; xjÞ;

s:t:
Xl

i¼1

yibi ¼ 0; bi � 0; :i ¼ 1; 2; . . . :l

(5)

and,

x ¼
Xl

i¼1

yibixi (6)

This stage uses SVM classifier with four different kernels; LK, PK, RBF, QK and their performances are
independently analyzed. SVM classifier calculates a hyper plane that separates the feature space with
maximum margin. The kernel definitions are given in Tab. 1.

The LK function classifies the fundus images exactly into two sets. When decision boundary does not
classify the datasets correctly, the kernel function is used to classify the images in high dimensional space.
PK is a time consuming non-stationary kernel. When the feature space is divided by a highly non linear
decision boundary, then RBF classifies the fundus images with higher classification accuracy than QK
and other kernels.

3 Results and Discussions

This section discusses the performances of the DMGD system using five different fundus image
databases along with the experimental setup. The performances of DMGD system analyzed using
confusion matrices and Receiver Operating Characteristics (ROCs) are also discussed.

3.1 Experimental Setup

The proposed system is evaluated using four different databases, such as ORIGA [27], RIM-ONE [28],
DRISHTI-GS1 [29], and HRF [30]. Tab. 2 shows the description of each database used for glaucoma diagnosis.

Table 1: SVM kernels used in this study

LK PK RBFK QK

kðx; yÞ ¼ xT :yþ c kðx; yÞ ¼ ðaxT :yþ cÞd
where d is the polynomial
degree.

kðx; yÞ ¼ exp kx�yk2
2r2

� �
where σ is the standard
deviation

kðx; yÞ ¼ 1� kx�yk2
kx�yk2þC

Table 2: Summary of databases used for glaucoma diagnosis

Category ORIGA RIM-ONE DRISHTI-GS1 HRF

Resolution 3072 � 2048 2144 � 1424 2896 � 1944 3504 � 2336

#Normal 482 92 31 15

#Glaucoma 168 39 70 15

#Others – 38 (suspicious) – 15 (diabetic retinopathy)

Total 650 169 101 45
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Apart from glaucomatous images, RIM-ONE has 38 suspicious images, and HRF has 15 diabetic
retinopathy images. They are not included in this study as the system only classifies the glaucomatous
images. Fig. 8 shows samples from the databases used in this work.

To test the proposed system, a re-sampling procedure named Cross-Validation (CV) is employed where a
portion of data is used for training and later uses the remaining data for testing. As the number of data
available to validate the model is limited, the k-fold (10-fold) technique in CV is used. Fig. 9 shows the
k-fold technique in the CV.

To evaluate the performance metrics such as accuracy, sensitivity and specificity, update TP and FN if
glaucoma image is correctly classified and incorrectly classified respectively while testing each fold.
Similarly, update TN and FP if normal image is correctly classified and incorrectly classified. Finally, the

Figure 8: Fundus images (a) ORIGA (b) RIM-ONE (c) DRISHTI-GS1 (d) HRF

Figure 9: k-fold technique in CV

CSSE, 2022, vol.42, no.3 875



performance of the system is evaluated based on these parameters. Tab. 3 shows the performance metrics
used for glaucoma diagnosis.

3.2 Analysis of DMGD’s Performances

Tab. 4 shows the performances of DMGD system using kernel based SVM classifier. The performance
of DMGD system is analyzed using same set of images for all kernel based classifiers; LK-SVM, RBF-SVM,
QK-SVM and PK-SVM.

It can be seen from Tab. 4 that RBF-SVM classifier in DMGD system is better than LK-SVM, QK-SVM
and PK-SVM. All normal images in the HRF database are correctly classified (specificity of 100%) whereas
only one abnormal image is misclassified (sensitivity of 93.33%) by the RBK kernel based classifier. For
DRISHTI-GS1 database, RBF-SVM provides 97.03% accuracy followed by QK-SVM classifier with
88.12%. For RIM-ONE and ORIGA database also, RBF-SVM gives maximum results than other kernel
based classifiers with 98.47% and 86.92% accuracy respectively. It is inferred that the least performer for
glaucoma diagnosis is PK-SVM with less than 75% accuracy for all databases. Fig. 10 shows the
confusion matrices for the highest performer (RBF-SVM) that gives the exact number of classified images.

Table 3: Performance metrics

Sensitivity Specificity Accuracy

TP
TP þ FN

TN
TN þ FP

TP þ TN
TP þ FP þ TN þ FN

Table 4: Performances of DMGD system

Database Parameters (%) SVM Classifier

LK-SVM RBF-SVM QK-SVM PK-SVM

HRF Accuracy 76.67 96.67 86.67 63.33

Sensitivity 73.33 93.33 86.67 60.00

Specificity 80.00 100.00 86.67 66.67

DRISHTI-GS1 Accuracy 81.19 97.03 88.12 71.29

Sensitivity 81.43 97.14 88.57 71.43

Specificity 80.65 96.77 87.10 70.97

RIM-ONE Accuracy 85.50 98.47 90.84 75.57

Sensitivity 82.05 97.44 87.18 74.36

Specificity 86.96 98.91 92.39 76.09

ORIGA Accuracy 73.85 86.92 83.23 75.23

Sensitivity 74.40 86.31 80.95 73.81

Specificity 73.65 87.14 84.02 75.73
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It can be seen from Fig. 10 that more number of images in ORIGA database are misclassified than
HRF (1), DRISHTI-GS1 (2) and RIM-ONE (2). Due to more misclassification, the performance of
DMGD system on ORIGA images is around 85% where as it is over 95% for all other databases. Fig. 11
shows the combined ROCs of DMGD system.

The combined ROCs of DMGD system clearly gives a view of the performance of RBF-SVM. For all
databases, the ROCs of RBF-SVM is more close to the y-axis and occupies more area than others. Thus, the
RBF-SVM is the best kernel for glaucoma diagnosis using multiple features.

Figure 10: DMGD system confusion matrices by RBF-SVM (a) HRF (b) DRISHTI-GS1 (c) RIM-ONE
(d) ORIGA
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4 Conclusions

In this study, a discriminator model is presented using soft computing techniques for glaucoma
diagnosis. A series of preprocessing steps is employed to select the ROI, to segment the blood vessels
and to remove the blood vessels by soft computing techniques. Multiple features in the form of colour,
spatial relationship by LBP and texture features by LAWs are extracted from the obtained ROI. The
kernel based SVM classifiers; LK-SVM, RBF-SVM, QK-SVM and PK-SVM are employed to separate
the extracted features with maximum margin. Results on different databases; ORIGA, RIM-ONE,
DRISHTI-GS1, and HRF show the ability of DMGD system for glaucoma diagnosis. The highest
performer among the four kernel based classifiers is the RBF-SVM classifier with more than 96%
accuracy except for ORIGA database (86.92%). This study gives a promising second opinion for the
diagnosis of glaucoma.

Funding Statement: The authors received no specific funding for this study.

Figure 11: Combined ROCs of DMGD system (a) HRF (b) DRISHTI-GS1 (c) RIM-ONE (d) ORIGA
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