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Abstract: COVID-19 (Coronavirus disease of 2019) is caused by SARS-CoV2
(Severe Acute Respiratory Syndrome Coronavirus 2) and it was first diagnosed
in December 2019 in China. As of 25th Aug 2021, there are 165 million con-
firmed COVID-19 positive cases and 4.4 million deaths globally. As of today,
though there are approved COVID-19 vaccine candidates only 4 billion doses
have been administered. Until 100% of the population is safe, no one is safe. Even
though these vaccines can provide protection against getting seriously ill and
dying from the disease, it does not provide 100% protection from getting infected
and passing it on to others. The more the virus spreads; it has more opportunity to
mutate. So, it is mandatory to follow all precautions like maintaining social dis-
tance, wearing mask, washing hands frequently irrespective of whether a person is
vaccinated or not. To prevent spread of the virus, contact tracing based on social
distance also becomes equally important. The work proposes a solution that can
help with contact tracing/identification, knowing the infected persons recent travel
history (even within the city) for few days before being assessed positive. While
the person would be able to give the known contacts with whom he/she has inter-
acted with, he/she will not be aware of who all were in proximity if he/she had
been in public places. The proposed solution is to get the CCTV (Closed-Circuit
Television) video clips from those public places for the specific date and time and
identify the people who were in proximity—i.e., not followed the safe distance to
the infected person. The approach uses YOLO V3 (You Only Look Once) which
uses darknet framework for people detection. Once the infected person is located
from the video frames, the distance from that person to the other people in the
frame is found, to check if there is a violation of social distance guideline. If there
is, then the people violating the distance are extracted and identified using Facial
detection and recognition algorithms. Two different solutions for Face detection
and Recognition are implemented and results compared—Dlib based models
and OpenCV (Open Source Computer Vision Library) based models. The solu-
tions were studied for two different CCTV footages and the results for Dlib based
models were better than OpenCV based models for the studied videos.
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1 Introduction

Coronavirus disease is an infectious disease caused by a newly discovered coronavirus. The virus
spreads primarily through droplets of saliva or discharge from the nose when an infected person coughs
or sneezes. Some of the methods suggested by WHO (World Health Organization) to reduce the spread of
infection include practicing Social Distancing, wearing masks, avoiding crowded areas, frequent cleaning
of hands and staying at home, going out only for important or essential needs. As per WHO guidelines, it
is suggested to maintain at least 1 meter distance from others while being outdoors and greater distance
when indoors, to prevent the spread of infection. Given that infected people may be asymptomatic as
well, it becomes particularly important to track the positive cases and quarantine them to prevent spread.
Also, so far, though vaccines have started becoming available, they are still not readily available to larger
population. With a fast-moving pandemic, no one is safe, unless everyone is safe [1]. Hence it becomes
important to focus more on building immunity and preventing further spread by taking precautionary
measures suggested by WHO. Given the importance of social distancing, most of the countries had taken
decision to implement lockdown to prevent the outbreak. Travel restrictions were implemented,
educational institutions and most of the industries excluding essential services were closed. Due to this
there was an impact to the economy. After a prescribed period of lockdown, the countries gradually
started relaxing the restrictions and letting industries open with minimal staff with enough social distance
etc. Even during this stage social distance was perceived as a key factor to be adhered to. Even though
the guideline has been set in place, people missed out to follow the social distance in public spaces and
this had led to further spread of infection and wave 2 in many countries. Hence once a person is tested
COVID-19 positive, it becomes very important to do contact tracing and test and quarantine all primary
contacts as well. This is difficult if the person has been to public places and doesn’t know who all have
violated the safe distance from the infected person. This is the reason why Indian Government had
released mobile applications like Arogya Setu which helps track proximity to infected person through
Bluetooth and GPS (Global Positioning System). In this research work, couple of AI based solutions are
proposed to do the contact tracing using YOLO V3 (You Only Look Once) for Object detection and two
methods for Facial detection and Facial recognition algorithms which are dlib based models and OpenCV
(Open Source Computer Vision Library) based models. The results of both the methods are compared
with and without image preprocessing and with and without some additional training. This solution can
be used on any CCTV (Closed Circuit Television) footages which are readily available in many public
places to identify the person who tested COVID-19 positive, and their primary contacts based on the
prescribed social distance. To evaluate the effectiveness of the solutions the accuracy, precision and recall
parameters are arrived at and compared for Object detection, Facial detection, Facial recognition as well
as calculation of Social Distance between people.

2 Background Study and Related Work

Many countries including India and South Korea are utilizing GPS to track the movements of the
suspected or infected persons to monitor any possibility of their exposure among healthy people. In India,
the government is using the Arogya Setu App, which worked with the help of GPS and Bluetooth to
locate the presence of COVID-19 patients in the vicinity area. On the other hand, some law enforcement
departments have been using drones and other surveillance cameras to detect mass gatherings of people
and taking regulatory actions to disperse the crowd. Such manual intervention in these critical situations
might help flatten the curve, but it also brings a unique set of threats to the public and is challenging to
the workforce.
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As a technology advancement, computer vision and deep learning are being looked at, to create solutions
for identifying social distancing violations, violations in wearing masks etc. The first set of references
discussed here are the works studied for object detection.

In the work of authors Kajabad et al. [2], the application of different deep learning algorithms like
YOLO, SSD (Single-Shot Detection), R-CNN (Region Based Convolutional Neural Networks) for object
detection were studied. As per this study, the YOLO performed faster than R-CNN and Faster R-CNN.
This is especially true for running in real-time applications with a capable GPU (Graphics processing
unit). Although it is not as fast as SSD, YOLOv3 algorithm has higher accuracy in people identification.
Background subtraction was done with Gaussian Mixture algorithms and heatmap color technique to
identify dense areas in the picture. The experimental results have shown that the accuracy and the
performance of both algorithms are quite good.

