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Abstract: This paper proposes an algorithm for scheduling Virtual Machines
(VM) with energy saving strategies in the physical servers of cloud data centers.
Energy saving strategy along with a solution for productive resource utilization
for VM deployment in cloud data centers is modeled by a combination of “Virtual
Machine Scheduling using Bayes Theorem” algorithm (VMSBT) and Virtual
Machine Migration (VMMIG) algorithm. It is shown that the overall data center’s
consumption of energy is minimized with a combination of VMSBT algorithm
and Virtual Machine Migration (VMMIG) algorithm. Virtual machine migration
between the active physical servers in the data center is carried out at periodical
intervals as and when a physical server is identified to be under-utilized. In VM
scheduling, the optimal data centers are clustered using Bayes Theorem and VMs
are scheduled to appropriate data center using the selection policy that identifies
the cluster with lesser energy consumption. Clustering using Bayes rule mini-
mizes the number of server choices for the selection policy. Application of Bayes
theorem in clustering has enabled the proposed VMSBT algorithm to schedule the
virtual machines on to the physical server with minimal execution time. The pro-
posed algorithm is compared with other energy aware VM allocations algorithms
viz. “Ant-Colony” optimization-based (ACO) allocation scheme and “min-min”
scheduling algorithm. The experimental simulation results prove that the pro-
posed combination of ‘VMSBT’ and ‘VMMIG’ algorithm outperforms other
two strategies and is highly effective in scheduling VMs with reduced energy con-
sumption by utilizing the existing resources productively and by minimizing the
number of active servers at any given point of time.

Keywords: Energy saving strategy; VM scheduling; VM migration; Bayes
theorem; resource utilization

1 Introduction

With the ever-increasing mobile devices and smart phones connected to the internet, Cloud computing
has become the most flamboyant technology adopted by the industry in recent times. In the context of
computational efficiency, cloud computing provides limitless services, processing power, memory, and
storage at very affordable cost. As cloud-based solutions are increasing significantly, the need to utilize
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the data centers hosted in the cloud optimally also increases. Virtualization techniques and scheduling
strategies are used to choose the apt physical servers in the data centers to host the virtual machines
(VMs). The virtual machines with varying CPU cores, physical memory and storage requirements are
created as per the request and hosted on a physical server in the data centers. The users will host their
application on these virtual machines in the cloud [1,2]. Virtualization enables many virtual machines to
be executed and share hardware resources on the same physical server. VM consolidation allows us to
allocate the maximum number of VMs in a smaller number of physical servers [3]. The available
computing power in a cloud is limited and any arbitrary usage of the resources will lead to poor
performance in terms of scheduling and energy utilization. Identifying an optimal strategy to allocate
VMs and still ensuing an increased utilization of physical servers in a data center is a challenging problem.

Energy efficiency for data centers hosted in the cloud is becoming more critical as the industry usage
increases exponentially. Cloud data centers are observed to gobble energy when resources are indefinitely
switched on even if they are not in use. About 70% of peak power is depleted by idle servers [4]. The
idle server’s power wastage is known to be a significant cause of over-utilization of energy there by
increasing the overall operational and service cost. Moreover, usage of inefficient algorithms results in the
allocation of a greater number of VMs to a single physical server than its capacity to handle exacerbating
resource competition among the VMs and increasing the response time multiple times. Introducing
energy aware scheduling with enhanced resource management strategy would significantly improve the
computational efficiency of the cloud data centers and the associated cost of cloud-based solutions.

