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Abstract: The two-stage hybrid flow shop problem under setup times is addressed
in this paper. This problem is NP-Hard. on the other hand, the studied problem is
modeling different real-life applications especially in manufacturing and high per-
formance-computing. Tackling this kind of problem requires the development of
adapted algorithms. In this context, a metaheuristic using the genetic algorithm
and three heuristics are proposed in this paper. These approximate solutions are
using the optimal solution of the parallel machines under release and delivery
times. Indeed, these solutions are iterative procedures focusing each time on a par-
ticular stage where a parallel machines problem is called to be solved. The general
solution is then a concatenation of all the solutions in each stage. In addition, three
lower bounds based on the relaxation method are provided. These lower bounds
present a means to evaluate the efficiency of the developed algorithms throughout
the measurement of the relative gap. An experimental result is discussed to eval-
uate the performance of the developed algorithms. In total, 8960 instances are
implemented and tested to show the results given by the proposed lower bounds
and heuristics. Several indicators are given to compare between algorithms. The
results illustrated in this paper show the performance of the developed algorithms
in terms of gap and running time.
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1 Introduction

The hybrid flow shop problems (HFSP) are commonly utilized in several sectors like the manufacturing
area. Indeed, HFSP is modeling several production systems in different industries such as paper, electronics,
cars, chemicals, and semiconductors [1–4].

The two-stage HFSP is a particular case, which is well studied in the literature. This is due to its practical
applications, and its theoretical challenging aspect. Plenty of results are provided to solve this problem using
heuristics, meta-heuristics, and exact methods. Authors in [5] proposed an efficient exact method to solve the
two-stage HFSP. The latter research doesn't achieve the setup times constraint and the time provided to solve
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the problem is remarkable. The Two-stage HFSP with transportation times is addressed in [6]. In the latter
work, several heuristics and exact methods are developed. In the experimental results, it is clear the luck of
the big scale class to show the performance of the developed method when the number of jobs is real big. The
two-stage HFSP with availability constraint is addressed in [7], and an exact algorithm is proposed. In the
latter paper, there is only one machine in stage 1. In addition, only one interval of maintenance for each
machine. Authors in [8] solved the problem using a genetic algorithm (GA). Several constructive
heuristics are developed in the latter work to apply the genetic algorithm seeking the enhancement of the
results. The luck of the development of lower bounds to be used as a measurement of the real
performance of the heuristics is remarkable for the latter work.

In [9], the authors proposed an exact solution for the hybrid flow shop under sequence-dependent setup
time for stage one. An upper bound utilized Hungarian method is proposed. In addition, the authors proposed
three heuristics. The experimental results need to be performed when the author gives more attention to the
big scale instances.

The problem with batch processing machines is studied in [10], where a decomposition approach with
variable neighborhood search (VNS) is developed. Unequal ready times for jobs are considered a constraint
for the latter problem. This problem with parallel dedicated machines is addressed in [11], and several
heuristics are proposed. The objective was the minimization of the total completion time. Besides, the
number of machines is limited to one for stage 1 and two for stage 2. Only two heuristics are developed
in the later work.

In [12] authors proposed an approximate solution based on a Branch and Bound exact procedure to
tackle the problem of two-stage hybrid flow with dedicated machines. Besides, the authors proposed four
constructive heuristics to solve the problem and three dominance priorities. In the experimental results,
the instances are generated with a maximum of 100 jobs.

In [13] a new application of the problem of two-stage HFSP is introduced and a heuristic with a local
search method is developed and an ant colony optimization algorithm is developed. The bi objectives in the
latter search are the total energy consumption and the makespan.

Authors in [14] addressed the problem and proposed a mutant firefly algorithm. Two objectives
functions are proposed in the latter work. One of the objectives is the simultaneous ratio for the coming
of several parts of products at the stage of assembly. The second objective is the on-time delivery ratio
related to the products delivery assignment.