A Comparative Study of Custom Object Detection Algorithms blog by Intellica.AI [3] discussed the
performance of various object detection algorithms. According to the study R-CNN, Fast RCNN were
developed initially but were much slower. Faster RCNN was developed to improve the speed and was the
best of the three algorithms on COCO (Common Objects in Context) dataset. But all the above
algorithms have some demerits like not looking at the complete image and also using only the sections of
image which have higher probability of containing the object to locate the object. Due to this they were
still slow. SSD outperformed the above three algorithms in terms of speed but compromised on the
accuracy. The latest version i.e., the V3 of YOLO outperformed the Faster R-CNN and SSD in terms of
accuracy and inference time on the benchmark dataset. Since the number of layers for YOLO V3 are
more than that of YOLO V2, it is bit slower than YOLO V2, though it is better than YOLO V2 in most
aspects. In the blog on YOLO v3 by Li [4], he has discussed that the key performance improvement is
achieved by its ability to detect multi-scale objects, better feature extraction capability and the loss
function. Based on the above background study on object detection models YOLO V3 is chosen for
detecting people from the video frames for this work.

Works related to social distancing were studied and listed here. Prem et al. [5] study the effects of social
distancing measures on the spread of the COVID-19 epidemic and the effects of sudden lifting of lockdown.
Authors used synthetic location-specific contact patterns to simulate the ongoing trajectory of the outbreak
using SEIR (susceptible-exposed-infected-removed) models. It was also suggested that premature and
sudden lifting of social distancing could lead to an earlier secondary peak, which could be flattened by
relaxing the interventions gradually. Adolph et al. [6] highlighted the situation of the United States of
America, where due to lack of common consent among all policymakers’ lockdowns could not be
adopted at an early stage, which resulted in harm to public health. Although social distancing impacted
economic productivity, many researchers are trying hard to overcome the loss.

Punn et al. [7] have suggested a solution to monitor social distancing with the help YOLO V3 object
detection and other Deep sort techniques. The solution was a real-time deep learning-based framework
for automating the monitoring of social distancing using surveillance videos. The work computes the
number of violations. Various state-of-the-art object detection models like Faster RCNN, SSD, and
YOLO v3 were compared, out of which YOLO v3 illustrated the most efficient performance. Ahmed
et al. [8] proposed an overhead perspective to monitor social distance in surveillance videos. Pre-trained
YOLOV3 was used, and transfer learning was done to additionally train the model for overhead
perspective. Euclidean distance between the pairwise centroids (of the bounding boxes) was used to
monitor the social distance violations. For the distance calculation, an approximation of physical distance
to the pixel was used and for the social distance, threshold was defined. In the solution proposed for this
work as well, an approximation of physical distance to pixel is used. The transfer learning helped
increase the accuracy of the model. Saponara et al. [9] have proposed an intelligent surveillance system
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based on thermal images for social distance measurement. YOLO V2 was used for detection and tracking of
people. Thermal images are used to monitor the temperature of the person. The distance between the pixels is
translated into a metric distance, after knowing the range and field of view covered by the camera and then
compared with the threshold. Since CCTV cameras provide angle views on the ground, homograph
transformation has been used to get the corresponding points on the ground to calculate the correct
distance. The works discussed so far focus on live tracking of the social distance from surveillance
videos. In the next set some extensive works done in the field of Facial detection and recognition are
discussed next.

Some of the blogs by Geitgey [10] and Rosebrock [11] were referred to understand more about other
models available for face detection, pre-processing and recognition. Few of the face detection models
available are Haar Cascade Face Detector in OpenCV, Deep Learning based Face Detector in OpenCV,
HOG (Histogram of Oriented Gradients) face Detector in Dlib, Deep Learning based Face Detector in
Dlib. Haar Cascade face detector was developed by Viola and Jones and was the best for many years
[12]. It is capable of detecting at multiscale and has a simple architecture. But some of the major
drawbacks are, it doesn’t work on non-frontal images, doesn’t work under occlusion and has lot of false
predictions. This was tried for this work for few of the CCTV videos and there were large number of
false predictions and hence was not chosen. DNN (Deep Neural Network) is the deep learning-based face
detector in OpenCV. It is based on Resnet-10 architecture. This is the most accurate out of the four
methods, works well for different face orientations, works under substantial occlusion and capable of
multi-scale detection. HOG Face detector is based on HOG features and SVM (Support Vector Machine).
This is the fastest on CPU (Central processing unit), works well for frontal and slightly non-frontal faces,
works under small occlusion. It doesn’t work well for smaller faces. However, it can be trained with
smaller faces. CNN (Convolutional Neural Networks) Face detector in DLIB uses a MMOD (Maximum-
Margin Object Detector) with CNN based features. Though it works for different face orientations and
fast on GPU, it works very slow on CPU. Also, this was tried out for one of the CCTV videos and it was
not able to detect the faces—maybe due to the reason that the resolution was quite low. For the same
reason this face detector was not chosen for this work. Based on the above study, DNN face detector in
Open CV and HOG face detector in Dlib were chosen for this work.

Face recognition algorithms help in identification or verification of a person. Google’s Facenet and
Facebook’s Deepface are some of the best performing algorithms [13]. But both of them are not open
source. OpenBR (Open Source Biometric Recognition) is another option but licensed as per
Apache2.0 and implements 4SF2 (Spectrally Sampled Structural Subspace Features 2) for face
recognition. OpenFace is one the best performing open-source algorithm for the Facial Recognition. It is
based on Python and Torch implementation of face recognition with deep learning. It can be run on CPUs
and the model can be trained with high accuracy with little data. Schroff et al. [14] proposed Facenet as a
solution for face recognition/verification. The method proposes to directly learn from the facial
embedding into Euclidean space for face verification. The key differentiator from other previously
proposed CNN based solutions is that the suggested end to end triplet loss-based training simplifies the
setup and improves the performance. The same method of training is used by the proposed model for
face recognition in this work. Amos et al. [15] proposed OpenFace which is a face recognition library, as
the solution for Facial recognition. Facenet’s loss function was used in the solution. The nn4.
small2v1 Openface model was used. Affine transformation was used to pre-process the input image, in
order to align the faces and the neural network. Openface model was used to generate the 128d facial
embeddings. Linear SVM was used for classification/Facial recognition. This method was evaluated using
the standard LFW (Labelled Faces in the Wild) dataset and compared with eigenfaces, fisherfaces, LBPH
(Local Binary Pattern Histogram). Openface had the fastest training time and better accuracy among
them. Adam Geitgey’s blog helped to understand more about the Adam Geitgey’s face recognition library

950 CSSE, 2022, vol.43, no.3



built using Davis King’s dlib. This model is able to perform with an accuracy of 99.38% on the standard LFW
dataset. This library has lot of useful tools for face detection, pre-processing like aligning faces, finding the
facial landmarks, finding the 128-d embeddings etc. Based on the above study it was decided to use both the
Openface model and dlib based model for the chosen work and compare the results.