This work focuses on the solution to reduce the excessive energy utilized by the physical servers in the
cloud data center by combining an energy aware VM scheduling algorithm and a VM migration procedure
that is shown in Fig. 1. The proposed solution effectively brings down the energy consumed by under-
utilized server by re-allocating the VMs to the physical servers that are hosting VMs much less than their
maximum handling capacity. To optimize the power utilization of data centers the scheduling algorithms
must be able to shut down idle servers and migrate VMs to under-utilized physical. The objective of this
study and experiments revolves around improving the energy efficiency of physical servers by optimally
assigning them the requested virtual machines and consolidating the virtual machines across several
physical servers to maximize the resource utilization ratio. Our work proposes an energy aware VM
scheduling with Bayes Theorem (VMSBT) algorithm and VM Migration algorithm (VMMIG). The
VMSBT algorithm is used to strategically schedule VMs to the appropriate physical machine without
over-loading it and the VMMIG algorithm reduces the number of active servers to service the given VM
load as other VMs depart from its service. This scheduling algorithm combined with migration algorithm
helps to reduce overall energy consumption in the data centers and improves the utilization of resources.

The proposed solution for optimal use of resource utilization and reduction of overall energy
consumption of data centers consists of the following steps: (1) Clustering of optimal server set for VM
allocation using Bayes theorem, (2) Allocation of VM without overloading the server using load
consumption degree and energy consumption function and (3) Relocation of VMs from under-utilized
server to other servers. Simulation of the proposed solution indicates that VMSBT has considerable
energy saving capability compared to the Ant-Colony optimization-based scheduling and Min-Min
scheduling procedures. The efficiency of the VMSBT and VMMIG algorithms is leveraged by the
execution time taken for scheduling the VM to the appropriate server and relocating the VM from lightly
loaded server to other active servers.

The analysis of the simulation results of the proposed solution demonstrates the following advantages:

i) The clustering of servers using Bayes rule reduces the number of server choices for VM allocation.
ii) Scheduling algorithm ensures that no physical servers are overloaded in terms of resources and

energy consumption.
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iii) The migration strategy reduces the active physical server count by shutting down the idle and
under-utilized servers.

The contribution of the work is organized as follows. Section 2 summarizes all related works for energy
efficient virtual machine placement. Section 3 describes identification of optimal physical servers for hosting
virtual machines with Bayes theorem and discusses the strategy for Virtual Machine Migration in cloud data
centers. Section 4 introduces the Virtual Machine Scheduling using Bayes Theorem (VMSBT) algorithm and
Virtual Machine MIGration (VMMIG) algorithm. Section 5 presents the findings of the study of different
methodologies for research. Finally, Section 6 presents the conclusion and potential scope of expansion of
the current work.

2 Related Works

The principle of cloud computing scheduling refers to the technique of mapping a collection of jobs to a
set of VMs or allocating VMs to operate on the available set of physical servers to meet the demands of users’
[5]. In cloud computing, various scheduling techniques are used to improve system efficiency, load
balancing, optimal resource utilization, energy conservation, decrease operational costs, and minimize the
total processing time. The scheduler should therefore consider the VMs, and the constraints of user’s
requests together achieve efficient matching between jobs and resources [6]. Computing resources in a
cloud environment is scheduled using two methods [7]: VM based scheduling and Host based scheduling.
In the VM based scheduling, tasks are routed to the allocated VMs using a task/job scheduler for
execution and this is called Task Scheduling. In the host-based scheduling, a VM scheduler is used at the
host to assign the VMs into physical servers and this approach is termed VM Scheduling. The current
research paper focuses on VM scheduling in cloud environments between various servers. In [8], the
author proposes a solution that consolidates the tasks and the applications hosted on the data center so
that they are moved to a limited number of physical servers and turn-off the unused servers to save

Figure 1: VM scheduling in cloud data center
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energy. Here the consolidation is accomplished at the task level whereas in the proposed research work
consolidation is accomplished at the virtual machine (VM) level.

Reference [9] considers CPU availability and proposes a migration solution for dynamic reallocation of
virtual machines. Here, the solution proposes an upper and lower threshold that determines the utilization rate
of the processors in all the VMs. If the host’s processor utilization rate reaches the upper threshold, some of
the VMs are relocated and all the hosted VMs should be relocated if processor utilization rate is lesser than
the lower threshold. Feller et al. [10] proposes ACO algorithm to reduce the number of physical servers to
support the incoming requests. However, the experimental results show high computational cost as this
approach consolidates all VMs in a single physical server only. In the proposed work, the consolidation
of VMs is made based on various resource capacities i.e., CPU, memory, and disk space.