In [15] authors investigated the hybrid flow shop problem (DHFSP) under sequence-dependent setup
times. Three sub-problems are involved. The first sub-problem is the allocation of factories for each job.
The next sub-problem is to find the job sequence for every factory. The third sub-problem is the
allocation of each job at each stage. To test the performance of the proposed solutions authors generated
780 benchmarks in total. In the same context authors in [16], a novel simulated-annealing (NSA)
algorithm was proposed to find a reasonable manufacturing assignment in a good running time. Setup
times are needed when switching between jobs. Considering the setup times while preparing the
schedules of jobs on the machines allows having accurate production planning. To minimize the gap
between theoretical points and real-life situations, the setup times are not neglected in this study. The
two-stage HFSP with setup times is treated in literature [17–20].

In this study, the two-stage hybrid flow shop problem is addressed. Novel heuristics are proposed. These
heuristics are based on the exact solution of the problem of the parallel machine under release and delivery
times constraints. In addition, a lower bound allowing the assessment of the performance of heuristics are
proposed. The studied problem is an NP-hard problem. It is very important to search for heuristics that
give approximate solutions to the problem with acceptable time. In addition, the scale of the problem can
impact the performance of the heuristics on time and gap. In this paper, a total of 8960 instances are
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generated and tested to prove the efficiency of the proposed lower bounds and heuristics. In the literature
review, there is a lack of treatment of the big scale of instances to solve the problem. Indeed, the number
of jobs reaching 200. The proposed heuristics give a solution easily for the big scale of instances with a
satisfying time and gap.

The rest of this paper is structured as follows. Problem presentation is presented in Section 2. The lower
bounds are developed and displayed in Section 3. The detailed heuristics are given in Section 4. An
experimental study and discussion of results are reported in Section 5. Finally, the summarization of the
studied work is presented in the conclusion with future lines.

2 Problem Definition and Proprieties

In this section, the presentation of the problem and its relevant proprieties are presented. In addition, the
problem of the parallel machine under release and delivery times constraints as well as some of its
characteristics are recalled. This is because of the important role of the latter problem in providing
algorithms for the current studied problem. The two-stage hybrid flow shop problem with setup times is
stated as follows. We are given a shop composed of two stages C1 and C2 in series, containing m1 and m2

identical parallel machines, respectively. A set J = {1, 2, …, n} of n jobs have to be executed on the
machines of the two stages in the following way. A machine of C1 is prepared during a setup time s1,j to
be ready for processing a job j during p1, j. After completion the stage 1, an available machine in the
second stage C2 is prepared during s2, j to process the job j. All machines and jobs are ready for
executing at the first time 0. Preemption is not permitted, and all job characteristics s1; j, s2, j, p1, j, and
p2; j are deterministic and integral. The objective of the optimization problem is the minimization of
the makespan. According to the three fields notation [21] the studied problem is denoted by
Fmjs1; j; s2; jjCmax.

Example 1:

Letm1 = 2 andm2 = 2. The setup times and processing times for the two stages illustrates in Tab. 1. Fig. 1
presents a feasible solution for example 1, where the makespan is Cmax = 142.

It is remarkable to note that the setup times in stage 1 are connected directly to the processing times,
while in stage 2, the setup time might be separated from the processing time, as for job 8. Indeed, for this
job c1,8 = 22 which is a release date in the second stage and the setup time is s2,8 = 17 < 22.

3 Lower Bounds

In this section, we present three new lower bounds based on the linear relaxation technique. The first one
is obtained after applying the relaxation of the second stage using the problem of the parallel machine. The
second lower bound is obtained after applying the relaxation of the first stage using the problem of the
parallel machine. The third lower bound is an enhancement of the first one.