After obtaining the results, in order to understand if the performance of the proposed solution was good
enough, William crumplers blog [16] was referred on How accurate are Facial recognition systems.
According to this blog, when the Facial recognition on surveillance videos and crowded places were
analyzed, it was found that the accuracy varies with a huge range (as low as 36% to 87%) depending on
a lot of parameters. Whereas in a controlled setting the accuracy could increase to 94.4% NIST’s
(National Institute of Standards and Technology) 2017 FIVE (Face in Video Evaluation) validated the
performance of Facial recognition algorithms on videos captured in settings like airport boarding gates
and sports venues. The test found that when using footage of passengers entering through boarding gates
—a relatively controlled setting—the best algorithm had an accuracy rate of 94.4%. Whereas when tested
for the sporting venue, even leading algorithms had accuracies ranging between 36% and 87% only,
depending on camera placement. For the application chosen for this work, since the environments may
vary from closed spaces like shops, shopping malls, hotels to open spaces like open auditoriums or
parking lots, the clarity of the videos will vary between medium to low resolution and very rarely will
have higher resolution. With this limitation, the facial recognition accuracy would be limited. But even
with this limitation, it would be much better than manual process, to identify as many contacts as
possible from public places.

Though there are extensive works done in identifying social distance violations or in identifying whether
people are wearing masks, to our knowledge this is the first effort to identify the primary contacts and
recognizing their face (by measuring the social distance between people) from CCTV footage videos.

3 Proposed Methodology for Object Detection, Face Recognition and Social Distance Calculation

3.1 Object Detection

As discussed in previous section YOLO v3 is used for detecting the people from video frames for the
proposed solution.

YOLO object detection algorithm was developed using the darknet framework. YOLO looks at the
complete image only once and does the object detection and hence it is much faster. It works by splitting
the entire image into multiple grids and extracting the feature from each grid. Both feature extraction and
object detection are done multi-scale. The features extracted from the last three layers from each of the
feature extractor are fed into different detection heads. Residual blocks are utilized for feature learning.
These blocks have many convolutional layers and skip connections. An input image is first subject to
feature extraction to extract the feature embeddings at multiple scale all at once. YOLO V3 uses Darknet-
53 as feature extractor [17]. The extracted features are fed to corresponding detectors to do the object
detection as well at different scales. These Key processing steps in YOLO v3 are summarized in the
Fig. 1 below.

Input Image

Feature Extractor 
(Darknet-53)

52 Convolutions, 
Skip Connections

Features extracted at 
3 Scales

3 Prediction Heads
(3 Detectors)

Bounding Box 
Coordinates,  

Objectness Scores, 
Class Scores

Figure 1: Key processing steps in YOLO v3
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YOLO predicts multiple bounding boxes for each grid. But only one box per scale is needed. So, while
training, this is identified by selecting the one which has highest Intersection Over Union (IoU) value with the
ground truth box. [8] If BoxT is ground truth box and BoxP is predicted Box then IoU is calculated as in
Eq. (1)

IoUðpred; actualÞ ¼ area
BoxT \ BoxP

BoxT [ BoxP
(1)

In YOLO v3, there are three bounding boxes for each grid cell, one for each scale. There would be 52 ×
52 × 3, 26 × 26 × 3 and 13 × 13 × 3 boxes for each scale. Each box would have predictions for box
coordinates, objectness score and the class probability. The coordinates contain predicted information for
bounding box: x, y, w, h. The objectness score indicates if the box has an object or not. This will be 1 if
an object is present. The class probabilities represent the probability that the object predicted is present in
the box. This has class number value.

Mean squared error is used to calculate the error in each of the predictions. The loss function consists of
Localization loss Lloc which includes both centroid (xy) loss & width-height (wh) loss, objectness loss and
classification loss. Localization Loss is calculated using Eq. (2)

Lloc ¼ �Co�ord1
obj
ij

Xs^2

i¼0

XB

j¼0
ðxi � x�i Þ

^2þ ðyi � y�i Þ
^2þ ffiffiffiffiffi

wi
p �

ffiffiffiffiffiffi
w�
i

p� �2þ
ffiffiffiffi
hi

p
�

ffiffiffiffiffi
h�i

p
Þ^2 (2)

where i refers to the grid number and j is the bounding box number, λCo−ord is the weight of the coordinate
error, S^2 is the number of grids in the image, B is the number of generated bounding boxes per grid 1objij will
be 1 when the jth bounding box in grid i has an object. xi, yi, wi, hi are the positions of the predicted bounding
box. x�i ; y�i ; w�

i ; h
�
i are the actual positions of the bounding box of the ith grid.

The Objectness loss LObj has two terms as given by Eq. (3) given C�
ij-the objectness score for jth

bounding box in the ith grid cell, 1objij –which will be 1 when in the ith cell, the jth bounding box is
responsible for object detection; otherwise, it is equal to 0, �noobj is a constant that is used to reduce the
loss during background detection. The first term for the case when an object is detected and other for
case the object not detected.

LObj ¼
Xs^2

i¼0

XB

j¼0
1objij ðCij � C�

ijÞ
^2þ �noobj

Xs^2
i¼0

XB
j¼0

1noobjij ðCij � C�
ijÞ

^2 (3)

Given p�i ðcÞ as the conditional class probabilities for class c in ith grid cell, the classification loss Lcls for
each grid is computed as the squared error of the conditional class probabilities pi(c) as shown in Eq. (4)

Lcls ¼
Xs^2

i¼0
1objij

X
c 2 class

1obji ðpiðcÞ � p�i ðcÞÞ
^2 (4)

Overall Loss is calculated as Eq. (5)

L ¼ Lloc þLObj þ Lcls (5)

YOLO v3 model used has already been pre-trained on COCO dataset. The dataset had 80 different
categories such as humans, cats, dogs, traffic lights, etc., and almost 300,000 images.