Gao et al. [11] using Virtual Machine Placement with Ant Colony System (VMPACS) has aimed to
reduce both consumption of energy and the waste of resources. Ant-colony based algorithm which
achieves the pareto set has been proposed in this approach. Ibrahim et al. [12] proposes an adaptive
genetic algorithm to improve both energy efficiency and the response time of the request. Raju et al. [13]
proposed energy-aware multi objective chiropteran algorithm (EAMOCA), a hybrid cloud algorithm that
aims at minimizing processing time and energy consumption while optimizing resource utilization. Most
of the VM scheduling problems are solved by heuristic approaches like genetic algorithm, annealing
algorithm, and ant-colony algorithm. There are several works that have used Meta-heuristics [14] to
implement scheduling solutions that have very quick execution time. These Meta-heuristics approach uses
strategic guess and repeated calculation to identify the best route among large solution space. Nimrod
algorithm in Grid computing [15], genetic algorithms [16], ant colony optimization (ACO) and particle
swarm optimization techniques (PSO) [17,18] are observed to be the optimal strategies for solving job
shop scheduling problems.

Huge volume of data streaming from social networking services and IoT devices are hugely dependent
on cloud computing platforms for processing and analytics. Large numbers of virtual machines are generated
[19] in a cloud data center to analyze this data and several Physical Machines (PMs) are needed to manage it.
The low density of VM deployed in traditional scheduling approaches is observed to waste significant PM
resources. Energy efficiency of the whole cloud environment is significantly reduced by this under-utilization
of physical resources. It is therefore important for VM scheduling to retain only active PMs by increasing the
density of VMs allocated to PMs. Some of recent works in VM Scheduling with energy efficiency in cloud
data centers have been given in following Tab. 1.

Table 1: Energy efficient VM scheduling in cloud data center

Algorithm Benefits Parameter Simulation
environment

Ant colony optimization
with particle swarm
(ACOPS) [20]

Keeps the load balanced
and converge fast

Makespan
requests rejected
execution time

C-simulated cloud
environment with star
topology

Order exchange and
migration for ACS
(OEMACS) [21]

Significant energy saving. Average utilization
of servers

C++ simulation

Knapsack algorithm [22] Increased resource
utilization

Resource utilization
rate
energy consumption
rate

Cloudsim simulator

(Continued)
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In this paper, a solution based on Bayes theorem for clustering physical servers is designed. VMs are
mapped to appropriate physical servers (PS) using the parameters load consumption degree and energy
consumption function. The allocation of VMs to PMs is accomplished by the VMSBT algorithm and
migration of VMs is executed by VMMIG algorithm. The following section gives the detailed strategies
used in VMSBT and VMMIG algorithms.

3 Proposed Work

3.1 Problem Formulation

The scheduling problem of VMs to physical servers in cloud environment is formulated as follows:
Consider there are ‘n’ physical servers for hosting ‘m’ virtual machines. PS denotes the set of ‘n’
physical server available at time ‘t’ and this is given as PS = {S1, S2, S3, S4,.…………….., Sn}. Let VM
be the set with ‘m’ number of virtual machines arriving at time t, that need to be hosted on the physical
servers. The virtual machines are given as VM = {V1, V2, V3, V4….…………….., Vm}. Several research
work on VM scheduling has considered only two computing resources i.e., CPU and Primary memory or
CPU and Secondary memory. In contrast to those approaches, the proposed scheduling solution utilizes
multiple physical resources for hosting the virtual machines. The computing resources considered for
hosting the virtual machines on a physical server are CPU, disk, and memory. Let Si and Vj be the
individual resource component of physical server and virtual machine. Each Si in PS and Vj in VM
comprises three resource components: CPU, disk, and memory. Si is formed with three resource
components {Sc, Sd, Sm}, similarly Vj is formed with resources {Vc, Vd, Vm}. {Sc, Sd, Sm} indicates the
currently available CPU, disk, and memory resource of physical server Pi for hosting the virtual machine
Vi which is requesting for resources {Vc, Vd, Vm}.

