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Abstract: The increasing use of images in miscellaneous applications such as
medical image analysis and visual quality inspection has led to growing interest
in image processing. However, images are often contaminated with noise which
may corrupt any of the following image processing steps. Therefore, noise filter-
ing is often a necessary preprocessing step for the most image processing applica-
tions. Thus, in this paper an optimized field-programmable gate array (FPGA)
design is proposed to implement the adaptive vector directional distance filter
(AVDDF) in hardware/software (HW/SW) codesign context for removing noise
from the images in real-time. For that, the high-level synthesis (HLS) flow is used
through the Xilinx Vivado HLS tool to reduce the design complexity of the HW
part. The SW part is developed based on C/C++ programming language and exe-
cuted on an advanced reduced instruction set computer (RISC) machines (ARM)
Cortex-A53 processor. The communication between the SW and HW parts is
achieved using the advanced extensible Interface stream (AXI-stream) interface
to increase the data bandwidth. The experiment results on the Xilinx
ZCU102 FPGA board show an improvement in processing time of the AVDDF
filter by 98% for the HW/SW implementation relative to the SW implementation.
This result is given for the same quality of image between the HW/SW and SW
implementations in terms of the normalized color difference (NCD) and the peak
signal to noise ratio (PSNR).

Keywords: AVDDF filter; image denoising; HW/SW codesign; high-level
synthesis; FPGA

1 Introduction

In the image processing application, the corruption of the image by the noise (impulsive noise, Gaussian
noise, mixed Gaussian and impulsive) presents one of the most common problems. This noise is due from
same limitations imperfections and can appear for example in the medical images, scanned images, during
the transmission, etc. Thus, it is very important to remove the noise and repair the images before executing
any subsequent task in the image processing. However, various non-linear filters are proposed in literature for
images denoising such as the adaptive vector directional distance filter (AVDDF) [1], the vector directional
distance filter (VDDF) [2,3], the vector directional filter (VDF) [4,5], etc. The strong point of these filters are
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their capability to remove the noise and repair the images without introducing a significant distortion. But
unfortunately, these filters present a high computational complexity.

In this context, researchers are worked continuously to decrease the computational complexity of the
non-linear filters by adopting as solution a hardware implementation on the field-programmable gate array
(FPGA) circuit. In fact, in [6], the authors propose an FPGA design for the vector median filter (VMF)
which is implemented and evaluated on Xilinx Spartan 3 FPGA. The experimental results show that
this design can process 94 frames per second at 145 MHz. But, in [7], a hardware architecture for the
VDF filter is proposed. This architecture is connected to the NIOS II processor and evaluated in
hardware/software (HW/SW) codesign context. The proposed design allows to speed up the VDF filtering
process. In [8], an approximated hardware design is proposed to implement the VDDF filter. This
architecture provides a good balance between the filtering quality and the processing time. Nevertheless,
these presented works use an estimate method of non-linear functions in order to be appropriate for
low-level hardware implementation on FPGA using hardware description language (HDL) (e.g., Verilog or
VHSIC hardware description language (VHDL)) which conducts to loss in the quality of the filtered images.

Over the years, the integration density in the FPGAs continues to evolve which allows to use the FPGA
to implement several applications in various field such as image and video processing [9,10], IoT system
[11], neural networks [12], etc. But these applications are characterized by their complexity. Hence, there
is a necessity to raise the level of the design space abstraction from a traditional register-transfer level
(RTL) based approach to an efficient approach to reduce the design complexity of the FPGA. Thus, the
high-level synthesis (HLS) approach based on the software programming language such as C, C++,
SystemC has become widely used with FPGA [13,14]. This increases the designer productivity and
reduces the run-time in the design flow.

In this work, we propose an optimized HLS hardware design for the AVDDF filter in order to decrease
the computational complexity and speed up the filtering process. This architecture uses a floating-point
operation to implement this filter which permits to increase the accuracy of the image filtering. Also, for
the performance evaluation, this filter is connected and integrated as intellectual property (IP) block with
an advanced reduced instruction set computer (RISC) machines (ARM) Cortex-A53 processor in HW/SW
codesign environment and evaluated on the Xilinx ZCU102 FPGA board. In fact, the HW
implementation is used for performance. But the SW implementation is used for flexibility to upgrade the
design [15,16].

However, in this paper, an overview of the AVDDF filter is introduced in Section 2. The HLS design
flow is used to generate an optimized hardware design to implement the AVDDF filter as described in
Section 3. In Section 4, the AVDDF design is integrated and evaluated in the HW/SW codesign context.
In Section 5, the performance evaluation of the HW/SW implementation of the AVDDF filter is
discussed. The conclusion is presented in Section 6.

