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Abstract: In recent times, pattern recognition of communication modulation sig-
nals has gained significant attention in several application areas such as military,
civilian field, etc. It becomes essential to design a safe and robust feature extrac-
tion (FE) approach to efficiently identify the various signal modulation types in a
complex platform. Several works have derived new techniques to extract the fea-
ture parameters namely instant features, fractal features, and so on. In addition,
machine learning (ML) and deep learning (DL) approaches can be commonly
employed for modulation signal classification. In this view, this paper designs pat-
tern recognition of communication signal modulation using fractal features with
deep neural networks (CSM-FFDNN). The goal of the CSM-FFDNN model is
to classify the different types of digitally modulated signals. The proposed
CSM-FFDNN model involves two major processes namely FE and classification.
The proposed model uses Sevcik Fractal Dimension (SFD) technique to extract
the fractal features from the digital modulated signals. Besides, the extracted fea-
tures are fed into the DNN model for modulation signal classification. To improve
the classification performance of the DNN model, a barnacles mating optimizer
(BMO) is used for the hyperparameter tuning of the DNN model in such a way
that the DNN performance can be raised. Awide range of simulations takes place
to highlight the enhanced performance of the CSM-FFDNN model. The experi-
mental outcomes pointed out the superior recognition rate of the CSM-FFDNN
model over the recent state of art methods interms of different evaluation
parameters.
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1 Introduction

For classical pattern recognition problems, the modulation identification of transmission signals has
several application values and significant study prospects. In the military fields, it is a pre-condition for
performing transmission jamming and reconnaissance. When the signal modulation of the enemies’
transmission scheme is simplified, the enemy’s signal could be demodulated and data transmission could
be attained. In the civil field, signal modulation identification could be utilized for interference
identification, signal confirmation, spectrum monitoring, and spectrum management. Thus, reliable and
secure feature extraction (FE) methods are required for efficiently recognizing the distinct signal
modulations [1] in a complicated situation.

Now, Automatic modulation classification (AMC) was a conventional area of research. AMC recognizes
the modulation kind of the transferred signal manually. It performs an important part in developing smart
transmission schemes such as radio spectrum and cognitive radios monitoring [2]. It could be viewed that
the receivers consist of an automated modulation classifier i.e., additionally divided into 2 major
submodules: classifier module and received signal preprocessing correspondingly [3]. The preprocessing
blocks are tasked with estimating the synchronization parameters such as timing recovery, power received
signals frequency offset, and so on. Alternatively, the classifiers module selects a sufficient classification
approach for the modulations identification. In this study, AMC is classified into 2 major classes: 1)
Feature based and 2) Likelihood based [4]. In both classes, the obtained signal instances are related to a
pool having feasible modulation candidate denoted as M (i), in which i represented the amount of
modulation candidates in the pool.

Hood based AMC determines likelihood ratio of obtained signal and relates to a threshold for getting
possible modulation candidates. The feature related approaches treat AMC as a pattern detection
challenge [5]. It determines the different features from the obtained signals and classifications are
executed according to the analyzed value of this feature. Likelihood based approaches give and best
solution to AMC problems however it comes at the cost of significant computation complexity [6].
Alternatively, the feature based approaches provide a nearby optimum efficiency with lower complexity
and thus are generally applied in real-world executions. Actually, the feature based approaches employ
2 major subsystems: 1) Classification, 2) FE. Several features were utilized in prior studies for
modulation recognition. Wavelet transforms Higher order cumulant, multi cumulant, and signal spectral
related features are few characteristics i.e., presented in the study for supervised classifications.
Conversely, few unsupervised clustering based approaches were introduced for AMC [7]. It considers the
merits of the constellation diagrams of the obtained modulation candidates and hence it doesn’t need the
group labels to train the classifiers.