These individual resource components of PS and VM are combined into single component and a new set
PS’ and VM’ are formed. The resources for a physical server Si are combined as shown in Eq. (1); here α, β

Table 1 (continued)

Algorithm Benefits Parameter Simulation
environment

LB-Min migration [23] Reduced energy
consumption with limited
migrations

Lower bound for
energy consumption
Turning OFF PMs
when IDLE
Turning OFF PMs
when IDLE with
migration

Customized two-node
cloud.

EASE framework [24] Saves server power
consumption and job
completion time

Energy efficiency
Energy
proportionality

Custom simulation on
centOS 7.2 based VM

Genetic algorithm with tabu
search algorithm (GATA)
[25]

Maximize load balancing
and achieve energy
efficiency

Execution time,
crossover rate,
mutation rate,
Chromosome length
and
Length of tabu table

Python
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and γ are the weight values determined by back propagation learning in a neural network. Similarly, for Vj the
resources are grouped as in Eq. (2).

Si ¼ aSic þ bSid þ cSim where aþ bþ c ¼ 1 (1)

Vj ¼ aV i
c þ bV i

d þ cV i
m where aþ bþ c ¼ 1 (2)

As a first step the favorable physical servers are clustered for virtual machine allocation using Bayes law.
The Bayes law specifies how the probability of occurrence of an event has an impact due to a hypothetical
new event given the condition that new event is expected to turn out to be true. Bayes rule is given as the
probability of server Si being selected to deploy the virtual machine Vj. This is termed as the posterior
probability and is given as P(Si/Vj), the server Si executing the virtual machine Vj.Si denotes the physical
server and Vj denotes the virtual machine. The deployment of virtual machines on different physical
servers is carried out based on the resources requested by the virtual machines and the load available on
the physical servers. The Bayes law for clustering the favorable physical server is given in Eq. (3).

P SijVj

� � ¼ P VjjSi
� �� P Sið Þ

P Vj

� � (3)

Thus, the posterior probability P(Si/Vj) is dependent on the prior probability P(Vj/Si), the probability of
Vj deployed on server Si, P(Si), denotes the availability of physical servers and P(Vj), denotes the virtual
machine’s probability. The prior probability is determined by Eq. (5).

P VjjSi
� � ¼ 1� Resource requested by VM

Resource available at PS
(4)

P VjjSi
� � ¼ 1� Vj

Si
(5)

The probability of the number of physical servers available, is given as P(Si) in Eq. (6). ‘n’ is the number
of physical servers available.

P Sið Þ ¼ 1

n
(6)

The probability of virtual machine P(Vj) is given as in Eq. (7). Certain physical servers cannot
accommodate the virtual machines due to inadequate resource availability and a threshold is set for every
physical server to identify the appropriate servers.

P Vj

� � ¼ Xn
i¼1

P VjjSi
� �� P Sið Þ (7)

The physical servers whose posterior probability is greater than the given threshold is clustered into a
new set. Here, Bayes theorem helps to eliminate the set of physical servers that cannot accommodate the
virtual hosts and cluster only the most appropriate servers. In this way Bayes law minimizes the number
of server choices in VM scheduling. Following the clustering process, the virtual machines are deployed
among the clustered servers based on the load consumption degree and the energy consumption degree as
explained below.