3.2 Face Detection and Recognition

Facial Detection helps in identifying all the faces from an image. This can be achieved by training the
algorithm with different types of faces which may have millions of samples.
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Facial Recognition algorithms on the other hand are used to identify individuals from photos or videos.
These algorithms as any other Machine/deep learning algorithms need to be trained with a set of known
images of the people who are to be identified. Once done, they would be able to identify the faces of the
persons on which they were trained on. These algorithms work by passing an image through multiple
layers to extract facial features like the position of eyes, nose, mouth, distance between these features etc.
to create a feature vector. The extracted feature vector is compared with the trained dataset to identify the
closest match. In general, using surveillance video images to locate/identify a person tend to have lower
accuracies compared to the applications in which they are used for Facial verification systems, which
have fixed higher resolution cameras which could capture high-quality images in the required angle and
lighting. Whereas in the case of surveillance videos, the lighting and visibility of individuals moving
freely through public spaces cannot be controlled.

First step in any face recognition pipeline is to locate the face in the image using facial detection
algorithms. Next step is extracting the feature vectors. The final step is the facial recognition which is
done by comparing the output from previous step with the feature vectors extracted by trained model to
recognize the person with whom the vector closest matches with.

For the work two methods for face detection and recognition are chosen and the results compared from
these two approaches. HOG face detector with Face recognition using dlib and DNN face detector in
OpenCV with OpenFace using OpenCV.

3.2.1 Method 1-HOG Face Detector with Adam Geitgey’s Face Recognition Using Dlib
HOG detector extracts the key features from the image by understanding the distribution of directions of

gradients. Most of the information about the image is packed in the edges and corners rather than flat regions.
So, these are used by the detector to extract useful information from the image. In the first step, the image is
pre-processed. For face detection, each the pre-processing involves extracting the face by cropping the image
and then resizing the image by modifying the aspect ratio as expected by the detector. In the work this is made
easier by passing the box contents of each person. Next step is calculation of gradients—As mentioned
earlier, the detector understands the image by analyzing the gradient information. To find the histogram
of gradients, the horizontal and vertical gradients are calculated. This is easily achieved by filtering the

image with the two kernels �1 0 1½ �
�1
0
1

2
4

3
5. This helps in firing the magnitude of gradient where

ever there is a sharp change in intensity. This helps in extracting only the relevant information from the
image while eliminating the rest. From the below Fig. 2 it is easy to identify that it is a face.

Figure 2: Gradients calculated to extract the relevant information from face
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The x-gradient fires on vertical lines and the y-gradient fires on horizontal lines. The magnitude fires in
places of sharp intensity changes. None of them fire when the region is smooth. If gx and gy are the horizontal
and vertical components of the gradient, then the magnitude g and direction θ of the gradient is calculated
using Eq. (6)

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2x þ g2y

q
h ¼ arctan

gy
gx

(6)

The values for each pixel over 8 × 8 block are quantized into 9 bins [18]. The bin represents a directional
angle of gradient and value in that bin. The value is calculated as the summation of the magnitudes of all
pixels with the same angle. The histogram is then normalized over a 16 × 16 block size. This is done by
normalizing four blocks of 8 × 8 together which helps minimize the effects of over and under exposure.
With the above steps, the face can be detected. Next step is to recognize the same.

This is done by using Facial encodings. These are 128 measurements that are extracted from each face.
The face encoder is pre-trained on public datasets to generate the 128 embeddings. This is used to construct
face embeddings used for the actual recognition process. This pre-trained model is used to extract the
embeddings for the image database used for this work. Multiple images should be available for each
person to be trained. The image for every person is stored in separate folder with the folder name being
the person’s name. The algorithm goes through each face, extracts embeddings and associates it with the
person’s name. All the embeddings along with the names for the trained faces are stored in a face
encodings file. This file is later used by the recognizer to match a new image and find the closest match.
The input image is taken, and the face location identified first followed by extraction of the 128d
embeddings. These embeddings are compared with the encodings in the face encodings file. If there is a
close match, then the name of the person to whom the face belongs is identified. If there is more than one
match, then one which has the maximum number of matches is selected.

The above face recognition process can also be done using aligned faces as input. In some frames the
faces may be slightly turned towards left or right or may be tilted up or down rather than looking straight.
Face Alignment is achieved using warping, so that the eyes, nose and lips are always in the same position in
the image. For this purpose, face landmark estimation [19] is used. The Face Alignment algorithm uses dlib
facial landmark predictor which estimates 68 specific points on any face which are called as the landmarks.
These landmarks represent key regions in the face around eyes, nose, mouth and jawline The predictor used
is pre-trained to identify these 68 points. These points are used to align the face. The steps involved in the
process can be understood by Fig. 3.

3.2.2 Method 2-DNN Face Detector in OpenCV with OpenFace Using OpenCV
The Deep Neural Network (DNN) face detector is built on Caffe model. It is uses ResNet-10 architecture

and is based on the Single Shot Detector (SSD). The neural network training and inference portions use

Figure 3: Face alignment using facial landmarks. (a) Aligned face (b) 68 facial landmarks (c) Landmarks
overlayed on aligned face (d) Original face (e) Aligned face
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Torch, Lua and luajit. The DNN detector detects if a face is present in the image and if present the location of
the face within the image is returned.

The input image is pre-processed to perform mean subtraction, scaling and in some cases, channel
swapping as required. Mean Subtraction is performed to minimize the effects of changes in lighting
conditions [11]. If Ri, Gi, Bi are the Red, Green and Blue Values of the ith pixel in the image and mean
values of the Channels are given by μR, μG, μB then the new RGB values for the ith pixel is calculated as
in Eq. (7)

Ri ¼ Ri � lR; Gi ¼ Gi � lG; Bi ¼ Bi � lB (7)

Scaling can be done for the purpose of normalization by a factor σ as shown in Eq. (8), which may
represent the standard deviation across the training dataset. For this work no scaling option is chosen i.e.,
scale factor is chosen as one.

Ri ¼ ðRi � lRÞ=r; Gi ¼ ðGi � lGÞ=r; Bi ¼ ðBi � lBÞ=r (8)

The swapping option is available as OpenCVexpects the image in BGR (Blue Green Red) order. But the
mean value expects in RGB (Red Green Blue) order. To resolve this R and B channels in image are to be
swapped.