The deep learning (DL) approach is capable of extracting the fundamental features and incorporate them
for obtaining high level features. Afterward, including classifications of features, the feature distribution
characteristic of the targeted objects could be examined [8]. Furthermore, this method has a stronger
capability of fitting the features of data (Hossain et al., (2019)). Recently, various researches have
displayed that machine learning (ML) technique could be employed for signal pattern recognition/signal
FE, however, the actual application procedure would be influenced by the variation of SNR [9]. The
detection of modulation signal using DL approach has higher strength, and also the detection kinds are
highly complex. However, in the real-world application, it would be complex for realizing due to the
difficulty of the approach [10]. Hence, it has high importance for constructing a modulation signal pattern
detection method with large dynamic and good generalization SNR. But, it is the greatest issue for
manually recognizing the characteristics parameter, the modulation, and recognition technique of the
classifiers in the modulation signal efficiently, and employ the detection of modulation signal patterns.
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This paper designs pattern recognition of communication signal modulation using fractal features with
deep neural networks (CSM-FFDNN) to classify the different types of digitally modulated signals (such as
Amplitude Shift Keying (ASK, M = 2, 4), Frequency Shift Keying (FSK, M = 2, 4, 8), Multiple Phase Shift
Keying (BPSK), 16QAM (Quadrature Amplitude Modulation), and 32QAM. The proposed CSM-FFDNN
model uses Sevcik Fractal Dimension (SFD) technique to extract the fractal features from the digital
modulated signals. Besides, the extracted features are fed into the DNN model for modulation signal
classification. To boost the classifier results of the DNN model, a barnacles mating optimizer (BMO) is
used for the hyperparameter tuning of the DNN model in such a way that the DNN performance can be
raised. A comprehensive experimental analysis is made to point out the improved outcomes of the
CSM-FFDNN model.

2 Related Works

Shi [11] proposed a systematic analysis with the help of fractal dimensions as the features of modulation
signal. Katz, Box, Petrosian, Sevcik, and Higuchi fractal dimensions, are extracted from 8 distinct
modulation signals for recognizing signals pattern. While, the running time, antinoise function, and box
diagrams are utilized for evaluating the separability, computation complexity, and noise robustness of
5 distinct fractal features. Lastly, grey relation analysis, BPNN, RF, and KNN are presented for
classifying distinct modulation signals according to this fractal feature. Ali et al. [12] investigate the use
of DNN to the automated categorization of modulation signals in AWGN and flat fading channels. The
3 training inputs are utilized; generally 1) the centroid of constellation point employs the fuzzy C-mean
approach to I-Q diagram, 2) the higher order cumulant of attained instance, and 3) quadrature (I-Q) and
In-phase constellation point. The unsupervised learning from this dataset was made by the sparse AE and
a supervised soft-max classifier has been applied to the classification.

Zhou et al. [13], proposed a robust AMC technique with CNN approach. Generally, fifteen distinct
modulation kinds are taken into account. The presented technique could categorize the obtained signal
straightaway with no FE approach, and it could manually acquire features from the obtained signal. The
feature learned using the CNNs are analyzed and presented. The robust feature of obtained signals in
certain SNR ranges are examined. The classification performance with CNN is displayed to be
outstanding, mainly for lower SNR. Also, the generalization capability of robust features is shown to be
remarkable utilizing SVM algorithm.

Zhang et al. [14] proposed a mixed recognition approach according to 2 novel and another traditional
feature, and develop tree shaped multilayer SSVM classifiers on the basis of FS approach for recognizing
7 types of digital modulation signals. In Wang, et al. [15], a new DL based LightAMC approach is
presented using small model size and fast computation speed. First, they present scaling factors for all
neurons in CNN and enforces scaling factor sparsity. It could provide support to discard the repetitive
neurons.

Hong et al. [16] proposed a new AMC approach on the basis of RNN approach, i.e., displayed to have
the ability to adequately exploiting the temporal sequence characteristics of attained transmission signal. This
technique resorts to raw signal directly by constrained data length and manually evades extracting signal
features. The presented technique is related to CNN based methods and the results indicate the superiority
of the presented approach. Wang et al. [17] presented a CNN based Co-AMC technique for the MIMO
system, in which the recipient, armed with multiple antennas, co-operatively identifies the modulation
type. Especially, every receiving antenna give their detection sub results through the CNN,
correspondingly. Next, the decision-maker recognizes the modulation type, according to this sub result
and co-operative decision rules.