3.2 Load Consumption Degree

The load consumption degree of the physical server depends on the utilization of CPU (uci), disk (udi)
and memory (umi), if the virtual machine Vj is allocated to the physical server and the threshold value. A
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maximum CPU (Tc), disk (Td) and memory (Tm) threshold is fixed for every physical server in the data
center. These thresholds help to prevent over utilization of any physical server. The load consumption
degree also helps to place the virtual machine on the optimal physical server correctly. The load
consumption degree for the server is given by Eq. (8).

LCi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uci � Tcð Þ2 þ udi � Tdð Þ2 þ umi � Tmð Þ2

q
(8)

In the above equation utilization of CPU, disk and memory is determined using the Eqs. (9)–(11). In Eq.
(12), Bij represents binary value, if virtual machine j is placed on physical server i, the binary value is set as
1 else its set to 0.

sci ¼
Xm
j¼1

Bijcj and uci ¼ a sci þ Vcð Þ (9)

sdi ¼
Xm
j¼1

Bijdj and udi ¼ b sdi þ Vdð Þ (10)

smi ¼
Xm
j¼1

Bijmj and umi ¼ c smi þ Vmð Þ (11)

Bij ! 1; if jth VM placed on ith PM
0; no VM placed otherwise

�
(12)

3.3 Energy Consumption Degree

Calculation of the energy used by ith physical host is calculated as given in Eq. (13)

ECi ¼ ecidlei þ ecmaxi � ecidlei

� �
URi (13)

where load utilization LUi is shown in Eq. (14)

LUi ¼ uci þ udi þ umi (14)

And the utilization rate is given in Eq. (15)

URi ¼ LUi

Si
� 100 (15)

The batch of virtual machine requests are optimally allotted to the physical server using the VMSBT
algorithm. The VM requests are placed with specific CPU, disk, and memory resource requirements.
Similarly, the server has CPU, disk, and memory resources available. Those resources are consolidated
using Eq. (13) for both virtual machines and physical servers. Then, Bayes rule is applied for every
virtual machine and for every physical server. Based on the posterior probability obtained using Bayes
rule, the physical servers with sufficient resources to accommodate virtual machines are clustered as
optimal physical servers. The load consumption degree and energy consumption degree for optimal
servers are calculated using Eqs. (14) and (15) to determine if the virtual machine can be hosted on those
specific physical servers. Finally, the virtual machine is deployed on to the server with minimal load
consumption degree and with minimal energy consumption degree. The above process gets repeated for
all the virtual machines until they get allotted to a physical server.
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4 Algorithms

4.1 VMSBT Algorithm and Description

Algorithm: VMSBT

Input: N-PS with available resource {Sc, Sd, Sm}, M-VM with requested resource {Vc, Vd, Vm}

1. PS_OPT = φ

2. for i in PS

2.1. Calculate Si ¼ aSic þ b Sid þ c Sim
3. End for

4. For j in VM

4.1. Calculate Vj ¼ aV j
c þ b V j

d þ c V j
m

5. End for

6. For j in VM

6.1. For i in PS

6.1.1. Calculate P SijVj

� � ¼ P VjjSi
� �� P Sið Þ

P Vj

� �
6.1.2. If P SijVj

� �
> threshold

6.1.2.1. Add PSi to OPT_PSi

6.1.3. End if

6.2. End for

6.3. For i in OPT_PSi

6.3.1. (Assumption what if VMj gets deployed in PSi)