The above pre-processed image is passed through to the Deep Neural network for detection in the form
of a blob. The face detector gives a list of detections which contains the information about the bounding
boxes of the faces in the image. The problem with using these bounding boxes directly as an input into
the neural network is that faces may be looking in different directions. So, the faces are aligned using the
face aligner from dlib. Testing is also done without aligning step and the results are tabulated.

For the next step face recognition, the face image cannot be directly used by the recognizer. This is too
high-dimensional for a classifier to take as input and recognize the face. So, to simplify the same, a low
dimensional representation is created. In this work, the openface.nn4.small2. v1-face embedding deep
learning model helps with feature extraction using a low-dimensional representation also known as 128-d
embeddings for the face blob. The pre-trained Torch Deep Learning model is used to generate the 128 d
embeddings. The simplified low dimensional representation generated by the embedder helps the neural
network in making efficient classification. The extracted embeddings are passed on to Linear SVM model
to perform the desired Facial recognition.

For training purpose, the pre-trained OpenFace model is used to generate the embeddings. This model
uses FaceNet’s triplet loss to extract the embeddings on the unit hypersphere. Euclidean distance between the
embeddings represents the similarity between faces. The triplets have two faces of the same person (Anchor
and Positive) and one face of a different person (negative). The goal of the triplet loss function is to separate
the positive pairs from the negative by a distance margin while minimizing the distance between the anchor
and the positive image.

[14] The facial embeddings f(x) for the image x embedded on d-dimensional Euclidean space can be
represented as f(x) ∈ℝd. The embedding should be on the d-dimensional hypersphere, ||f(x)||2 = 1.

The goal of the training is to minimize the distance between the image xai (anchor) of a person and all
other images xpi (positive) of the same person compared to the distance between the anchor to an image xni
(negative) of any other person. All the triplets should satisfy the condition given in Eq. (9)

kxai � xpi k
2
2 þ a , kxai � xni k

2
2 ; 8 ðxai ; xpi ; xni Þ 2 T (9)
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α is the margin that is enforced between positive and negative pairs and T is the set of all possible triplets
in the training dataset and with a cardinality N. The goal of the training is to minimize triplet loss function
given by (10).

L ¼
XN
i

½kf ðxai Þ � f ðxpi Þk22 � kf ðxai Þ � f ðxni Þk
2
2 þ a� (10)

The embeddings extracted by OpenFace model are used to train the linear SVM. For training the SVM, a
local image database was created using multiple images for each person. The image for every person is stored
in separate folder with the folder name being the person’s name. The OpenFace model goes through each
face, extracts embeddings and associates it with the person’s name. All the embeddings along with the
names which are the labels for the trained faces are extracted and stored as embeddings and label pickle
files. The key steps involved in the face recognition pipeline proposed in this method are summarized as
in Fig. 4.

Testing was done with and without aligning the faces and in this method aligned faces gave better
accuracy. Face detection has already been explained in detail earlier. The faces are aligned using
FaceAligner from imutils. The alignment is done by finding the centroid for each eye as well as the angle
between the centroids [20]. Also, the midpoint between the eyes is computed. Once the angle of required
rotation is found the entire face is rotated considering this midpoint as the top of the nose using affine
transformation. The Fig. 5 below explains how the face alignment was performed in this method.

3.3 Social Distance Calculation

The goal is to find distance between the given seed person and other people in the frame, to identify the
primary contacts. For this first all the people in the image need to be detected. If the seed person is available in
the frame, then the distance between this person to each of the other person is to be calculated. This is done by
calculating the Euclidean distance between the centroid of the persons bounding boxes. The minimum

Input Image
Face Detection  

(DNN Face 
Detector)

Preprocessing   
(Face Alignment 

using Affine 
Transformation)

Neural Network 
(Openface Torch 

DL model) 

Classification/ Face 
Recognition  

(sklearn SVM)
128d 

Embeddings

Figure 4: Summary of the OpenCV face recognition pipeline

Figure 5: Face alignment using affine transformation. (a) Original face (b) Eye landmarks overlayed on
original face (c) New eye landmarks on aligned face
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distance to be maintained is set as the threshold value. If there is a violation, then the other person is identified
using the Facial detection and recognition algorithms and stored as primary contact. If no violation, then we
proceed to find the distance with other persons in the image until the distance from seed person to all other
persons in the frame is calculated. The distance between the pixels is converted to measurable metric distance
such as meters based on the typical distance of an object from the camera.

4 Proposed Solution

This application doesn’t require real time processing. Hence offline processing is proposed. The
proposed solution helps identify the primary contacts after a person is tested Covid positive. While it is
easy to track the contacts if the subject has not been out of home, most cases they would have gone to
several public places before they knew that they were infected. So, it is important to gather information
from person on the recent public visits and collate the CCTV videos available for the date and time from
those places. These videos can be used as input to the solution to identify the primary contacts who had
been in close proximity with the subject/seed person. We train the Face detection and recognition
algorithms with few photos of the seed person. The videos collated are first converted into frames. For
practical purposes it is enough if we take 1 FPS (Frame Per Second), as there won’t be much change in
the movement of people within a second especially when they are walking around in public places. So
1 FPS input video used for testing. The overall approach is explained briefly in Fig. 6.

From each frame detect all people using YOLO V3 algorithm and store their bounding box coordinates
in a list. Use the images from each of these bounding boxes to detect the faces using HOG detector or DNN
detector and then recognize them using dlib face recognition or Openface and SVM. If the seed person is
present, then we calculate the Euclidean distance from the centroid of the seed person bounding box to
the centroid each of other persons bounding box. If this distance is less than the prescribed distance, then
we use face detect and recognize algorithms to find the name of the contact and store it in our database.
Irrespective of whether the algorithm is able to recognize the name of the contact or not, still the image
of the contacts are extracted and stored in a separate path for our perusal later. If the distance is the and
for every frame. By the end of the processing, we would have the names of the primary contacts in a
separate file and also their images extracted from the frames in a separate path that we specified.