CSSE, 2022, vol.43, no.2 547



3 The Proposed Model

Fig. 1 demonstrates the general working process of the CSM-FFDNN technique. In this study, a new
CSM-FFDNN model is designed to classify various kinds of digitally modulated signals such as MASK,
MFSK, BPSK, and QAM. The proposed CSM-FFDNN model involves three major processes namely
fractal FE, DNN based classification, and BMO based hyperparameter optimization. The detailed working
of these processes is elaborated in the succeeding sections.

3.1 Fractal Feature Extraction

At this stage, the fractal features from the communication signals are extracted using the SFD technique.
Self similar dimension is complicated for employing objects that aren’t severely self similar, and the box
dimensions could be utilized for overcoming these challenges. In the metric space X ; dð Þ; A is
belonging to M non-empty emergency cluster of X . For a box using side length of e, the minimal value
N A; eð Þ of box needed to cover A is given in the following equation [18]:

N A; eð Þ ¼ M : A �
XM

i¼1
N xi; eð Þ

n o
; (1)

In which x1; x2; � � � xM represent distinct points of X . While e approaching 0, the box dimensions are
displayed in the following equation:

Db ¼ lim
e!0

InN A; eð Þ
In 1=eð Þ : (2)

As aforementioned, assuming the signals consist of a sequence of points xi; yið Þ, the length of signal is N :
first Normalise the signal:

x�i ¼
xi � xmin

xmax � xmin
; y�i ¼

yi �min

ymax � ymin
(3)

xmin; ymin represents the minimal values amongst xj; yj: xmax; ymax indicates the maximal values amongst
xj; yj: Next, the Sevcik fractal dimension D could be estimated in the following equation:

Figure 1: Overall process of CSM-FFDNN model
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D ¼ 1þ ln Lð Þ þ ln 2ð Þ
ln 2� N � 1ð Þ½ � ; (4)

whereas L represents the length of waveform, given below:

L ¼
XN�2

i¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy�iþ1 � y�i Þ2 þ ðx�iþ1 � x�i Þ2

q
: (5)

3.2 Modulation Signal Classification

For the classification of modulation signals, the features are passed into the DNN model. Essentially, the
architecture of DNN has 3 main elements that consist of hidden, input, and output layers. The presented
framework of DNN is displayed in Fig. 2. Based on the efforts of preference weight fitness, the DNN
algorithm is developed using 2 hidden layers (HLs) to effectively learn the mapping relations among the
output and input data. In the training stage, with the help of BMO algorithm, the DNN approach
iteratively upgrades the node weight in the HL. Because of the increment in the training iteration, this
NN repeatedly fits the labeled training data decision boundaries [19]. To boost the classifier results and
training speed of DNN, 2 HLs were made. At the HL, the overall number of nodes are calculated in
Eq. (6).

n ¼ ffiffiffiffiffiffiffiffiffiffiffi
aþ b

p þ c (6)

whereas, the amount of input layer nodes is denoted as a the amount of output layer nodes is provided as b,
the amount of HL nodes is given as n and a constant values among [1–10] are represented as c:

In order to enable the nonlinear fitness capability activation functions are included in the HLs of DNN.
They have utilized the sigmoid as an activation function and it is represented in the following equation,

S ¼ 1

1þ e�x
(7)

The input data of networks are called x and it is activated with the mapping function Mf .

Mf ¼ sigm xixþ bið Þ (8)

whereas, v & b signifies the weight matrix and the bias among the output as well as HLs correspondingly.

Figure 2: Framework of DNN
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In order to create the depiction space of the hidden neuron for aligning with human’s intelligence, they
present other supervised loss functions for DNN. In this instance, they need to use the data included in the
data instance label that denote the human concept. Assume a conceptual labeled data samples x; lð Þ for a HL,
the loss forms are calculated by

S Ws; bs; x; lð Þ ¼ 1

2m

Xm
j¼1

khjðWs; bs; xÞ � ljk22 (9)

In which Ws & bs represents the subset of bias and m indicates the amount of neurons in the HL The
utilization of cross entropy loss is highly enhanced by the efficiency of sigmoid and soft-max output
models. The cross entropy losses are calculated using Eq. (10).