6.3.2. Calculate:

6.3.3. sci ¼
Pm
j¼1

Bijcj and uci ¼ a sci þ Vcð Þ

6.3.4. sdi ¼
Pm
j¼1

Bijdj and udi ¼ b sdi þ Vdð Þ

6.3.5. smi ¼
Pm
j¼1

Bijmj and umi ¼ c smi þ Vmð Þ

6.3.6. LUi ¼ uci þ udi þ umi

6.3.7. URi ¼ LUi

Si
� 100

6.3.8. LCi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uci � Tcð Þ2 þ udi � Tdð Þ2 þ umi � Tmð Þ2

q

6.3.9. ECi ¼ ecidlei þ ecmaxi � ecidlei

� �
URi

6.4. End for

6.5. Find MIN LCi in OPT_PSi
(Continued)
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Certain virtual machines hosted on a physical server remains idle after completing the jobs assigned to it
by the client applications. These physical servers where a few virtual machines remain idle among the set of
virtual machines hosted, goes to an under-utilized state and at the same time consume power considerably.
The collective power consumption of many such under-utilized physical servers in the data center is
significantly high and is one of the main causes for higher power utilization of the data centers. To solve
this problem, the VMMIG algorithm is executed at periodic intervals which will identify the under-
utilized physical servers whose resource utilization is below 20% of the available resource and relocate
the virtual machines to another physical server.

4.2 VMMIG Algorithm and Description

4.3 Complexity Analysis of VMSBT Algorithm

Time complexity analysis is done based on the number of inputs provided. Let us assume there are ‘n’
number of VM requested submitted for scheduling and ‘m’ be the number of physical servers available for
VM allocation. Worst-case behavior of the algorithm depends on the number of jobs submitted and the
number of iterations done. The combined resource components for ‘m’ number physical server are
computed and the combined resource components for ‘n’ number of virtual machines. Then the
probability to cluster the eligible physical hosts, and for computing resource utilization and energy

Algorithm (continued)

6.6. If ECi < ET for MIN LCi

6.6.1. Allocate: PSi)VMj

6.6.2. Update: PSi with Ci)Ci + Vj

6.6.3. Break

6.7. Else

6.7.1. Find Next MIN LCi and repeat step 6.6

6.8. End if

7. End for

VMMIG Algorithm

1. For i in PS

1.1. If Ci <= ST

1.1.1. Select Vj and Pi

1.1.2. Add VMMIG)Vj

2. Add POOF ) Pi

2.1. End if

3. End for

4. VMSBT (N-POOF Server, VMMIG)

5. Mark all servers in POOF as SHUTDOWN
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consumption for the eligible physical host executes c instructions for m times for all ‘n’ number of VMs.
Hence f(n) of the algorithm is given n + m + n*(2*c*m) where 2 and c are constants. By dropping down
the terms which makes negligible changes as n and m grows larger, the function is kept as f(n) = n*m.
Hence the worst-case behavior is given as O(f(n)) which is O(n*m) and is quadratic.

5 Results and Discussion

5.1 Simulation Environment

All the experiments for the proposed work were implemented using a Cloudsim simulator running on a
stand-alone PC with i7 Extreme processor, 64 GB RAM and 2 TB SSD storage capacities. The proposed
VMSBT algorithm, ACO and min-min algorithms were all simulated in the Cloudsim environment,
executed with various test parameters and results have been documented. Around 800 VMs requests are
created with varying CPU, disk, and memory requirements. These VM requests are sent in batches with
each batch containing 100 to 800 VM requests. The proposed solution has been simulated in the
Cloudsim environment through several iterations with each iteration having a minimum of 10 batch
requests. Each physical server is simulated to have 12000MIPS of CPU usage and 2 TB of primary
memory. The data center of the cloud environment was deployed with 1000 servers with CPU capacity
varying up to 24 cores, RAM up to 100 GB and hard disk size up to 2 TB as shown in Tab. 2. Energy
range of the server is set between the range [1,4] KW. Each server is fixed with the constraint, that the
server resource utilization does not exceed 85% to prevent overloading the server. A subset of the
experimental results of different parameters like execution time, resource utilization, energy consumption,
no of active physical servers with and without migrations are shown in Tabs. 3 and 4.