Table 1: Setup time and processing time values of Example 1

j 1 2 3 4 5 6 7 8 9 10

s1,j 2 8 15 1 10 5 19 19 3 5

p1,j 6 6 2 8 2 12 16 3 8 17

s2,j 12 5 3 14 13 3 2 17 19 16

p2,j 8 7 12 19 10 13 8 20 16 15
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3.1 Relaxed Second Stage Based Parallel Machine Problem (LB1)

The capacity of the second stage is relaxed and the number of machines m2 is supposed to be not finite.
In this case, an ending processing job in stage 1 has no time to wait for processing in the second stage.
Consequently, the obtained scheduling problem in stage 1 is a parallel machines problem under release
date rj and delivery time qj denoted Pmjrj; qjjCmax where:

▪ rj ¼ s1; j 8j 2 J :
▪ pj ¼ p1; j 8j 2 J :
▪ qj ¼ p2; j 8j 2 J :
▪ m =m1.

Lemma: Any lower bound of the latter defined problem, is a valid lower bound for Fmjs1; j; s2; jjCmax.

Proof: Pmjrj; qjjCmax is obtained after a relaxation of the current problem. Therefore, the optimal values
C�
max is a lower bound of the studied problem. Clearly, if LB is a lower bound of Pmjrj; qjjCmax then it is also a

valid lower bound for Fmjs1; j; s2; jjCmax.

Remark: The Branch & Bound (B&B) algorithm for Pmjrj; qjjCmax presented in [22] is used to obtained
the optimal solution. This exact solution is a valid lower bound for the studied problem. Since the
Pmjrj; qjjCmax is NP-Hard, the B&B might fail to obtain the exact solution within a limit time LT (In this
study the limit time LT is set to 100 s), in this situation the best returned lower bound value while calling
the B&B is a valid lower bound for Fmjs1; j; s2; jjCmax. This remark is valid for the subsequent other
lower bounds. The obtained lower bound in this subsection is denoted LB1.

3.2 Relaxed First Stage Based Parallel Machine Problem (LB2)

The capacity of the first stage is relaxed and the number of machines m1 is supposed to be not finite. In
this case, for any job a machine is set up at zero time and processes without delay in the first stage.
Consequently, the obtained scheduling problem in the second stage is a parallel machine under rj and qj
constraints denoted by Pmjrj; qjjCmax where:

▪ rj ¼ maxðs1; j þ p1; j; s2; jÞ 8j 2 J :
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▪ pj ¼ p2; j 8j 2 J :
▪ qj ¼ 08j 2 J :
▪ m =m2.

Following the same steps as for LB1, the Branch & Bound (B&B) algorithm of Pmjrj; qjjCmax presented
in [22] is used to obtain the optimal solution, and therefore the second lower bound denoted LB2.

3.3 Enhanced Relaxed Second Stage Based Parallel Machine Problem (LB3)

The capacity of the second stage is relaxed and the number of machines m2 is supposed to be infinite. In
this case, an ending processing job in stage 1 has no time to wait for processing in the second stage.
Consequently, the obtained scheduling problem in stage 1 is parallel machines problem under rj and qj
constraints denoted by Pmjrj; qjjCmax where:

▪ rj ¼ 0 8j 2 J :
▪ pj ¼ s1; j þ p1; j 8j 2 J :
▪ qj ¼ p2; j 8j 2 J :
▪ m =m1.

In the same way, and applying the B&B algorithm a third lower bound denoted LB3 is obtained.

Remark: LB3 dominates LB1.

Proof: Clearly, an optimal solution of problem (P1) Pmjrj; qjjCmax with rj = 0, pj = s1,j + p1,j , and qj = p2,j
is a feasible solution for the problem (P2) Pmjrj; qjjCmax with rj = s1,j, pj = p1,j, and qj = p2,j. Therefore, any
lower LB1bound for problem (P2) is dominated by LB3.

Example 2:

In this example, we give the schedule applying LB3 with the same instance presented in Example 1.
Now, we solve exactly the Pmjrj; qjjCmax with rj, pj, and qj values presented in Tab. 2.