CE ¼ 1

n

Xn
k¼1

YklogŶ k þ 1� Ykð Þlog 1� Ŷ k

� �� �
(10)

Let, n indicates the training instance quantity, Yk represents the kth actual output of training set, Ŷk
denotes the kth anticipated output of testing set. They are utilizing BMO approach for the optimum
weight election of DNN network. In the population enhancing the fitness value of all solutions is the
primary objective of BMO algorithm. By upgrading the values, this method effort the fitness value to
move toward an optimal solution. Next, the novel solution and the older solution are related and for the
upcoming iteration, only an optimal solution is taken into account.

3.3 Hyperparameter Optimization

The BMO algorithm is stimulated by the mating characteristics of barnacles. The procedures contained
in the BMO technique are provided here [20].

At the initiation point, it can be regarded as candidate of outcome is barnacle but vector of population is
demonstrated as:

X ¼
x11 � � � xN1
..
. . .

. ..
.

x1n � � � xNn

2
64

3
75 (11)

where N represents the amount of adjusting parameters and n illustrates the population size. The control
parameter in Eq. (11) has been exposed to upper and lower boundaries of problem that is to be solved as:

llb ¼ llb1; . . . ; llbi½ � (12)

lb ¼ lb1; . . . ; lbi½ � (13)

where ub and lb are the higher and lower limits of ith variable. The compute of vector X has been whole in the
establishment, and the sort procedures are performed to place the optimum result at top of vector X.

The presented BMO technique is executed with this technique to select that is compared with EA
techniques as selective of 2 barnacles are dependent upon length of penises pl. The selective model
reflects the characteristics of barnacles which depends on given consideration:

i) The selective procedure was carried out in an arbitrary algorithm; but, it can be restricted to penis
length of barnacle pl.

ii) The selective method selects an identical barnacle which represents self-mating was implemented.
The self-mating was extremely arbitrary and barnacle male and female reproductions, therefore,
the self-mating has been considered, and a novel off-spring was formed.
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iii) If the selective is dependent upon particular iteration that is superior to pl, the sperm casting was
implemented.

The offspring production has been estimated by sperm cast procedure which is determined as the
subsequent. It can be manner of this technique that has been performed interms of virtual distance. The
provided as easy selective was implemented and it can be written as mathematical procedure:

barnacle�d ¼ randperm nð Þ (14)

barnacle�m ¼ randperm nð Þ (15)

where the barnacle d and barnacle m are determined as parents that are mated and n represents the
population size. Eqs. (14) and (15) demonstrates the selection has been made randomly and fulfills the
concern value 1 in the current subsection.

Reproduction

The reproduction process projected in BMO has been compared to EAs. As there are no specific
equations to derive the reproduction of barnacles, the BMO has been simplifying on inheritance genotype
frequency of barnacle parent’s from creating the offspring depend on Hardy–Weinberg approach. In order
to signify the simplicity of presented BMO, the subsequent function has been projected to develop new
variables of offspring from barnacle parents:

xN�new
i ¼ pxNbarnacle�d þ qxNbarnacle�m (16)

where p determined the scattered usually with pseudo random value in 0 and 1; q ¼ 1� pð Þ; xNbarnacle�d
and xNbarnaclem are determined as variables of Dad and Mum of barnacles correspondingly. It can be
obvious in Eqs. (14) and (15). So, the offspring inherit the nature of Dad as well as Mum dependent
upon possibilities of arbitrary values from [0–1]. It could be essential to point a measure of pl that
performs an essential one in computing the exploitation and exploration functions. The sperm cast was
carried out but the selected barnacles are that exists managed and pl has been assigned initially.

xn�newi ¼ randð Þ � xnbarnacle�m (17)

where rand ð Þ implies the arbitrary number amongst 0 and 1: It can be noted that Eq. (17) illustrates the
elegant technique of barnacles offspring. A novel offspring has been formed in Mum barnacle to exploration.