Table 2: Sample VM request

VM request No of CPU Cores Disk capacity in GB Memory in GB

VM1 2 420 4

VM2 4 1200 16

VM3 2 240 2

VM4 8 1200 16

VM5 1 180 2

VM6 16 600 8

Table 3: Execution time, resource utilization, energy consumed, and number of active physical servers

Execution time in
seconds

Resource utilization in
percentage

Energy consumed in
KW/H

No of active physical
servers

VM
batch

No of
VM

No of VM
migrated

MIN-
MIN

ACO VMSBT MIN-
MIN

ACO VMSBT MIN-
MIN

ACO VMSBT MIN-
MIN

ACO VMSBT

S1 100 25 1.113 1.104 0.451 23.6 24.1 23.5 2.72 2.55 2.21 16 15 13

S2 175 35 5.142 5.015 1.329 31.9 32.5 32.3 2.89 2.72 2.89 17 16 17

S3 250 50 7.473 7.306 2.003 37.5 37.9 38.4 3.91 4.42 3.91 23 26 23

S4 325 70 9.125 7.912 2.888 39.2 40.1 43.5 5.27 6.63 4.76 31 39 28

S5 400 85 13.256 8.357 3.536 43.5 45.2 51.8 7.14 8.16 5.61 42 48 33
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5.2 Execution Time of the Scheduling Algorithm

Comparison of execution times of VMSBT scheduling, Ant-Colony based scheduling and min-min
scheduling algorithms showed that VMSBT scheduling algorithms had minimum execution time with an
average of 6 s compared to the other two scheduling algorithms. VMSBT scheduling algorithm reduces the
number of searches to identify the physical server to host by clustering out the optimal physical server using
Bayes rule. The algorithm ensures that only the servers with sufficient computing resources are aggregated
using Bayes rule and the virtual machines are mapped to optimal servers based on resource utilization and
energy consumption. The results plotted in Fig. 2 shows the execution time for all the three scheduling algorithms.

5.3 Productive Resource Utilization

In VMSBT scheduling procedure, the correct virtual machines are assigned to the optimal physical
servers using the load consumption formula given in Eq. (8). It is observed highest resource utilization of
VMSBT is found to be increased by 91% compared to ACO-based scheduling which is 67% and min-
min scheduling which is 69%. The highest resource utilization shows that VMSBT optimally uses the
resources in the physical servers where the VMs are allocated. Fig. 3 below shows the resource
utilization trend among the three algorithms for 10 different batch requests with the number of VMs in
each batch ranging from 100 to 800.

Table 4: Number of active physical servers and energy consumption with and without migration

No of active physical servers Energy consumption in KW/H

VM REQUEST
BATCHES

No of
VMs

VMSBT-with
migration

VMSBT-without
migration

Energy consumed-
with migration

Energy consumed-
without migration

S1 100 13 15 2.21 2.55

S2 175 17 19 2.89 3.23

S3 250 23 26 3.91 4.42

S4 325 28 32 4.76 5.44

S5 400 33 39 5.61 6.63

0

100

200

300

400

500

600

700

800

900

0.000

10.000

20.000

30.000

40.000

50.000

60.000

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

N
o

 o
f 

V
M

s
d

n
oces

ni
e

mit
n

oit
ucex

E

VM Batch

EXECUTION TIME

VM Count MIN-MIN ACO VMSBT

Figure 2: Execution time in seconds

CSSE, 2022, vol.43, no.1 169



5.4 Amount of Energy Consumed

The VMSBT and VMMIG algorithm has been proposed to reduce energy consumption and save energy
in the data center as one of its core objectives. In the simulation environment a physical server running for
60 m is set to consume 0.17 KW of energy and the energy consumption for all three algorithms were
recorded. The results show that the VMSBT algorithm with VMMIG on an average has consumed 6 KW
of energy while the MIN-MIN and ACO has used 8 and 9.2 KW of energy for the same count of virtual
machine requests. For every physical machine an upper threshold limit and lower threshold limit for
resource utilization has been setup to 35% and 85% respectively. The upper threshold limit ensures that
no physical server is being overloaded. The lower resource threshold limit is used to identify virtual
machines for migration. This process of migration is carried out by the VMMIG algorithm and optimal
placement of the virtual machine on physical server is carried out by the VMSBT algorithm. After the
migration the physical server is shut down and as a result this reduces the energy consumption of the
server. The Amount of Energy Consumed plotted as a graph in Fig. 4.
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Figure 3: Productive resource utilization
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5.5 Number of Active Physical Servers by VMSBT, ACO Based and Min-Min Scheduling Algorithm