The optimal solution of Pmjrj; qjjCmax for the first stage assign on machine 1 the jobs {4, 10, 6, 7} and
on machine 2 the jobs { 8, 9, 3, 5, 1, 2}. The optimal solution of Pmjrj; qjjCmax constitute the lower bound of
the studied problem and illustrated in Fig. 2. Fig. 2 shows that the value of LB3 is equal to 91.

4 Heuristics

In this section, a metaheuristic and three heuristics are proposed. The developed metaheuristic is
implemented using the genetic algorithm (GA). The three other heuristics are based on solving a parallel
machines problem under release and delivery time constraints.

4.1 Genetic Algorithm (H1)

John Holland in [23] presented for the first time the genetic algorithms (GAs). The GAs are inspired by
natural evolution. Indeed, the main fundamentals of natural evolution in a given environment are memetic.

Table 2: The rj, pj, and qj values for LB3

j 1 2 3 4 5 6 7 8 9 10

rj 0 0 0 0 0 0 0 0 0 0

pj 8 14 17 9 12 17 35 22 11 22

qj 8 7 12 19 10 13 8 20 16 15
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During this process, the chromosomes are the main actors in which all the messages and mutations are
performed. The different components are:

1. Chromosome Representation: in this study, a chromosome represents a feasible solution. A
chromosome is constituted by a permutation of jobs. The jobs in this permutation are scheduled
on the machines of stage 1 according to the most available machine rule. That is, the first
remaining job in the permutation is allocated to the most available machine. Once all the jobs are
scheduled to stage 1, the jobs are scheduled on the second stage according to the non-decreasing
order of their completion time in the first stage.

2. Initial population: All the individuals in the initial population are arbitrarily generated, except one
solution which is generated according to the LPT rule in the first stage. The jobs are sorted
according to the non-increasing order of their processing time in the first stage. Once these jobs
are assigned to stage 1 according to the LPT rule, they are scheduled in the second stage
according to the increasing order of their completion time in the first stage.

3. Selection Operator: During the selection phase an operator acts to pick the most suitable solutions in
order to accelerate the convergence toward the global optimum. Several operators are utilized and the
most used one is the roulette wheel selection rule, which is an adopted selection operator in this study.

4. Reproduction: In this step, an individual passes to the next generation without modification, it is a
cloning phase. The main objective of the reproduction phase is to preserve the individuals with
high fitness from the actual generation to the next one.

5. The Operator of Crossover: Enriching the diversity of the population is the main objective of the
crossover operation. Indeed, in this step, the structure of the individuals (chromosomes) is
manipulated. Conventionally, the crossover operator considers two parents and generates two
children. To guarantee the innovation (even partially) of the children a crossbreeding is
performed. The basic idea is that two successful parents will yield better children. The crossover
rate pcðpc 2 ½0; 1�Þ constitutes the proportion of parents on which a crossover operator will act.
The position-based crossover operator (POX) is adopted in this strategy.

6. Mutation: The main goal of the mutation is to create a small randomness element in the population of
individuals. The mutation operator could increase or decrease the space of the possible feasible
solutions, in addition to the variability of the individuals. pm determines the probability of
mutating each element (gene) of representation. In this work, the adopted pm is to mutate a
percentage of all genes.

7. Replacement Strategies: In this step, individuals are withdrawn following a given selection strategy.
Indeed, the best individuals from parents and offspring are kept. This approach allows a rapid
convergence and some time to a moderate solution. In order to avoid such a situation, sometimes,
bad (fitness) individuals are selected. Those replacement strategies can be deterministic or stochastic.
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In practice, the tuple (Population, crossover rate, probability of mutating) considered in the genetic
algorithm are chosen as following: (200;0.9;0.9), (200;0.8;0.9), (200;0.9;0.8), (200;0.7;0.9), (200;0.8;0.8),
(200;0.6;0.9), (200;0.7;0.8), (200;0.6; 0.8), (200;0.5;0.9), and (200;0.4;0.9).