4 Performance Validation

This section has examined the modulation signal classification performance of the proposed model
under different dimensions. Tab. 1 and Fig. 3 investigates the fractal features obtained by the Sevcik
dimension under varying levels of SNR levels. The results depicted that the Sevcik dimension gets
reduced with an increase in SNR values. For instance, with SNR of −5dB, the Sevcik dimension of the
2 ASK, 4 ASK, 2 FSK, 4 FSK, 8 FSK, BPSK, 16 QAM, and 32QAM modulation signals are 1.73, 1.72,
1.73, 1.73, 1.71, 1.75, 1.77, and 1.81 respectively. Along with that, with SNR of −1dB, the Sevcik
dimension of the 2 ASK, 4 ASK, 2 FSK, 4 FSK, 8 FSK, BPSK, 16 QAM, and 32QAM modulation
signals are 1.68, 1.73, 1.69, 1.66, 1.70, 1.69, 1.78, and 1.80 correspondingly. In the same way, with SNR
of 2dB, the Sevcik dimension of the 2 ASK, 4 ASK, 2 FSK, 4 FSK, 8 FSK, BPSK, 16 QAM, and
32QAM modulation signals are 1.65, 1.67, 1.63, 1.63, 1.67, 1.66, 1.77, and 1.81 correspondingly. On
continuing with, with SNR of 6dB, the Sevcik dimension of the 2 ASK, 4 ASK, 2 FSK, 4 FSK, 8 FSK,
BPSK, 16QAM, and 32QAM modulation signals are 1.63, 1.70, 1.57, 1.59, 1.63, 1.64, 1.75, and
1.79 respectively. Lastly, with SNR of 10dB, the Sevcik dimension of the 2 ASK, 4 ASK, 2 FSK, 4 FSK,
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8 FSK, BPSK, 16QAM, and 32QAM modulation signals are 1.59, 1.71, 1.55, 1.60, 1.61, 1.64, 1.77, and
1.78 correspondingly.

Table 1: Fractal features analysis of various communication signals under different SNR values

Sevcik dimension

SNR / dB 2 ASK 4 ASK 2 FSK 4 FSK 8 FSK BPSK 16 QAM 32 QAM

–5 1.73 1.72 1.73 1.73 1.71 1.75 1.77 1.81

–4 1.73 1.72 1.71 1.73 1.73 1.71 1.80 1.78

–3 1.72 1.74 1.70 1.71 1.71 1.71 1.76 1.83

–2 1.67 1.74 1.68 1.67 1.68 1.70 1.79 1.80

–1 1.68 1.73 1.69 1.66 1.70 1.69 1.78 1.80

0 1.65 1.71 1.63 1.66 1.68 1.67 1.78 1.80

1 1.67 1.72 1.65 1.65 1.65 1.66 1.78 1.79

2 1.65 1.67 1.63 1.63 1.67 1.66 1.77 1.81

3 1.63 1.68 1.63 1.63 1.66 1.66 1.75 1.82

4 1.60 1.69 1.62 1.64 1.64 1.66 1.75 1.82

5 1.63 1.71 1.60 1.62 1.63 1.64 1.76 1.80

6 1.63 1.70 1.57 1.59 1.63 1.64 1.75 1.79

7 1.56 1.75 1.58 1.61 1.63 1.64 1.72 1.80

8 1.57 1.72 1.58 1.60 1.65 1.64 1.75 1.78

9 1.60 1.66 1.57 1.59 1.65 1.65 1.76 1.77

10 1.59 1.71 1.55 1.60 1.61 1.64 1.77 1.78

Figure 3: Fractal features of various communication signals

552 CSSE, 2022, vol.43, no.2



Fig. 4 illustrates the confusion matrix produced by the DNN model on the classification of distinct
digitally modulated signals. The figure depicted that the DNN model has classified 190 signals into
2ASK, 185 signals into 4ASK, 200 signals into 2FSK, 193 signals into 4 FSK, 180 signals into 8FSK,
200 signals into BPSK, 196 signals into 16QAM, and 185 signals into 32QAM.