This measure indicates the total number of physical servers utilized for placing the virtual servers
requested in each batch. The result shown in Fig. 5 indicate that VMSBT algorithm outperforms ACO
based and min-min scheduling algorithm. The simulation environment has been set with 120 physical
servers and VM requests were submitted in batches ranging from 100 to 800 VMs per batch. ACO based
and min-min scheduling algorithm often uses all available physical servers while VMSBT scheduling
algorithm manages to use only 50% of the available physical servers even in the peak load condition
where around 775 virtual machines were requested.

5.6 Amount of Active Physical Servers Using VMSBT Algorithm with and Without VMMIG Algorithm

Fig. 6 shows the number of active physical servers used when scheduling is done by VMSBTwith and
without migration algorithm. When VMSBT scheduling algorithm is combined with VMMIG algorithm, it
increases the number of unused physical servers by 14% to 25% compared to running the VMSBT algorithm
without VMMIG migration algorithm. Also, the increase in the number of unused servers reduces the energy
consumption and saves power as explained in the above results section. The results tabulated below shows
that the VMSBT algorithm when used with VMMIG algorithms has resulted in claiming 22% of
underutilized servers and thereby reducing the overall energy consumption of the data center as well.
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Figure 5: Number of active physical servers
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5.7 Amount of Energy Consumed by VMSBT Algorithm with and Without VMMIG Algorithm

VMSBT algorithm optimally places all virtual machines on to appropriate physical servers by migrating
some of the VMs to underutilized physical servers in the data center. During this process, it ensures that no
server gets overloaded and also the VMs are placed on the server with sufficient number of resources. Over
the period, few virtual machines leave the server as it finishes its work. As a result, some of the physical
server functions with its resources are underutilized. Hence, the VMs running on those physical servers
are consolidated and migrated to other servers using VMMIG algorithm. Several iterations of the
experiment and the results indicate that the power consumption is reduced by 10% to 25% when VMSBT
is used with the VMMIG algorithm which is illustrated as graph in Fig. 7.

6 Conclusions and Future Work

This work proposed an optimal solution called VMSBTscheduling algorithm to deploy virtual machines
on an appropriate physical server. VMSBT can also save energy while scheduling VM requests which is
supported with the VMMIG algorithm. Many historic works have considered only two types of resources
like memory and disk, in contrast to the current scheduling process which has considered three different
computing resources like CPU, disk and memory. The physical server’s existing workload is analyzed
before placing the virtual machine which prevents overloading of the servers. The optimal physical
servers for VM scheduling is identified with Bayes theorem. This method of clustering out the optimal
servers helps to reduce the computation time as well as prevents scheduling virtual machines to an
overloaded server. Virtual machine is mapped to its appropriate server based on the load availability and
energy consumption model.

Simulation results has shown that VMSBTalgorithm works better compared to traditional ACO andMIN-
MIN scheduling algorithms. VMSBTalways ensures that the physical machines are not being overloaded while
mapping the virtual machines, improves the utilization rate of the resources and saves energy with the support
of VMMIG algorithm. The results of the proposed algorithms reveal that the overall server utilization rate has
improved by 50% and overall, the total energy saving has improved by 10% to 25%.

For future work, network related problems during migration like bandwidth, latency, congestion, error
rate that can impact VMSBTand VMMIG algorithms can be studied in detail. After evaluation of algorithm’s
efficiency in the simulated environment including the above-mentioned network parameters, the solution can
be taken to real time cloud environment.
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