4.2 Heuristic H2

The heuristic H2 is based on solving optimally a sequence of two parallel machines under release and
delivery time constraints. First, a parallel machines problem Pmjrj; qjjCmax is solved in the first stage. The
parameters of this parallel machine are:

▪ rj ¼ 0 8j 2 J :
▪ pj ¼ s1; j þ p1; j 8j 2 J :
▪ qj ¼ p2; j 8j 2 J :
▪ m =m1.

Once the above scheduling problem (Pmjrj; qjjCmax) is solved and an optimal solution is obtained, the
completion time of j∈ J is denoted c1,j. Second, in stage 2, a parallel machines problem Pmjrj; qjjCmax is
optimally solved. The characteristics of the latter problem are:

▪ rj ¼ maxðc1; j; s2; jÞ 8j 2 J :
▪ pj ¼ p2; j 8j 2 J :
▪ qj ¼ 0 8j 2 J :
▪ m =m2.

In the third step, we remark that the obtained solution is not necessarily a feasible one since it may occur
that a job has no setup time in the second stage. To overcome this drawback, an adjusted solution is
introduced. The adjustment is as follows. If the first scheduled job in a machine of the second stage is the
job j, then we have to check two cases:

1) if s2,j ≥ c1,j then the completion time of j is c2,j = s2,j + p2,j.
2) if s2,j < c1,j then the completion time of j is c2,j = c1,j + p2,j.

If a job j is preceded by a job i in the same machine then:
1) if c2,i + s2,j ≥ c1,j then the completion time of j is c2,j = c2,i + s2,j + p2,j.
2) if c2,i + s2,j < c1,j then the completion time of j is c2,j = c1,j + p2,j.

The concatenation of the two feasible solutions respectively in the first and second stages provides a
feasible solution for t Fmjs1; j; s2; jjCmax.

Example 3:

We adopt the same instance represented in Tab. 1 in Example 1. In the first stage, we apply
Pmjrj; qjjCmax, and the exact solution is the same that described in Fig. 2. From this optimal solution, we
determine all c1,j values and we represent rj, qj and pj to solve the second optimal problem applied on the
second stage in Tab. 3.

Table 3: Determination of c1,j and definition of rj, qj and pj

j 1 2 3 4 5 6 7 8 9 10

c1,j 70 84 50 9 62 48 83 22 33 31

rj 70 84 50 14 62 48 83 22 33 31

pj 8 7 12 19 10 13 8 20 16 15

qj 0 0 0 0 0 0 0 0 0 0
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The optimal solution of Pmjrj; qjjCmax for the second stage with instance given in Tab. 3 assign jobs {4,
10, 6, 5, 7} on machine 1 and {8, 9, 3, 1, 2} on machine 2. Fig. 3 represents the related schedule. Fig. 3
displays a feasible schedule in the second stage as a result of the heuristic H2.

4.3 Heuristic H3

The heuristic H3 is based on solving optimally a sequence of two parallel machines under release date
and delivery time. First, a parallel machine scheduling problem Pmjrj; qjjCmax is solved in the first stage. The
parameters of this parallel machine are:

▪ rj ¼ 0 8j 2 J :
▪ pj ¼ s1; j þ p1; j 8j 2 J :
▪ qj ¼ p2; j 8j 2 J :
▪ m =m1.

Once the above scheduling problem (Pmjrj; qjjCmax) is solved and an exact solution is returned, the
completion time of a job j∈ J is denoted c1,j. Second, in the second stage, a parallel machine scheduling
problem Pmjrj; qjjCmax is optimally solved. The characteristics of the latter problem are:

▪ rj ¼ c1; j 8j 2 J :
▪ pj ¼ p2; j 8j 2 J :
▪ qj ¼ 0 8j 2 J :
▪ m =m2.