Fig. 5 showcases the confusion matrix produced by the BMO-DNN method on the classification of
different digitally modulated signals. The figure outperformed that the BMO-DNN approach has classified
195 signals into 2ASK, 195 signals into 4ASK, 200 signals into 2FSK, 199 signals into 4 FSK,
193 signals into 8FSK, 200 signals into BPSK, 199 signals into 16QAM, and 194 signals into 32QAM.

Figure 4: Confusion matrix of DNN model

Figure 5: Confusion matrix of BMO-DNN model
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Tab. 2 investigates the performance of the DNN and BMO-DNN techniques under varying modulation
types. On the classification of 2ASK signal, the DNN model has obtained a precision of 0.9135, recall of
0.9500, accuracy of 0.9825, and F-score of 0.9314. Likewise, on the classification of 4FSK signal, the
DNN method has attained a precision of 0.9554, recall of 0.9650, accuracy of 0.9900, and F-score of
0.9602. Concurrently, on the classification of BPSK signal, the DNN technique has obtained a precision
of 0.9756, recall of 1.0000, accuracy of 0.9969, and F-score of 0.9877. Simultaneously, on the
classification of 32QAM signal, the DNN manner has achieved a precision of 0.9788, recall of 0.9250,
accuracy of 0.9881, and F-score of 0.9512. Also, on the classification of 2ASK signal, the BMO-DNN
manner has got a precision of 0.9653, recall of 0.9750, accuracy of 0.9925, and F-score of 0.9701.
Besides, on the classification of 4FSK signal, the BMO-DNN method has gained a precision of 0.9851,
recall of 0.9950, accuracy of 0.9975, and F-score of 0.9900. Additionally, on the classification of BPSK
signal, the BMO-DNN technique has obtained a precision of 0.9950, recall of 1.0000, accuracy of
0.9994, and F-score of 0.9975. Furthermore, on the classification of 32QAM signal, the BMO-DNN
methodology has led to a precision of 0.9949, recall of 0.9700, accuracy of 0.9956, and F-score of 0.9823.

Table 2: Results analysis of proposed DNN and BMO-DNN model in terms of various measures

DNN model

Signal type Precision Recall Accuracy F-Score

2ASK 0.9135 0.9500 0.9825 0.9314

4ASK 1.0000 0.9250 0.9906 0.9610

2FSK 0.9901 1.0000 0.9988 0.9950

4FSK 0.9554 0.9650 0.9900 0.9602

8FSK 0.9091 0.9000 0.9762 0.9045

BPSK 0.9756 1.0000 0.9969 0.9877

16QAM 0.9289 0.9800 0.9881 0.9538

32QAM 0.9788 0.9250 0.9881 0.9512

BMO-DNN model

2ASK 0.9653 0.9750 0.9925 0.9701

4ASK 1.0000 0.9750 0.9969 0.9873

2FSK 1.0000 1.0000 1.0000 1.0000

4FSK 0.9851 0.9950 0.9975 0.9900

8FSK 0.9650 0.9650 0.9912 0.9650

BPSK 0.9950 1.0000 0.9994 0.9975

16QAM 0.9707 0.9950 0.9956 0.9827

32QAM 0.9949 0.9700 0.9956 0.9823

An average results analysis of the BMO-DNN technique and DNN technique take place in Fig. 6 and
Tab. 3. The table values depicted that the DNN technique has resulted in an average precision of 0.9564,
recall of 0.9556, accuracy of 0.9889, F-score of 0.9556, and kappa of 0.9493. Besides, the BMO-DNN
technique has obtained better performance with an average precision of 0.9845, recall of 0.9844, accuracy
of 0.9961, F-score of 0.9844, and kappa of 0.9821. These values portrayed that the BMO-DNN technique
has outperformed the DNN technique.
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In order to guarantee the improved modulation signal recognition rate of the BMO-DNN technique, a
brief comparison study is made under varying SNR in Tab. 4 and Fig. 7. The results demonstrated that
the BMO-DNN technique has accomplished maximum recognition rate under varying SNRs. For
instance, with −5dB, the BMO-DNN technique has obtained a higher recognition rate of 0.53 whereas the
GRA, KNN, BP, RF, and DNN techniques have achieved a lower recognition rate of 0.45, 0.45, 0.41,
0.47, and 0.49.