Figure 6: Proposed solution
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Training and Testing

For YOLO v3 we just utilized a pretrained algorithm trained on COCO dataset and this worked well for
identifying the persons in the frame. The face detection models are also pre-trained on public image
databases. For the extraction of Facial embeddings, the models are pre-trained on public image databases
as well. OpenFace is trained with 500k images from combining the two largest labelled face recognition
datasets for research, CASIA-WebFace (Chinese Academy of Sciences’ Institute of Automation) and
FaceScrub. For the face recognition the classifier can initially be trained with some public image
databases for the specific region or city. To check if the accuracy improves, we trained the face detection
and recognition algorithms with few images of the seed person from the input video and studied the
results. Results were also compared with and without face alignment. For the purpose of this study, the
training was done with multiple images for each person in the videos. Though the initial analysis was
done for a wedding video shot with professional camera and some videos shot on the road with mobile
camera initially, further testing was done using CCTV videos used for home surveillance. Two different
videos from cameras installed at different views and heights were covered to check the variation in results.

5 Results, Analysis and Conclusion

The above approach was tested with a 2 different CCTV footage videos with low resolution (960 × 576).
We have tested the performance with YOLOV3 for object detection and two methods of HOG face detector with
face recognition algorithm using dlib and DNN face detector with Openface face recognition algorithms. The
same was tested with and without pre-processing of faces by performing alignment before recognition.
Testing was also done to check if there was any improvement in recognition if the algorithms were tried by
additional training with few images from input video. The performance of the model was evaluated by
calculating the accuracy, precision and recall understanding how well they were able to deliver the expected
performance. To calculate these, we determine the True Positives, True Negatives, False Positives and False
negatives for each of these. True Positives (TP) and True Negatives (TN) are the count of correctly predicted
values—Yes predicted as yes and no predicted as No. False Positives (FP) and False Negatives (FN) are
wrong predictions. Accuracy is the ratio of correct prediction to the total observations as in Eq. (11)

Accuracy ¼ ðTP þ TNÞ=ðTP þ FP þ FN þ TN (11)

Precision is the ratio of correctly predicted positive observations to the total predicted positive
observations given by Eq. (12). High precision relates to the low false positive rate.

Precision ¼ TP=ðTP þ FPÞ (12)

Recall which also refers to sensitivity is the ratio of correct positive predictions to all observations in
actual class—yes as given by below Eq. (13).

Recall ¼ TP=ðTP þ FNÞ (13)

5.1 Performance of Object Detector

YOLO V3 performed well for the videos tested it was able to identify most of the people from all video
frames accurately with very minimal miss. The True Positives and Negatives here refer to right prediction of
all the people present or absent in each frame. The results are tabulated in Tab. 1.

5.2 Performance of Facial Detector

Face detection and recognition efficiency drops if the key facial features are not fully visible. So, we
have tried to give the accuracy, precision and recall parameters in two ways—1) Considering only the
count of faces with the key features fully visible and 2) Without eliminating any faces.
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The HOG face detector in most cases was able to identify the person if full view of the face was
available. The accuracy increased only slightly if the algorithm was trained with few images of seed
person from the input video. The accuracy was better for HOG detector when the faces were not aligned
before detection. When the Facial detection was attempted after training with two or three additional
photos of the people from the video file and there was an improvement in identification as can be seen in
the same table. As can be seen in the results as tabulated in Tab. 2, HOG detector performed much better
than DNN face detector. The DNN detector performs slightly better when the faces were aligned before
recognition compared to when they were not. The accuracy of face detection for DNN without alignment
was quite low, even when trained with images from input video.

Face detection results-considering only properly visible faces

Tabs. 2 and 3 are the results considering only the faces that are properly visible as the base count i.e.,
cases for which the key facial features are visible to CCTV 1 and 2 after eliminating the remaining from
calculation. The corresponding graphical representations are given by Figs. 7 and 8.

Table 2: Face detection results for CCTV video1

Face detection
algorithm

Face
aligned

Trained with
images from input

Accuracy Precision Recall

HoG No Yes 97.80% 100% 97.80%

HoG No No 95.70% 100% 95.70%

HoG Yes No 71.70% 100% 71.70%

DNN Yes No 39.10% 100% 39.10%

DNN Yes Yes 25.00% 92% 23.90%

DNN No Yes 17.40% 100% 17.40%

Table 1: Results for YOLO V3

Input file Objects detected People present People detected Accuracy Precision

CCTV Video 1 71 71 70 98.6% 100%

CCTV Video 2 97 83 82 99.0% 100%

Table 3: Face detection results for CCTV video2

Face detection
algorithm

Face aligned
before processing

Trained with
input images

Accuracy Precision Recall

HoG No Yes 75.80% 100% 75.80%

HoG No No 75.80% 100% 75.80%

HoG Yes No 51.50% 100% 51.50%

DNN Yes No 39.40% 100% 39.40%

DNN Yes Yes 40.00% 93% 39.40%

DNN No Yes 39.40% 100% 39.40%
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Tabs. 4 and 5 are the results considering all the faces in the frames irrespective of whether they are
properly visible to CCTV 1 and 2. The corresponding graphical representations are given in Figs. 9 and 10.

Face detection results-considering all faces
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Figure 7: Face detection for CCTV video1
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Figure 8: Face detection for CCTV video2

Table 4: Face detection results for CCTV video1

Face detection
algorithm

Face aligned
before processing

Trained with
input images

Accuracy Precision Recall

HoG No Yes 64.30% 100% 64.30%

HoG No No 62.90% 100% 62.90%

HoG Yes No 47.10% 100% 47.10%

DNN Yes No 25.70% 100% 25.70%

DNN Yes Yes 16.70% 92% 15.70%

DNN No Yes 11.40% 100% 11.40%
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5.3 Performance of Facial Recognition

Face Recognition was tried out with Openface and dlib based face recognition algorithm. Dlib based
algorithm performed better for the tested CCTV input videos. These algorithms were also tested by
training with few additional photos from the input video to check if there is an improvement in
recognition. The results obtained for the different input videos are tabulated and discussed below.