The obtained solution in the second stage does not include setup times. In this step, the setup times s2,j
are embedded before the processing of jobs. The concatenation of the two feasible solutions respectively in
the first and second stages provides a feasible solution for the studied problem.

4.4 Heuristic H4

The heuristic H4 is based on solving optimally a sequence of two parallel machines under release and
delivery time constraints. First, a parallel machine scheduling problem Pmjrj; qjjCmax is solved in the first
stage. The parameters of this parallel machine are:

▪ rj ¼ 0 8j 2 J :
▪ pj ¼ s1; j þ p1; j 8j 2 J :
▪ qj ¼ p2; j 8j 2 J :
▪ m =m1.
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Once the above scheduling problem (Pmjrj; qjjCmax) is solved and an optimal solution is obtained, the
completion time of a job j∈ J is denoted c1,j. Second, in the second stage, a parallel machine scheduling
problem Pmjrj; qjjCmax is optimally solved. The characteristics of the latter problem are:

▪ rj ¼ c1; j 8j 2 J :
▪ pj ¼ s2; j þ p2; j 8j 2 J :
▪ qj ¼ 0 8j 2 J :
▪ m =m2.

In the expression of the processing times pj = s2,j + p2,j we consider the setup time and the processing
time as one entity. This will give a feasible solution in the second stage which may largely exceed an
optimal solution. To readjust the obtained solution, we split setup time from processing time, and we
apply the following recursive rule in the jobs scheduled to the same machine. c2,j =max(c1,j, c2,j−1 + s2,j)
where c2,j−1 is the completion time of the predecessor of job j in the same machine. The concatenation of
the two feasible solutions respectively in the first and second stages provides a feasible solution for
Fmjs1; j; s2; jjCmax.

5 Computational Results

This section focuses on the illustration and the discussion of the obtained results. All proposed
algorithms in this paper were coded in C++. All coded programs were executed by a workstation that has
the following characteristics: Intel(R) Xeon(R) CPU E5-2687W v4 @ 3.00 GHz and 64 GB RAM.

5.1 Test Problems

The generation of the setup times and processing times are applied according to the uniform distribution
denoted by U[st, fi]. In this paper the choice of st = 1 and fi = {20, 40}. The class of instance is depending on
the choice of the generation of s1, j, p1, j, s2, j and p2, j. So, we generate s1, j in [1, 20] or [1, 40], and same thing
for p1,j, s2,j and p2,j. We denoted by C1, C2, C3, and C4 the choice of fi to generate s1, j, p1, j, s2, j and p2, j,
respectively. The value of each variable C1, C2, C3, and C4 represent the manner that the setup times and
processing times are generated. For example, if (C1 = 20, C2 = 20, C3 = 40, C4 = 20) meaning that we
generate s1,j in [1, 20], p1,j in [1, 20], s2,j in [1, 40] and p2,j in [1, 20]. The number of permutations to
generate classes is 42 = 16. The number of machines for each stage is chosen in {2, 3, 4, 5}. The number
of permutation to constitute a pair (m1, m2) is 16.

Now, for the number of jobs, we adopt n = {10, 20, 30, 50, 100, 150, 200}. For each type of class (C1,
C2, C3, C4), each (m1, m2) and each n we generate 5 instances. Finally, the total number of instances is 16 ×
16 × 7 × 5 = 8960.

5.2 Performance Measures

To assess the performance of the heuristics and lower bounds, the following performance measures
are used:

▪ Time: average CPU time (s)

▪ Gap ¼ UB��LB�
LB� , where UB� the best heuristic value and LB� the best obtained lower bound value.

▪ GapL ¼ LB��L
LB� , where L is the studied lower bound value.

▪ GapU ¼ U�UB�
UB� , where U is the studied heuristic value.

