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Abstract: To adopt sustainable crop practices in changing climate, understanding
the climatic parameters and water requirements with vegetation is crucial on a
spatiotemporal scale. The Planetscope (PS) constellation of more than 130 nano-
satellites from Planet Labs revolutionize the high-resolution vegetation assess-
ment. PS-derived Normalized Difference Vegetation Index (NDVI) maps are
one of the highest resolution data that can transform agricultural practices and
management on a large scale. High-resolution PS nanosatellite data was utilized
in the current study to monitor agriculture’s spatiotemporal assessment for the
Al-Qassim region, Kingdom of Saudi Arabia (KSA). The time series of NDVI
was utilized to assess the vegetation pattern change in the study area. The current
study area has sparse vegetation, and exposed soil exhibits brightness due to low
soil moisture, constraining NDVI. Therefore, a machine learning (ML) based
Random Forest (RF) classification model was used to compare the vegetation
extent and computational cost of NDVI. The RF model has been compared with
NDVI in the current investigation. It is one of the most precise classification
methods because it can model the complexity of input variables, handle outliers,
treat noise effectively, and avoid overfitting. Multinomial Logistic Regression
(MLR) was implemented to compare the performance of both NDVI and RF-
based classification. RF model provided good accuracy (98%) for all vegetation
classes based on user accuracy, producer accuracy, and kappa coefficient.

Keywords: Planetscope; nanosatellites; classification; logistic regression;
computer vision

1 Introduction

Agriculture is a crucial sector in Saudi Arabia due to the increasing population and significant economic
growth [1]. Despite various limitations, such as changing climate, less rainfall, limited water resources, hyper
aridity, and scattered cultivatable areas, agriculture has prioritized improving food security and achieving
self-dependency [2]. Agricultural activities mainly depend on the availability of water consumed from
aquifers (shallow/deep) and seasonal water in an arid area [3]. It also makes it very crucial to estimate the
water consumption for planning the water resources. Due to the unavailability of water use at the micro-
level, satellite-based GRACE data becomes a vital utility to estimate water extraction. Few studies have
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discussed the consumption of water concerning irrigation using GRACE are available in the literature. [4]
Furthermore, [5] used GRACE data (2002–2016) and to understand the Groundwater Storage Change
(GWSC) in Saudi Arabia.

Estimation of crop extent and its interaction with climatic parameters is an emerging and vital research
area. The role of geospatial techniques provides a promising commitment to estimating and monitoring
agricultural growth, environmental change, and water storage change. Previous studies used MODIS
(Moderate Resolution Imaging Spectroradiometer) and Landsat suite (TM 5, Landsat 7 ETM+ and
Landsat 8 OLI) to obtain the vegetation extent and change across the globe, e.g., [6–10]. Remote Sensing
(RS) based NDVI is a technique that can estimate the extent of vegetation in an area and is a measure of
crop health. Some studies analyzed climatic parameters such as temperature and rainfall with vegetation
based on Landsat NDVI [9,11–15]; the central issue of these studies was that the comparison made with
limited images for different times and low spatial resolution (30 m).

Planet Labs’ PS constellation (175 nanosatellites) revolutionized the RS-based vegetation assessment,
see Fig. 1. PS-derived NDVI maps are one of the highest resolution data that can transform agricultural
practices and management on a large scale. The NDVI time series data is helpful for farmers, and
government authorities use this high-resolution information for sustainable agriculture planning, matching
crops with changing environment, and allocating resources such as seeds, fertilizers, and, more
importantly, water for significant development. Additionally, these NDVI based maps help any disease in
the crops and estimate possible crop yield to ensure food security.