Table 5: Face detection results for CCTV video2

Face detection
algorithm

Face aligned
before processing

Trained with
input images

Accuracy Precision Recall

HoG No No 30.50% 100% 30.50%

HoG No No 30.50% 100% 30.50%

HoG Yes No 20.70% 100% 20.70%

DNN Yes No 15.90% 100% 15.90%

DNN Yes Yes 16.70% 93% 15.90%

DNN No Yes 15.90% 100% 15.90%
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Figure 9: Face detection for CCTV video1

0.0

0.2

0.4

0.6

0.8

1.0

Trained
with i/p img

Not trained
with i/p

Not trained
with i/p

Not trained
with i/p

Trained
with i/p img

Trained
with i/p img

Not Aligned Not Aligned Aligned Aligned Aligned Not Aligned

HoG HoG HoG DNN DNN DNN

Face Detection: Considering all faces-CCTV 
Video 2

Accuracy Precision Recall

Figure 10: Face detection for CCTV video2
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Tabs. 6 and 7 are show the results for the face recognition algorithms for CCTV Video 1 and
2 respectively. The corresponding graphs are shown in Figs. 11 and 12. For the Recognition algorithm
only the detected faces come in as input and hence we have considered all the calculations only based on
that count. While Dlib based algorithm worked much better without aligning faces before recognition, the
accuracy of OpenFace improved considerably by training them and processing them after alignment.
Training them with few images from input video improved the accuracy for both the algorithms.

Table 6: Face recognition results for CCTV video1

Face recognition
algorithm

Face aligned
before processing

Trained with
input images

Accuracy Precision Recall

dlib based No Yes 97.78% 98% 100.00%

dlib based No No 86.36% 86% 100.00%

dlib based Yes No 12.12% 12% 100.00%

OpenFace Yes No 61.11% 61% 100.00%

OpenFace Yes Yes 66.67% 64% 100.00%

OpenFace No Yes 37.50% 38% 100.00%

Table 7: Face recognition results for CCTV video2

Face recognition
algorithm

Face aligned before
processing

Trained with
input images

Accuracy Precision Recall

dlib based No Yes 100.00% 100% 100.00%

dlib based No No 96.00% 96% 100.00%

dlib based Yes No 5.88% 6% 100.00%

OpenFace Yes No 61.54% 62% 100.00%

OpenFace Yes Yes 100.00% 100% 100.00%

OpenFace No Yes 76.92% 77% 100.00%
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Figure 11: Face recognition for CCTV video1
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5.4 Performance of Social Distance Calculation Logic

The performance of the social distance calculation is equally important in identification of the primary
contacts. This was tested for an input video shot from a professional camera in a wedding ceremony. From
the testing done, it was concluded that none of the primary contacts were missed out. But there were few non-
primary contacts identified as primary, as the depth from the camera is not properly visible in a 2D image.
This was due to the fact that camera calibration was not done, and we have used standard ratio to convert
pixels to measurable metric. Tab. 8 shows the accuracy, precision and recall results for the Social
Distance calculation based on the testing done.

5.5 Output

Few sample output images showing the contacts identified and showing the social distance between the
seed and other people are given below. As discussed earlier we have used the CCTV videos for testing
purpose, and these are taken from the ones typically fitted in houses. First image is from CCTV Video 1,
in which there is one seed and one primary contact. The second and third images are from the CCTV
Video 2, in which there is one seed person and two primary contacts. The processed outputs from these
images are seen in Fig. 13.
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Figure 12: Face recognition for CCTV video2

Table 8: Results for social distance calculation

TP TN FP FN Accuracy Precision Recall

71 45 39 0 75% 65% 100%

CSSE, 2022, vol.43, no.3 963



Acknowledgement: None other than those mentioned in the Authors section have contributed to this article.

Funding Statement: This research did not receive any specific grant from funding agencies in the public,
commercial, or not-for-profit sectors.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] World Health Organization, Information on Covid-19. Available: https://www.who.int/emergencies/diseases/

novel-coronavirus-2019 [Online Accessed August 25, 2021].

[2] E. N. Kajabad and S. V. Ivanov, “People detection and finding attractive areas by the use of movement detection
analysis and deep learning approach,” Procedia Computer Science, vol. 156, pp. 327–337, 2019.

[3] Intellica.AI, A Comparative Study of Custom Object Detection Algorithms. Intellica.AI. Available: https://
intellica-ai.medium.com/a-comparative-study-of-custom-object-detection-algorithms-9e7ddf6e765e [Online
published: 2019, December 13].

[4] Y. E. Li, Dive Really Deep into YOLO v3: A Beginner’s Guide. Towards datascience. Available: https://
towardsdatascience.com/dive-really-deep-into-yolo-v3-a-beginners-guide-9e3d2666280e [Online published:
2019, December 31].

[5] K. Prem and Y. Liu, “The effect of control strategies to reduce social mixing on outcomes of the
COVID-19 epidemic in wuhan, China: A modelling study,” The Lancet, vol. 5, no. 5, pp. E261–E270, 2020.

[6] C. Adolph, K. Amano, B. Bang-Jensen, N. Fullman and J. Wilkerson, “Pandemic politics: Timing state-level
social distancing responses to COVID-19,” Journal of Health Politics, Policy and Law, vol. 46, no. 3, pp.
211–233, 2021.

[7] N. S. Punn, S. K. Sonbhadra, S. Agarwal and G. Rai, Monitoring COVID-19 social distancing with person
detection and tracking via fine-tuned YOLO v3 and deepsort techniques. arXiv.org. Available: https://arxiv.org/
abs/2005.01385 [Online published: 2021, April 27].

[8] I. Ahmed, M. Ahmad, J. J. P. C. Rodrigues, G. Jeon and S. Din, “A deep learning-based social distance monitoring
framework for COVID-19,” Sustainable Cities and Society, vol. 65, Feb 2021, article number 102571.

[9] S. Saponara, A. Elhanashi and A. Gagliardi, “Implementing a real-time, AI-based, people detection and social
distancing measuring system for COVID-19,” Journal of Real-Time Image Processing, vol. 18, no. 6, pp.
1937–1947, 2021.

[10] A. Geitgey, Machine Learning is Fun! Part 4: Modern Face Recognition with Deep Learning. Medium.
Available: https://medium.com/@ageitgey/machine-learning-is-fun-part-4-modern-face-recognition-with-deep-
learning-c3cffc121d78 [Online published: 2016, July 24].