2 AVDDF Overview

The AVDDF filter [1] is designed based on the VDDF filter. It provides the benefits of the treatment by
the direction and the magnitude. Furthermore, it improves the filtering process by using a threshold as
reported in Fig. 1. Indeed, through this threshold, the AVDDF filter can determine whether the pixel
contains noise or not.
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We consider by x1; x2; . . . ; xN the noisy pixel in the filtering window (W). N defines the window size.
xðNþ1Þ=2 is the central pixel. It is used to indicate the position of the filtering window. The combined
magnitude/angular distances for the input vector xi is determined by Eq. (1).

ci ¼
XN
j¼1

A xi; xj
� � !1�l

:
XN
j¼1

xi � xj
�� �� !l

(1)

where l 2 0; 1½ � represents a design parameter. It is used to control the angle and the distance criterions.
In fact, when l ¼ 0; the filter processes the direction, but when l ¼ 1 filter processes the magnitude.
However, when l ¼ 1=2, it gives similar importance to both criteria. For 0, l, 1, the angular and the
magnitude distances are measured. xi � xj

�� ��
2
determines the distance between the inputs xi and xj

through the Euclidean distance. A xi; xj
� �

measures the angle between the inputs xi and xj as depicted
by Eq. (2).

A xi; xj
� � ¼ arccos

xixTj
xik k: xj
�� ��

 !
(2)

The output yAVDDF of the AVDDF filter is given by Eq. (3).

yAVDDF ¼ x 1ð Þ for c N�1ð Þ=2�nAVDDF
xðN�1Þ=2 otherwise

�
(3)
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Figure 1: AVDDF algorithm
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In Eq. (3), the c N�1ð Þ=2 corresponds to the measurement of the distance associated to the center pixel
x N�1ð Þ=2. x 1ð Þ is the output of the AVDDF filter. It is determined by x 1ð Þ � x 2ð Þ � . . . � x Nð Þ which is

related to the minimum magnitude/angular distance c 1ð Þ 2 c 1ð Þ � c 2ð Þ � . . . � c Nð Þ
n o

. The threshold

nAVDDF is computed by Eq. (4).

nAVDDF ¼ c 1ð Þ þ �AVDDF�AVDDF ¼ N � 1þ �AVDDF

N � 1
c 1ð Þ (4)

where nAVDDF is the approximated variance. �AVDDF is used to adjust the smoothing properties of the AVDDF
filter. �AVDDF is expressed by Eq. (5) which represents the estimation of the multivariate variance of the
vectors contained in the window W.

�AVDDF ¼ c 1ð Þ
N � 1

(5)

However, when c N�1ð Þ=2 � nAVDDF , the central pixel x N�1ð Þ=2 is considered noisy. In this case, the output
of the AVDDF filter is equal to the vector x 1ð Þ: But, when c N�1ð Þ=2, nAVDDF then x N�1ð Þ=2 remains
unchanged.

3 HLS AVDDF Design

Recently, the HLS flow is used with FPGA to help engineers to explore the design space in fraction of
time from a given behavioural description based on a high-level programming language (e.g., SystemC,
C/C++, etc). For that, the HLS is emerged as an efficient and powerful tool to increase the productivity of
design and decrease the design cycle time. In this context, different HLS tools are elaborated like Xilinx
Vivado HLS tool which proposes several directives to generate an optimized hardware architecture for
any algorithms. In fact, the arrays can be implemented as registers or memories through the RESOURCE
directive. Besides, the implementation of the arithmetic operation can be optimized using ALLOCATION
directive. Furthermore, the loops can be pipelined or not unrolled or fully/partially unrolled through the
PIPELINE and UNROLL directives to reach a higher throughput for the loop iterations.

Nevertheless, Fig. 2 presents the block diagram of the hardware architecture generated for AVDDF filter
using Xilinx Vivado HLS 18.1 tool from a specific C/C++ code. In fact, some directives (such as
PARTITION, PIPLINE, RESOURCE) are added incrementally to the AVDDF C/C++ code to generate
various AVDDF hardware designs. Indeed, our goal is to select an optimized design that gives a
compromise between hardware cost and processing time. By the way, Tab. 1 shows the hardware
resources needed for the different AVDDF designs under the Zynq XCZU9EG FPGA in terms of Look-
up-table (LUTs), Flip-Flops (FFs), BRAM blocks and DSP blocks. But Fig. 3 illustrates the number of
the clock cycles for HLS AVDDF generated design.