Few studies used PS data for vegetation analysis [16] used PS data and estimated the crop sowing date.
[17] use PS data to map Striga weed based on RF. [18] used PS data with other satellite data to monitor crop
growth. [19] used ML-based classification to make landuse maps based on PS data and observed an accuracy
between 87% and 96%. [20] used PS data to analyze vegetation phenology in Kenya and advocated that the
PS images have more detailed NDVI observations due to high spatiotemporal resolution. [21] used PS data
and estimated the development stages of winter wheat. [22] fused PS data with Sentinel−2 to classify the
vegetation based on NDVI. The research [23] developed an enhancement method to improve the quality
of PS data using Landsat 8 and MODIS datasets. The primary issue with the previous study was that the
vegetation derived from PS data needs to calibrate the atmospheric correction with other satellites.
Another issue was the time series PS observations; some researchers used six months of data while others
used 12 months. The present investigation overcame the limitation by using the level 3B surface

Figure 1: False-color composite of pivot fields using PS subset for Al-Qassim region on April 02, 2021, at
10:34:35
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reflectance products 3B_AnalyticMS_SR.tif and a continuous time series of more than 2.5 years for good
insight into crop growth assessment.

Machine learning algorithms generally used in image classification are Artificial Neural Network
(ANN), Support Vector Machine (SVM), Random Forest (RF), and Maximum Likelihood Classifier
(MLC) [24–27]. [28,29] used the RF algorithm to analyze the sugarcane vegetation. Several studies have
logically advocated using Random Forest’s classification for remote sensing data [17,30–33]. RF used
several decision trees based on ensemble modeling of training samples and variables. The RF model can
process higher dimension data, solve multicollinearity issues, and provide high accuracy with less
computation time [10,34]. Almost negligible studies used PS data for RF-based classification. The
comparative assessment of any ML model is essential to understand the performance of the model. The
novelty of the present investigation is to use MLR between NDVI and RF-based vegetation classification
for three categories: high vegetation, low vegetation, and no vegetation.

The assessment of water extraction and the impact of climatic parameters on vegetation is a significant
contribution attempted in the present investigation. In the present research, an attempt was made to apply
high-resolution PS data and climatic parameters to assess the spatiotemporal assessment of vegetation in
the Al-Qassim region in KSA. There are three primary objectives of the current investigation: (1)
Monitoring the agricultural pattern change for improved decision-making and sustainable agricultural
development; (2) Estimating water extraction based on GRACE and GRACE-FO; (3) vegetation
classification using RF model; (4); Performance comparison between NDVI and RF-based vegetation
classification using MLR; and (5) Assessing the interaction of vegetation with climate parameters and
water extraction.

The novelty of the present investigation is to develop and apply an RF classification model for
continuous PS nanosatellite vegetation time series of 28 months, which is the longest continuous time
series analysis for nanosatellites images for crop pattern growth and change. Another novelty of the
present investigation is to assess the impacts of gravity-based groundwater change and climatic
parameters on high-resolution vegetation change.

2 Study Area

Al-Qassim region contains almost 1.5 million population and a cultivation area of 1029 km2, making
Qassim the third-largest agricultural region, around 12.32% of total KSA in 2009 [35]. The Qassim
region is well documented in earlier work for vegetation change [36]. The primary cultivar is dates,
wheat, and clover, representing approximately 40.35%, 23.39%, and 15.18% of the cultivated area,
respectively [37]. Qassim region has a hot desert climate and rainfall around 93.44 mm.

3 Datasets

3.1 High-Resolution PS Data

A total of 29; level 3B surface reflectance products (3B_AnalyticMS_SR.tif) supplied by Planet Labs
were used in the present investigation, see Tab. 1. It was worth noting that the very high spatial
resolution of PS 3 (m) and temporal resolution of 1 day make it suitable to assess the vegetation pattern
with high accuracy. The surface reflectance product (SR-Planet Surface Reflectance Product) involves
various quality checks, corrections including atmospheric correction [38], were utilized directly in the
present investigation. The present investigation captures the vegetation details through PS nanosatellites
from September 2018 to April 2021 (28 months) with gaps for 2019 and March, June, September, and
October (4 months).
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3.2 GRACE Data

Terrestrial water storage (TWS) was obtained from GRACE and GRACE-FO satellites from Sep 2018 to
April 2021 monthly temporal and half degree spatial resolutions. GRACE release 06 (RL06) V 2.0 global
mass concentration blocks or mascon products were used in the present investigation, acquired from CSR
(Center for Space Research at the University of Texas, Austin) and Jet Propulsion Laboratories (JPL).