Figure 6: Performance analysis of BMO-DNN technique

Table 3: Average analysis of proposed BMO-DNN model

Method Precision Recall Accuracy F-Score Kappa

DNN model 0.9564 0.9556 0.9889 0.9556 0.9493

BMO-DNN model 0.9845 0.9844 0.9961 0.9844 0.9821

Table 4: Recognition rate under various SNRs

Recognition rate

SNR/dB GRA KNN BP RF DNN BMO-DNN

−5 0.45 0.45 0.41 0.47 0.49 0.53

−4 0.49 0.45 0.46 0.48 0.51 0.56

−3 0.49 0.46 0.50 0.49 0.53 0.61

−2 0.53 0.50 0.54 0.54 0.57 0.65

−1 0.55 0.52 0.58 0.58 0.61 0.69

0 0.59 0.54 0.63 0.62 0.67 0.75

1 0.60 0.57 0.69 0.68 0.73 0.80

2 0.63 0.61 0.73 0.72 0.77 0.88
(Continued)
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Moreover, with −1dB, the BMO-DNN approach has attained a maximum recognition rate of
0.69 whereas the GRA, KNN, BP, RF, and DNN algorithms have reached a lesser recognition rate of
0.55, 0.52, 0.58, 0.58, and 0.61. Eventually, with 2dB, the BMO-DNN algorithm has obtained an
increased recognition rate of 0.88 whereas the GRA, KNN, BP, RF, and DNN techniques have achieved a
lower recognition rate of 0.63, 0.61, 0.73, 0.72, and 0.77. Meanwhile, with 5dB, the BMO-DNN method
has obtained an enhanced recognition rate of 0.95 whereas the GRA, KNN, BP, RF, and DNN
approaches have gained a minimal recognition rate of 0.73, 0.73, 0.84, 0.85, and 0.89. At the same time,
with 8dB, the BMO-DNN technique has obtained a superior recognition rate of 0.98 whereas the GRA,
KNN, BP, RF, and DNN algorithms have gained a lesser recognition rate of 0.79, 0.84, 0.86, 0.94, and
0.97. At last, with 10dB, the BMO-DNN approach has obtained a higher recognition rate of 0.98 whereas
the GRA, KNN, BP, RF, and DNN methodologies have reached a minimum recognition rate of 0.82,
0.86, 0.85, 0.95, and 0.97. The experimental outcomes pointed out the superior recognition rate of the

Table 4 (continued)

Recognition rate

SNR/dB GRA KNN BP RF DNN BMO-DNN

3 0.66 0.66 0.79 0.78 0.82 0.91

4 0.69 0.69 0.82 0.81 0.86 0.94

5 0.73 0.73 0.84 0.85 0.89 0.95

6 0.72 0.77 0.85 0.87 0.91 0.97

7 0.79 0.79 0.87 0.90 0.93 0.98

8 0.79 0.84 0.86 0.94 0.97 0.98

9 0.79 0.85 0.85 0.95 0.97 0.99

10 0.82 0.86 0.85 0.95 0.97 0.98

Figure 7: Recognition rate under various SNRs
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CSM-FFDNN model over the recent state of art methods interms of different evaluation parameters due to
the DNN based classification, and BMO based hyperparameter optimization.

5 Conclusion

In this study, a new CSM-FFDNN model is designed to classify various kinds of digitally modulated
signals such as ASK, FSK, BPSK, and QAM. The proposed CSM-FFDNN model involves three major
processes namely fractal FE, DNN based classification, and BMO based hyperparameter optimization.
Besides, the extracted features are fed into the DNN model for modulation signal classification. To
improve the classification performance of the DNN model, a BMO is used for the hyperparameter tuning
of the DNN model in such a way that the DNN performance can be raised. A comprehensive
experimental analysis is made to point out the improved outcomes of the CSM-FFDNN model. The
experimental outcomes pointed out the superior recognition rate of the CSM-FFDNN model over the
recent state of art methods interms of different evaluation parameters. In future, advanced DL models can
be used to classify the digitally modulated signals.
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