Figure 13: Output for CCTV videos

964 CSSE, 2022, vol.43, no.3

https://www.who.int/emergencies/diseases/novel-coronavirus-2019
https://www.who.int/emergencies/diseases/novel-coronavirus-2019
https://intellica-ai.medium.com/a-comparative-study-of-custom-object-detection-algorithms-9e7ddf6e765e
https://intellica-ai.medium.com/a-comparative-study-of-custom-object-detection-algorithms-9e7ddf6e765e
https://towardsdatascience.com/dive-really-deep-into-yolo-v3-a-beginners-guide-9e3d2666280e
https://towardsdatascience.com/dive-really-deep-into-yolo-v3-a-beginners-guide-9e3d2666280e
https://arxiv.org/abs/2005.01385
https://arxiv.org/abs/2005.01385
https://medium.com/@ageitgey/machine-learning-is-fun-part-4-modern-face-recognition-with-deep-learning-c3cffc121d78
https://medium.com/@ageitgey/machine-learning-is-fun-part-4-modern-face-recognition-with-deep-learning-c3cffc121d78


[11] A. Rosebrock, Deep learning: How OpenCV’s blobFromImage works. pyimagesearch. Available: https://www.
pyimagesearch.com/2017/11/06/deep-learning-opencvs-blobfromimage-works/ [Online published: 2017,
November 6].

[12] V. Gupta, Face Detection–OpenCV, Dlib and Deep Learning (C++/Python). Available: https://learnopencv.com/
face-detection-opencv-dlib-and-deep-learning-c-python/ [Online published: 2018, October 22].

[13] O. Kharkovyna, Facial recognition: 8 Open-source tools to detect faces. Available: https://medium.
datadriveninvestor.com/facial-recognition-8-open-source-tools-to-detect-faces-4ec8e37bfcc6 [Online published:
2021, March 1].

[14] F. Schroff, D. Kalenichenko and J. Philbin, “FaceNet: A unified embedding for face recognition and clustering,”
in 2015 IEEE Conf. on Computer Vision and Pattern Recognition, Boston, MA, USA, pp. 815–823, 7-12 June
2015.

[15] B. Amos, B. Ludwiczuk and M. Satyanarayanan, “OpenFace: A general-purpose face recognition library with
mobile applications,” Available: http://reports-archive.adm.cs.cmu.edu/anon/anon/2016/CMU-CS-16-118.pdf
[Online published: 2016, June].

[16] W. Crumpler, How Accurate are Facial Recognition Systems–and Why Does It Matter?. CSIS. Available: https://
www.csis.org/blogs/technology-policy-blog/how-accurate-are-facial-recognition-systems-%E2%80%93-and-why-
does-it-matter [Online published: 2020, April 14].

[17] J. Redmon and A. Farhadi, YOLOv3: An incremental improvement. arXiv.org. Available: https://arxiv.org/abs/
1804.02767 [Online published: 2018, April 08].

[18] R. Thaware, Real-Time Face detection and Recognition with SVM and HOG Features. EEWeb. Available: https://
www.eeweb.com/real-time-face-detection-and-recognition-with-svm-and-hog-features/ [Online published: 2018,
May 28].

[19] A. Rosebrock, Facial landmarks with dlib, OpenCV, and Python. pyimagesearch. Available: https://www.
pyimagesearch.com/2017/04/03/facial-landmarks-dlib-opencv-python/?_ga=2.268801905.1858494572.1636108281-
1176519729.1617967486 [Online Published: 2017, April 3].

[20] A. Rosebrock, Face Alignment with OpenCVand Python. pyimagesearch. Available: https://www.pyimagesearch.
com/2017/05/22/face-alignment-with-opencv-and-python/ [Online published: 2017, May 22].

CSSE, 2022, vol.43, no.3 965

https://www.pyimagesearch.com/2017/11/06/deep-learning-opencvs-blobfromimage-works/
https://www.pyimagesearch.com/2017/11/06/deep-learning-opencvs-blobfromimage-works/
https://learnopencv.com/face-detection-opencv-dlib-and-deep-learning-c-python/
https://learnopencv.com/face-detection-opencv-dlib-and-deep-learning-c-python/
https://medium.datadriveninvestor.com/facial-recognition-8-open-source-tools-to-detect-faces-4ec8e37bfcc6
https://medium.datadriveninvestor.com/facial-recognition-8-open-source-tools-to-detect-faces-4ec8e37bfcc6
http://reports-archive.adm.cs.cmu.edu/anon/anon/2016/CMU-CS-16-118.pdf
https://www.csis.org/blogs/technology-policy-blog/how-accurate-are-facial-recognition-systems-%E2%80%93-and-why-does-it-matter
https://www.csis.org/blogs/technology-policy-blog/how-accurate-are-facial-recognition-systems-%E2%80%93-and-why-does-it-matter
https://www.csis.org/blogs/technology-policy-blog/how-accurate-are-facial-recognition-systems-%E2%80%93-and-why-does-it-matter
https://arxiv.org/abs/1804.02767
https://arxiv.org/abs/1804.02767
https://www.eeweb.com/real-time-face-detection-and-recognition-with-svm-and-hog-features/
https://www.eeweb.com/real-time-face-detection-and-recognition-with-svm-and-hog-features/
https://www.pyimagesearch.com/2017/04/03/facial-landmarks-dlib-opencv-python/?_ga=2.268801905.1858494572.1636108281-1176519729.1617967486
https://www.pyimagesearch.com/2017/04/03/facial-landmarks-dlib-opencv-python/?_ga=2.268801905.1858494572.1636108281-1176519729.1617967486
https://www.pyimagesearch.com/2017/04/03/facial-landmarks-dlib-opencv-python/?_ga=2.268801905.1858494572.1636108281-1176519729.1617967486
https://www.pyimagesearch.com/2017/05/22/face-alignment-with-opencv-and-python/
https://www.pyimagesearch.com/2017/05/22/face-alignment-with-opencv-and-python/

	Primary Contacts Identification for COVID-19 Carriers from Surveillance Videos
	Introduction
	Background Study and Related Work
	Proposed Methodology for Object Detection, Face Recognition and Social Distance Calculation
	Proposed Solution
	Results, Analysis and Conclusion
	flink6
	References