3.3 Climate Data

The Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) was
downloaded from (https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/). MERRA-2 contains average
temperature (Tavg), temperature (Tmax), minimum temperature (Tmin), surface temperature (Tsurf), wind
speed (WS), and evaporation from Sep 2018 to April 2021 [39]. The rainfall data was downloaded from
(https://www.chc.ucsb.edu/data/chirps) with a resolution of 0.05°. CHIRPS data is derived using satellite
imagery and in-situ data [40].

4 Methodology

4.1 GRACE Processing

GRACE does not distinguish between anomalies from several elements of TWS (Terrestrial Water
Storage) contained in surface water storage, canopy water, and soil moisture content. Therefore,
subtraction of non-groundwater components was required to obtain the GWS. The surface water and
canopy water are almost negligible for the current investigation area due to the semi-arid region.
Therefore, only the soil moisture content (SMC) must be subtracted from the TWS to obtain the GWS as
Eq. (1).

Table 1: Details of PS data used in the present investigation

S.no Scene ID Date S.no Scene ID Date

1 20180927_071445_0f4a 27Sep2018 15 20200325_072444_1003 25Mar2020

2 20181016_071115_104b 16Oct2018 16 20200402_054743_1020 02Apr2020

3 20181118_071714_0f4e 18Nov2018 17 20200523_054100_1053 23May2020

4 20181218_071716_1040 18Dec2018 18 20200624_053455_104a 24Jun2020

5 20190105_065956_0f33 05Jan2019 19 20200728_053051_0f46 28Jul2020

6 20190203_065505_1043 03Feb2019 20 20200822_052445_1_104e 22Aug2020

7 20190429_064327_1050 29Apr2019 21 20200922_052243_0f36 22Sep2020

8 20190517_063841_1020 17May2019 22 20201017_065717_93_2223 17Oct2020

9 20190721_062925_0f32 21Jul2019 23 20201118_074805_06_2413 18Nov2020

10 20190820_062345_1048 20Aug2019 24 20201216_070138_0e26 16Dec2020

11 20191120_060951_0f49 20Nov2019 25 20210121_074808_47_2414 21Jan2021

12 20191229_060745_0f2e 29Dec2019 26 20210221_065914_91_222b 21Feb2021

13 20200128_060119_1_0f2b 28Jan2020 27 20210320_074910_01_2426 20Mar2021

14 20200221_055451_0f33 21Feb2020 28 20210416_074615_65_240a 16Apr2021

1034 CSSE, 2022, vol.42, no.3

https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/
https://www.chc.ucsb.edu/data/chirps


GWS ¼ TWS � SMC (1)

SMC was obtained using the Global Land Data Assimilation System (GLDAS) by averaging the three
different LSMs viz. NOAH, CLM, and VIC (https://disc.gsfc.nasa.gov/). The GRACE JPL, CSR, and
average data are shown in Fig. 2. The SMC and TWS errors were added in quadrature to obtain the error
in GWS [4,41].

4.2 NDVI

The NDVI index is based on vegetation greenness or the photosynthetic process of vegetation, an index
of plant “greenness” or photosynthetic activity [7,9,33]. NDVI used the principle that the vegetation absorbs
the red light required for photosynthesis; however, it reflects the NIR light. The non-vegetated areas or
stressed vegetation do the reverse process, i.e., the reflection of red light is more, and the NIR region’s
reflection is relatively more minor.

NDVI can be obtained from the following Eq (2).

NDVI ¼ NIR� RED

NIRþ RED
(2)

NDVI depends on various factors such as total vegetation cover, soil moisture, and vegetation stress.
Being a ratio, NDVI has advantages such as compensation of illumination conditions due to topography
and multi-temporal image analysis for comparisons as images collected in different seasons. Fig. 3
illustrates the NDVI of 60 pivot fields.

4.3 Trend and Correlation Analysis

Mann-Kendall trend tests [42, 43] were carried out for trend analysis to detect trends and changes in
vegetation, GWSC, and climate variables over the years of analysis. Sen’s slope values [44] were used to
understand the trend of GWSC change for the study area from Sep 2018 to April 2021. The Mann-
Kendall S value statistics were evaluated chronologically in the time series (Eq. (3)). The observations
VAR(S) variance in the time series was also estimated (Eq. (5)). Standardized test Z (Eq. (6)) [45] was
also performed for the statistical analyses.