From Tab. 1, we can see that the FPGA resources required for the design 1 which presents the hardware
architecture without any optimization is equal to 12% of LUTs, 3% of FFs, 10% of BRAMs and 18% of
DSPs. But design 1 needs 2041947658 clock cycles to filter all pixels in the image as reported in Fig. 3.
It is clear that the number of clock cycles is very high and must be reduced. For that, we suggest
to generate design 2 by applying the PARTITION directive which allows to split the filtering
window (Fig. 2) to small blocks and promote parallel access to data. According to Fig. 3 and Tab. 1,
design 2 permits to decrease the number of clock cycles by 0.7% but with an increase by 20% of LUTs
and 28% of FFs compared to design 1. From these results, we notice that the number of clock cycles is
still high. For that, more directives should be added to decrease the number of clock cycles.
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Figure 2: Proposed AVDDF filter block diagram

Table 1: FPGA resources of the AVDDF designed architectures

LUTs FFs BRAM_18K DSP48E

Design 1 34783 (12%) 17022 (3%) 198 (10%) 457 (18%)

Design 2 43738 (15%) 23750 (4%) 196 (10%) 463 (18%)

Design 3 437945 (159%) 156572 (28%) 360 (19%) 1553 (61%)

Design 4 141630 (51%) 62107 (11%) 156 (8%) 1001 (39%)
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From Fig. 2, we can constate that the AVDDF filter contains three Loops. Loop1 needs 9 iterations.
Loop2 needs 81 iterations. Loop3 needs 5308416 iterations. Thus, to decrease the number of clock cycles
needed for the Loop3, the design 3 is generated by applying the PIPLINE directive. As shown in Fig. 3,
the number of clock cycles is decreased by 99% for design 3 compared to design 2 but with an overflow
in the FPGA space by 59% in term of LUTs (Tab. 1). Consequently, the RESOURCE directive is used.
This allows to reduce the hardware cost by 67% in term of LUTs for design 4 relative to design 3
as illustrated in Tab. 1 with a raise by 81% in number of clock cycles (Fig. 3). When, we compare
design 4 and design 2, we can notice that design 4 provides a decrease in number of clock cycles by 99%
and uses more LUTs by 69% relative to design 2.

Subsequently, the design 4 is selected to implement and evaluate the AVDDF filter in HW/SW codesign
context. In fact, this design allows a compromise between hardware cost and processing time.

4 HW/SW Implementation of the AVDDF Filter

The ZCU102 FPGA board [17] is selected to implement the AVDDF filter in HW/SW codesign context.
The heart of this board is the Zynq XCZU9EG FPGA. Besides, this board contains many input/output
devices such as 4 GB 64-bit DDR4 memory, 64 MB flash memory and SD card support which permits to
designers to develop several designs for various applications such as automotive, video, industrial and
communications.

The Zynq XCZU9EG FPGA contains the Programmable Logic (PL) and Processing System (PS) parts.
The PS part is based on the ARM Cortex-A53 hardcore processor operating at 1.2 GHz. The ARM Cortex-
A53 is a Harvard 64-bit processor and designed based on Armv8-A architecture. In this processor, the size of
the L1 cache memory for data and instruction is equal to 32 KB. But the size of the L2 cache is 1 MB. On the
other hand, the PL part contains 274 k of LUTs, 548 k of FFs, 32.1 Mb of BRAM memory and 2520 DSPs
blocks. The Zynq XCZU9EG FPGA is completed by industry standard advanced extensible interface (AXI)
protocol interface which defined by ARM. The AXI interface provides a high bandwidth, low latency
connection between the PS and PL parts. Nevertheless, there are two main AXI4-interfaces: AXI4-Stream
and AXI4-Lite [9]. Indeed, the AXI4-Stream provides a high-speed streaming data by using point-to-
point streaming data without indicating any addresses. But the AXI4-Lite is a traditional low throughput
memory communication which is used for status and control registers. However, with Zynq FPGA,
Xilinx proposes an efficient HW/SW design flow through the Xilinx Vivado design 18.1 tool as presented

Figure 3: Number of clock cycles of the AVDDF architectures
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in Fig. 4. This flow allows to accelerate design time and time-to-market (TTM). In fact, according to Fig. 4,
the Vivado HLS tool is used through a SW specification such as C/C++ programming language and particular
directives to develop an optimized RTL architecture. Then, when the HLS synthesis is completed, the
compressed file (.ZIP) including all HDL files is generated and exported to the Xilinx Vivado tool which
is used to implement a multiple accelerators blocks connected to the embedded processor across an AXI
interface. This interface is created through the Vivado HLS tool. After that, the Xilinx Vivado tool
synthesizes, implements and generates the Bitstream file (.bit) of the HW/SW design. Thereby, the
HW/SW architecture of the AVDDF filter is designed based on this flow as depicted in Fig. 5.