CSSE, 2023, vol.44, no.1 571



5.3 Results and Discussion

Tab. 4 represents the variation of theGap according to n. As shown in this table when the number of jobs
increases, the Gap increase. The maximum Gap of 0.27 is obtained when n = 200.

Tab. 5 shows the variation of Gap according to (m1) on stage 1 and to m2 on stage 2.

Tab. 6 presents the Gap values according to C1, C2, C3, and C4. The minimum gap value of 0.13 is
obtained when C3= 20.

Now, we present the results obtained for the developed lower bounds. Tab. 7 shows that the best lower
bound is LB3. Indeed, the percentage of this is lower when the number of instances that LB3 is the best one is
84.6% in an average time 16.37 and an average gap of 0.04.

Tab. 8, represents the variation of GapL according to n. For LB3 the maximum gap is obtained when n =
{10, 20, 30}.

Tab. 9 presents theGapL and Time variation according tom1 andm2 for all lower bounds. The most time-
consuming lower bound is LB3 when m1 = 5. In this condition, the running time is reached to 34.56 s.

Table 4: Gap according to n

n Gap

10 0.19

20 0.24

30 0.25

50 0.26

100 0.26

150 0.26

200 0.27

Table 5: Gap according to m1 and m2

m1 Gap m2 Gap

2 0.05 2 0.54

3 0.17 3 0.26

4 0.31 4 0.12

5 0.45 5 0.06

Table 6: Gap according to C1, C2, C3, and C4

C1 C2 C3 C4

20 0.33 0.33 0.13 0.21

40 0.16 0.16 0.31 0.29
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The variation of GapL and Time according to C1, C2, C3, and C4 for all lower bounds is illustrated
in Tab. 10.

The assessment of the proposed heuristics is presented in Tabs. 11 and 12.

The behavior of GapU and Time according to m1 and m2 for all heuristics is presented in Tab. 13.

Table 7: Overall GapL

LB1 LB2 LB3

GapL 0.47 0.40 0.04

Time 4.26 0.63 16.37

Perc 0.7% 16.3% 84.6%

Table 8: GapL and Time according to n

n LB1 LB2 LB3

GapL Time GapL Time GapL Time

10 0.28 0.05 0.24 0.03 0.04 0.86

20 0.46 3.50 0.38 2.39 0.04 21.51

30 0.50 6.38 0.41 0.88 0.04 20.36

50 0.51 4.00 0.44 0.32 0.03 17.07

100 0.51 4.08 0.45 0.17 0.03 17.26

150 0.52 5.17 0.45 0.27 0.03 18.86

200 0.52 6.63 0.45 0.38 0.03 18.89

Table 9: GapL and Time according to m1 and m2 for all lower bounds

LB1 LB2 LB3

GapL Time GapL Time GapL Time

m1

2 0.49 0.73 0.62 0.61 0.00 1.88

3 0.47 2.29 0.45 0.65 0.01 8.02

4 0.46 5.59 0.32 0.66 0.04 21.03

5 0.46 8.42 0.23 0.62 0.08 34.56

m2

2 0.51 4.17 0.22 0.15 0.10 15.61

3 0.47 4.41 0.37 0.25 0.03 16.55

4 0.45 4.42 0.48 0.67 0.01 17.14

5 0.45 4.03 0.55 1.46 0.00 16.18
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Tab. 14 presents the variation of GapU and Time for C1, C2, C3, and C4 for all heuristics. The maximum
reaching time is 21.43 s. This running time is obtained for heuristic H1 when C4 = 20. However, the
minimum reached time 10.18 s is obtained for H3 when C2 = 20.