S ¼
Xn�1

i¼1

Xn
j¼iþ1

SgnðXj � XiÞ (3)

SgnðXj � XiÞ ¼
þ1; . ðXj � XiÞ
0;¼ ðXj � XiÞ

�1; , ðXj � XiÞ;

8<
: (4)

VARðSÞ ¼ 1

18
nðn� 1Þð2nþ 5Þ �

Xq
p¼1

tpðtp � 1Þð2tp þ 5Þ
" #

(5)

Z

S � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VARðSÞp if S. 0

0 if S ¼ 0
S þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VARðSÞp if S, 0:

8>>>><
>>>>:

(6)
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Figure 2: The time-series observations of temp, evaporation, rainfall, windspeed, GWS, and NDVI for
60 pivot fields (F) from Sep 2018 to April 2021

1036 CSSE, 2022, vol.42, no.3



Figure 3: PS images derived NDVI between September 2018 to April 2021. Green color shown vegetation
and red color represent no vegetation
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Here, Xi and Xj are chronologically placed values of variables in the time series, n represents the total
count of observations, ties for pth value are shown as tp, and tied values number is shown as q. A positive and
negative value of Z determined the increasing and decreasing trend, respectively. The Pearson correlation
was used to understand the relationships between water extraction (GWSC), NDVI, and climatic
parameters for the study area between Sep 2018 and April 2021.

4.4 Random Forest-Based Vegetation Classification

Defining the function was the first step in the RF classification; it defines the required features for data
splitting, impurity function, number of samples, and stopping criteria. In this study, the Gini coefficient
function was used for RF classification; which can be expressed as Eq. (7):

GC ¼ 1�
X
c

r2ðvjtÞ (7)

where; n represents classes, v = vertex of the trees.

A total 300 decision trees were chosen for RF model.

4.5 Multinomial Logistic Regression Between NDVI and RF Model Classification

MLR was applied to find the correlation between NDVI and RF classified vegetation. Logistic
regression (LR) is helpful for two categories. For more than two categories, the MLR is applicable; in the
present investigation, three classes (high vegetation, low vegetation, and no vegetation) were used in
MLR. Multinom function from the nnet package of R Language was applied. The level of the outcome
was used as baseline applied through in relevel function. The MLR model was evaluated using stratified
k-fold cross-validation, which ensures the class balance for training. Total three repeats and ten folds
were selected to evaluate the MLR. The multinom package has no option for p-value calculation for the
regression coefficients; therefore, p-values are calculated using z tests.

ln
PðVegClass ¼ high vegetationÞ
ðVegClass ¼ no vegetationÞ

� �
¼ PixelNDVI (8)

ln
PðVegClass ¼ low vegetationÞ
ðVegClass ¼ no vegetationÞ

� �
¼ PixelNDVI (9)

H0: Null hypothesis: There is no effect of NDVI on the RF-based vegetation classification

H1: Alternative Hypothesis: There is a significant effect of NDVI on the RF-based vegetation
classification

The z-statistic was computed using Eq. (10).

Z Test ¼ ð�x�lÞ= ðr =
p
nÞ (10)

where �x = mean of Sample; μ = mean of pixels; σ = standard deviation of pixels; n = number of observations

The null hypothesis was false when the probability value was less than 0.05. The null hypothesis was
rejected if the output value was higher than the probability threshold or significance level (α). The null
hypothesis was rejected in case the output value was lesser than the α. The α value of 0.05 and the two-
tailed z-test were used to reject the null hypothesis. The relationship between NDVI and RF classification
was observed as statistically significant when the null hypothesis was rejected.
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4.6 Accuracy Assessment

The machine learning algorithm RF was performed for vegetation classification. The classification
accuracies were calculated using the confusion matrix. The Kappa statistics were evaluated [46,47].