Vivado HLS

Constraints/
Directives

C\C++ code

RTL generation
(VHDL)

AVDDF
specification

Export RTL as IP
(.ZIP)

Vivado Design Tool

Run synthesis

Run
Implementation

Generate (.bit)

Figure 4: Xilinx Vivado design flow
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According to Fig. 5, the AXI4-stream interface is used through the Direct Memory Access (DMA) to
interconnect and transfer data between the PS and PL (AVDDF coprocessor) parts. In fact, the DMA
provides a high throughput for data transfer. However, our architecture receives three image lines from
DDR memory through three DMAs (DMA1, DMA2 and DMA3). Each 24-bit RGB pixel received by
the AVDDF coprocessor is stored in internal memory. Once the 3 × 3 filtering window is constructed,
the AVDDF filter starts to find the pixel which it has the minimum magnitude/angular distance. Then, the

Figure 5: HW/SW architecture for AVDDF filter
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24-bit RGB filtered pixel is concatenated and stored in the internal image memory. For the following filtering
window, only three 24-bit RGB pixels are added with one RGB pixel for each line as shown in Fig. 6. In the
end, when all RGB pixels in the noisy image are filtered, the DMA1 is used to transfer all RGB pixels of the
filtered image from the internal memory to the DDRmemory. After that, the ARMCortex-A53 reads the data
from DDR and reconstructs the image.

5 HW/SW Experimental Results

The HW/SWAVDDF design is evaluated on the ZCU102 board in terms of processing time, quality of
the filtered images and hardware cost. For that, various standard test images (e.g., Lena, Flower, Sailboat,
Peppers and Monalisa) are uploaded in the SD card of the ZCU102 board. The size of these standard
images is 256 × 256 pixels. Besides, these images are corrupted by “salt and pepper” impulsive noise.
Besides, the ARM Cortex-A53 timer is used to measure the processing time. Further, the objective
measurement [18] are used to determine the quality of the filtered images by using the normalized color
difference (NCD) [19] and the peak signal to noise ratio (PSNR) which are defined by eqs. (6) and (7),
respectively.

NCD ¼
1

NM

PN
i¼1

PM
j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lo i; jð Þ � Lx i; jð Þð Þ2 þ uO i; jð Þ � ux i; jð Þð Þ2 þ vo i; jð Þ � vx i; jð Þð Þ2

q

1
NM

PN
i¼1

PM
j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lo i; jð Þð Þ2 þ uo i; jð Þð Þ2 þ vo i; jð Þð Þ2

q (6)

where Loði; jÞ and Lxði; jÞ present lightness values and uoði; jÞ, voði; jÞ, uxði; jÞ and vxði; jÞ chrominance values
related to original image pixel oði; jÞ and the filtered pixel xði; jÞ.

PSNR ¼ 10log
3� 2552

1=NM
PN
i¼1

PM
j¼1

xk i; jð Þ � okði; jÞð Þ2
(7)

where (i,j) is the indices of a sample in the image, M and N characterizes the image size, k characterize the
color channel, okði; jÞ is the original image sample and xkði; jÞ is the filtered image sample.

Moreover, our design is synthesized using Xilinx Vivado design 18.1 tool to determine the hardware
cost. Fig. 7 reports the hardware cost in terms of LUTs, FFs, BRAM and DSP. From, this figure, we can
notice that our design requires 46% of LUTs, 10% of FFs, 8% of BRAM and 35% of DSP blocks which
keep more FPGA resources to add more hardware blocks.

Figure 6: Construction of the 3 × 3 filtering window
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The SW part is developed using C/C++ programming language. In our code the transfer of pixels
between the DDR memory and HW part is controlled by three DMAs through the instructions presented
in Fig. 8. Indeed, the DMA1 is addressed by the address of the 1st line of image, DMA2 by 2sd line and
DMA3 by 3rd line. The DMA1 is used also to transfer the filtered image from HW part to DDR memory.
So, DMA1 is configured in read/write mode. Besides, the “ff.h” library is added to our code in order to
manage the reading and writing of images from/to SD card. However, our C/C++ code is developed and
compiled through the Xilinx Software Development Tool Kit (SDK) based on the hardware specification
as presented in Fig. 9. Thus, in our case, the executable file (.elf) is generated through the SDK to be
performed by the ARM Cortex-A53 processor on standalone application mode.
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Figure 7: Hardware cost of the HW/SWAVDDF design on the XCZU9EG FPGA