Table 10: GapL and Time according to C1, C2, C3, and C4 for all lower bounds

C1 C2 C3 C4

GapL Time GapL Time GapL Time GapL Time

20 LB1 0.41 4.63 0.55 1.49 0.48 4.67 0.47 4.49

LB2 0.34 0.77 0.34 0.71 0.41 0.75 0.54 0.20

LB3 0.05 11.89 0.05 11.60 0.03 17.22 0.01 16.69

40 LB1 0.53 3.98 0.40 7.01 0.48 4.18 0.49 4.61

LB2 0.47 0.50 0.47 0.56 0.41 0.49 0.28 1.01

LB3 0.02 21.08 0.02 21.15 0.03 16.09 0.06 16.90

Table 11: Overall results for all heuristics

H1 H2 H3 H4

GapU 0.00 0.06 0.06 0.03

Time 15.63 16.55 14.59 16.56

Perc 93.2% 30.1% 30.3% 30.3%

Table 12: GapU and Time variation according to n for all heuristics

n H1 H2 H3 H4

GapU Time GapU Time GapU Time GapU Time

10 0.00 0.16 0.12 0.94 0.13 0.59 0.08 0.65

20 0.00 0.42 0.09 22.16 0.09 17.58 0.05 20.30

30 0.00 0.86 0.07 21.17 0.07 16.58 0.04 19.24

50 0.00 2.37 0.05 17.19 0.05 16.06 0.02 18.89

100 0.00 11.17 0.03 17.41 0.03 16.32 0.01 18.56

150 0.00 30.49 0.03 19.11 0.03 18.21 0.01 19.58

200 0.00 63.93 0.02 18.54 0.02 16.79 0.01 19.68
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6 Conclusion

This paper focuses on the two-stage hybrid flow shop problem under setup times. Several lower bounds
and heuristics were developed. The exact resolution of the problem of the parallel machine is utilized in this
paper to elaborate on lower bounds and heuristics. A genetic heuristic is developed for the metaheuristic. A
comparison between lower bounds and heuristics is detailed to show the proposed algorithms’ performance
in terms of gap and time. The genetic algorithm developed in this paper is the best heuristic comparing with
the proposed others ones.

In future research work, the elaboration of exact solutions based on B&B algorithms could be
considered. Indeed, the proposed heuristics and lower bounds in the paper can be used to elaborate such
an exact algorithm. In addition, some other metaheuristics could be explored to detect the most
appropriate ones to this scheduling problem.

Table 13: Gapu and Time variation according to m1 and m2 for all heuristics

H1 H2 H3 H4

GapU Time GapU Time GapU Time GapU Time

m1

2 0.00 15.18 0.02 1.95 0.02 1.54 0.01 1.96

3 0.00 15.55 0.05 8.44 0.05 7.02 0.01 7.77

4 0.00 15.77 0.08 21.26 0.08 18.51 0.02 21.11

5 0.00 16.00 0.09 34.94 0.10 31.30 0.02 35.39

m2

2 0.00 14.94 0.06 15.93 0.06 13.94 0.03 14.43

3 0.00 15.24 0.07 16.94 0.07 14.86 0.04 16.53

4 0.00 15.83 0.06 17.35 0.06 15.32 0.03 18.13

5 0.00 16.50 0.05 16.37 0.05 14.25 0.03 17.14

Table 14: GapU and Time variation according to C1, C2, C3, and C4

C1 C2 C3 C4

GapU Time GapU Time GapU Time GapU Time

20 H1 0.00 15.76 0.00 15.50 0.00 18.61 0.00 21.43

H2 0.07 12.14 0.07 11.91 0.04 17.86 0.05 16.87

H3 0.07 10.40 0.07 10.18 0.04 15.60 0.05 14.96

H4 0.03 13.01 0.03 12.46 0.05 14.61 0.03 16.37

40 H1 0.00 15.75 0.00 15.68 0.00 17.79 0.00 21.41

H2 0.05 21.38 0.05 21.40 0.06 16.36 0.06 17.16

H3 0.05 18.98 0.05 19.02 0.06 14.47 0.06 15.04

H4 0.03 20.35 0.03 20.67 0.05 14.69 0.03 17.53
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