Cohen’s kappa coefficient (K) [47] is given as Eq. (11)

K ¼ N
Pr

i¼1 Xii �
Pr

i¼1ðxiþÞ ðxþiÞ
N2 �Pr

i¼1ðxiþÞ ðxþiÞ (11)

where N represents measurements. The SMC and TWS errors were added in quadrature to obtain the error
(±1.2 mm) in GWS [4,41]

5 Results and Discussion

5.1 Extraction of Groundwater Based on GWSC

We have processed GRACE GWSC based on CSR and JPL mascon data for the Qassim region’s
identical PS footprint. The highest annual water extraction was observed in Aug 2020 for both GWS
based on JPL and CSR. March 2020 and Feb 2021 were observed positive water levels for GWSJPL and
March 2019 and February 20 for GWSCSR.

5.2 Vegetation Based on NDVI

28 PS images were processed between September 2018 to April 2021 for 60 pivot fields, see Fig. 3. Our
findings indicated that the agricultural activities were almost similar for 60 pivot agriculture fields analyzed
in the present investigation. The 60 pivot fields were categorized into three categories based on NDVI time
series behavior. The highest values of NDVI were observed in April 2020 and Jan 2021, whereas the lowest
NDVI values were observed for Sep 2019, June 2020, and Dec 2020. The fields from 1 to 7 and
41–60 showed significantly increasing NDVI value from September 2018 to April 2021; the 10 to
40 showed stable trends.

5.3 Trend and Correlation Between Vegetation and Climatic Parameters

5.3.1 Trend Analysis
The vegetation extent based on NDVI showed an increasing trend for 30 pivot fields with Kendall’s Tau

of 0.15 and slope = 0.004. The other 30 pivot fields shown Kendall’s Tau of 0 mean no trend or stable NDVI
values. The Kendall’s Tau values for the GWSC change rate were −0.8 mm/year and −0.06 mm/month for
GWSJPL. The Kendall’s Tau value for GWSCSR change rate was higher than GWSJPL, i.e., −1.6 mm/year
and −0.12 mm/month for GWSCSR. The monthly rainfall showed a decreasing trend with Kendall’s Tau of
−0.60 and a slope of −0.01 based on CHRIPS gridded data. The highest monthly rainfall (110 mm) was
observed during Nov 2018. The months from Jun-Oct shown no rainfall whereas April month showed
higher rainfall during all three years. The annual rainfall for the years 2019 and 2020 was 149 mm and
194 mm. The Tmax was higher (45°c) during May-June, and Tmin was lower during winters (5°c). The
temperature, wind speed, and evaporation trends were stable; additionally, the evaporation perfectly
aligned between Tmin and Tmax. The highest ws was observed during Oct-20.

5.3.2 Correlation Analysis
Some studies analyzed the climatic impact on vegetation, especially using NDVI [13,16–18]. An

attempt was made to study the impact of climatic parameters such as temperature and rainfall on
vegetation, see Fig. 4. The PME MET station rainfall data was available for only one study area from
2009–2018 with gaps; additionally, one station can cover 10 km2 [45]. Therefore, the latest CHRIPS and
MERRA-2 datasets were utilized in the present investigation. The present investigation found interesting
interactions between vegetation, environment variables, and water extraction. A correlation was also
found between environment variables. The rainfall showed a correlation of 0.47 with reference
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evaporation. The correlation of rainfall with GWSJPL and GWSCSR was 0.38 and 0.26, respectively
indicate that GWSJPL has shown a better relationship with rain than the GWSCSR. The rainfall and
temperature (Tmax, Tmin, Tavg, and Tsurf) showed correlation values of −0.35, −0.33, −0.34, and −0.33.
The rainfall and NDVI of 10 pivot fields correlated between 0.13 and 0.22, which is not strong. Actual
evaporation showed a strong relationship with the R-value of 0.62 for all four temperature variables,
while reference evaporation showed a significant relationship with temperature variables (r≥0.93).
Reference evaporation signifies water extraction with an R-value of −0.53 and −0.43 for GWSJPL and
GWSCSR, respectively. The average correlation value of vegetation with reference evaporation shown a
correlation value of 0.37. The water extraction based on GWSJPL and GWSCSR showed a significant
correlation of 0.38 and 0.40 for almost 90% of pivot agriculture fields discussed in the present
investigation. GWSJPL and temperature relationship was significantly shown an R-value of 0.41.
GWSCSR showed a correlation of 0.31 with temperature. The R-value of GWSCS and vegetation for the
majority of pivot fields were 0.27. The wind speed had a weak relationship with NDVI ranging between
0.15 to 0.20. The relationship between NDVI of all pivot fields = 0.93 signifies that all pivot fields follow
the same agricultural practice.