//Transfer line1 of image to HW part by DMA1
Status=XAxiDma_SimpleTransfer(&AxiDma1,(u64)mat_in,MAX_PKT_LEN, XAXIDMA_DMA_TO_DEVICE);
//Transfer line2 of image to HW part by DMA2
Status=XAxiDma_SimpleTransfer(&AxiDma2,(u64)(mat_in+768),MAX_PKT_LEN, XAXIDMA_DMA_TO_DEVICE);
//Transfer line3 of image to HW part by DMA3
Status=XAxiDma_SimpleTransfer(&AxiDma3,(u64)(mat_in+1536),MAX_PKT_LEN, XAXIDMA_DMA_TO_DEVICE);
//Transfer filtered image to DDR memory by DMA1
Status=XAxiDma_SimpleTransfer(&AxiDma1,(u64)RxBufferPtr,MAX_PKT_LEN, XAXIDMA_DEVICE_TO_DMA);

Figure 8: Transfer data between HW part and DDR memory by three DMAs

C\C++ code

Generate (.elf) Bitstream (.bit)

HW
specification

Figure 9: HW/SW codesign evaluation process
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According to the Fig. 9, once the executable file (.elf) is generated, it is loaded with the Bitstream file
(.bit) on the FPGA board. Our program is performed by the Cortex-A53 processor to read the noisy images
from the SD card, process them by the AVDDF filter and store the filtered images in the SD card. Then, the
computer is used to read the filtered images from the SD card and evaluate the image quality.

Tabs. 2 and 3 report the comparison of the processing time and the quality of the filtered images,
respectively, for the SW and HW/SW implementations of the AVDDF filter.

In fact, from Tab. 2, we can notice that the HW/SW AVDDF design is 79 times faster than the SW
implementation which permits an improvement in processing time by 98% for the HW/SW AVDDF
implementation relative to SW implementation of the AVDDF filter. This result is given for the same the
quality of the filtered images in terms of NCD and PSNR between these two implementations as shown
in Tab. 3. As well, the quality of the filtered images, it is confirmed by the subjective measurement as
presented by Fig. 10. This quality is confirmed also for medical image. Indeed, we cannot notice any
difference between the images filtered by SW and HW/SW implementations. Therefore, we can conclude
that the HW/SW AVDDF design provides better results relative to the SW implementation despite of the
HW part is implemented in floating-point through the HLS flow. From Tab. 4, we can conclude that our
design is more performant than [7,8,20] in spite of that the AVDDF is more complex than the VDF, DDF
and VDDF filters.

Table 2: Processing time comparison of the SWand HW/SWAVDDF implementations

SW HW/SW

Processing time (ms) 3000 38.24

Table 3: Image quality comparison of the SW and HW/SWAVDDF implementations

NCD PSNR

SW HW/SW SW HW/SW

Flower 0.0129 0.0129 32.18 32.18

Lena 0.0100 0.0100 33.34 33.34

Sailboat 0.0217 0.0217 32.23 32.23

Peppers 0.0114 0.0114 33.46 33.46

Monalisa 0.0107 0.0107 34.26 34.26

CSSE, 2022, vol.43, no.2 813



6 Conclusion

In this work, an efficient HW/SW AVDDF design is proposed to remove noise from corrupted
images. However, an optimized HW architecture in terms of hardware cost and number of clock cycles is
designed using the HLS flow through the Xilinx HLS Vivado tool. This architecture is designed by
adding PARTITION, PIPLINE and RESOURCE directives to the floating-point AVDDF C/C++ code.

Figure 10: (P1) Original images, (P2) contaminated images with impulsive noise (3%), filtered images with
(P3) SW and (P4) HW/SWAVDDF implementations

Table 4: Performance comparison with literature

Ref. Filters Images
size

Processing
time (ms)

Specifications

[7] VDF (fixed-point) 176 × 144 41 NIOS II + VDF coprocessor@70 MHz

[8] VDDF (fixed-point) 176 × 144 48 NIOS II + VDDF coprocessor@110 MHz

[20] DDF (floating-point) 512 × 512 2600 Intel i7-4790 Core@3.2 GHz

Our
design

AVDDF (floating-point) 256 × 256 38.24 ARM Cortex-A53@1.2 GHz + AVDDF
coprocessor@100 MHz

814 CSSE, 2022, vol.43, no.2



The AXI-stream protocol interface is used through the DMAs to accelerate the data transfer between the
AVDDF coprocessor and PS part. The HW/SW AVDDF design is evaluated on ZCU102 FPGA board.
The experiment results report that the HW/SW implementation permits to speed up the processing time
by 78 times with the same quality of the filtered images compared to the SW implementation.
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