Figure 4: Correlation plot between climatic parameters and the NDVI of 10 pivot fields
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Figure 5: RF Classification on PS images between September 2018 to April 2021. Dark green color
represents high vegetation; light green color represents low vegetation, maroon and thistle color represent
no vegetation
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5.4 RF Classification

RF provided good accuracy for all three classes, i.e., high vegetation, low vegetation, and no vegetation,
based on user accuracy, producer accuracy, and kappa, see Fig. 5. This method performed admirably in
vegetation identification with higher producer and user accuracy. The error margin was relatively low, see
Tab. 2. The RF is one of the most precise classification algorithms due to its ability to model the
complexity of input variables. It can handle the noise and outliers as exposed soil in the current study,
leading to indices’ saturation. As a result, the results obtained from RF are generally better than other ML
classification algorithms.

5.5 Multinomial Regression Results

An attempt was made to evaluate the performance of vegetation classification between NDVI and RF.
The correlation results for all three classes are given in Tab. 3. All three classes showed a strong correlation
between NDVI values and RF-based vegetation classification. The z-value is below −1.96, and the p-value is
< 0.05 for all three classes; therefore, it can be concluded that there is a strong correlation between NDVI and
RF, so the null hypothesis is rejected. The results indicated that NDVI and RF had shown almost similar
results, further confirmed through 30 random points using sub-meter resolution’s Google Earth Image
dataset for available months between Sept 2018 and April 2021.

6 Conclusions

Accurate vegetation knowledge over a high resolution (3 m) can be achieved using revolutionary
nanosatellites datasets such as Planetscope (PS) for understanding the agricultural sprawl. According to
the changing climate, it is significant to understand the interaction of climatic parameters and water
requirements with vegetation on a spatiotemporal scale to achieve sustainable crop practices. In the
present investigation, high-resolution PS nanosatellite data was utilized to assess the spatiotemporal
assessment of agriculture for the Al-Qassim region, KSA. For this purpose, the time series of NDVI was
used for 29 months of time series data. The present investigation used the GRACE and GRACE-FO data
to estimate the water used for vegetation. RF model was used to classify the vegetation, and MLR was
applied to compare NDVI and RF-based classification performance.

Table 2: Accuracy assessment for RF for classification

Classes Training samples Testing samples Producer accuracy User accuracy

High veg 393 118 98.97 98.96

Low vegetation 340 103 98.94 98.84

No vegetation 328 101 99.02 98.89

Kappa value 0.99

Table 3: Performance evaluation of RF and NDVI using MLR

Class ref Correct % of values z-Value Standard errors Results

High veg 0.99 1.089 0.0005 Strong correlation CI>95%

Low vegetation 0.99 1.019 0.0008 Strong correlation CI>95%

No vegetation 1.00 1.076 0.0004 Strong correlation CI>95%
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The present investigation found interesting interactions between vegetation, environment variables, and
water extraction. Rainfall and water extraction through GWSJPL showed an R-value of 0.38, while reference
evaporation showed an R-value of −0.53 with GWSJPL. Temperature and GWSJPL showed a significant
relationship with an R-value of 0.41. Among all climatic parameters, reference evaporation showed a
good relationship with NDVI of all fields with an R-value of 0.37. GWS has also shown a good
relationship with all 60 pivot fields with an R-value of 0.4. The correlation of rainfall with GWSJPL and
GWSCSR was 0.38 and 0.26, respectively indicate that GWSJPL has shown a better relationship with
rain than the GWSCSR. The future scope of the present research will be to utilize other high-resolution
datasets and extend the study area with additional datasets such as soil moisture models to understand the
agricultural pattern with different climatic parameters and techniques [48,49]. The selection of crop type
and harvesting time should be compatible with the changing environmental conditions and water
availability to achieve sustainable agriculture. Future agricultural practice depends on making informed
decisions using high-resolution temporal assessment of matching crops according to the environment.
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