
Homogeneous Batch Memory Deduplication Using Clustering of Virtual
Machines

N. Jagadeeswari1,* and V. Mohan Raj2

1Department of CSE, Thanthai Periyar Government Institute of Technology, Vellore, 632002, India
2Department of IT, Sona College of Technology, Salem, 636005, India

*Corresponding Author: N. Jagadeeswari. Email: jagadeeswarinj@gmail.com
Received: 05 November 2021; Accepted: 24 January 2022

Abstract: Virtualization is the backbone of cloud computing, which is a develop-
ing and widely used paradigm. By finding and merging identical memory pages,
memory deduplication improves memory efficiency in virtualized systems. Kernel
Same Page Merging (KSM) is a Linux service for memory pages sharing in vir-
tualized environments. Memory deduplication is vulnerable to a memory disclo-
sure attack, which uses covert channel establishment to reveal the contents of
other colocated virtual machines. To avoid a memory disclosure attack, sharing
of identical pages within a single user’s virtual machine is permitted, but sharing
of contents between different users is forbidden. In our proposed approach, virtual
machines with similar operating systems of active domains in a node are recog-
nised and organised into a homogenous batch, with memory deduplication per-
formed inside that batch, to improve the memory pages sharing efficiency.
When compared to memory deduplication applied to the entire host, implementa-
tion details demonstrate a significant increase in the number of pages shared when
memory deduplication applied batch-wise and CPU (Central processing unit) con-
sumption also increased.

Keywords: Kernel same page merging; memory deduplication; virtual machine
sharing; content-based sharing

1 Introduction

Cloud computing is becoming increasingly popular in a variety of sectors. Virtual machines (VMs) have
resurfaced, presenting a huge opportunity for cluster, parallel, cloud, grid, and distributed computing.
Virtualization technology serves the majority of IT (Information Technology) and computer-related
sectors by allowing users to share expensive hardware resources by executing VMs on the same set of
server hosts. Virtualization is a computer architecture concept that allows the execution of many virtual
machines (VMs) on the same host machine. The concept of virtual reality dates back to the 1960s. The
goal of a virtual machine (VM) is to facilitate resource sharing among multiple users while also
increasing computer efficiency and performance in terms of resource consumption and application
flexibility. In various layers of cloud architecture, hardware resources such as Central Processing Unit,

This work is licensed under a Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

Computer Systems Science & Engineering
DOI: 10.32604/csse.2023.024945

Article

echT PressScience

mailto:jagadeeswarinj@gmail.com
http://dx.doi.org/10.32604/csse.2023.024945
http://dx.doi.org/10.32604/csse.2023.024945


memory, and Input -Output devices, as well as software resources such as operating systems and software
libraries, can be virtualized. Cloud computing is increasingly based on a virtualized architecture, in which
massive programmes run inside virtual servers that are assigned to each physical server. Virtual machines
are installed on top of virtual machine monitors, which are in charge of allocating physical resources such
as CPU, memory, and other resources to each virtual machine separately. The number of pages shared is
high if the guest operating system of virtual machines contains similar applications of data. If these
sharing options are appropriately exploited, the virtual machine monitor can supply significantly more
memory to the virtual machines, resulting in a higher level of server consolidation [1].

Memory deduplication was established primarily in Disco [2] using the transparent page sharing
methodology, which involved recognising identical copies of memory pages, merging them, and mapping
them to the same physical page in order to decrease the memory footprint of redundant data. However,
this para-virtualization paradigm necessitates some changes to both the guest and the host. Due to their
licence agreements and source code changes, it is impossible to modify guests. The VMware ESX
(Elastic Sky X) server employs content-based page sharing, which determines whether a page is available
in many virtual machines by calculating the hash value. According to research, this method can help to
reclaim 10% to 20% of system RAM [3]. The Xen virtual machine monitor now enables page
compression and page patching, in addition to memory deduplication [4]. However, in all circumstances,
the time to merge, or the time it takes to merge identical copies of memory, is often long. The scan rate is
set to slow, but it may be tweaked.

Despite the fact that memory deduplication reduces memory footprints, existing techniques lack
isolation and trustworthiness in addition to their efficiency [5]. Some tenants may be reluctant to share
sensitive or confidential information with others. Covert Channel [6] is a system that uses CPU loads to
provide a illegal channel for transmitting confidential information between virtual machines. Furthermore,
the virtual machine monitor placed on the host performs a global memory deduplication procedure. It is
not possible to set the appropriate sharing rate based on the virtual machine’s workload [7].

The rest of the paper is organized as below. In Section 2, background and motivation of this research is
presented and Section 3 contains Literature review, In Section 4, the approach and implementation has been
illustrated. Experimental results are discussed in Section 5. The paper is concluded in Section 6.

2 Background and Motivation

The background and motivation of this research is given below.

2.1 Types of Sharing of Memory Pages

Intra-virtual machine sharing, inter-virtual machine sharing, homogeneous sharing, and heterogeneous
sharing are the several types of memory page sharing. Intra-Virtual machine sharing refers to the sharing of
identical memory pages within the same virtual machine. Inter-Virtual machine sharing refers to the sharing
of identical pages between multiple distinct virtual machines. Homogeneous virtual machine sharing refers to
the sharing of memory pages across identical operating systems. Heterogeneous sharing refers to the sharing
of virtual machines across multiple operating system platforms [8]. Kernel Same Page (KSM) merging
shared pages on Windows VMs is more effective than on Linux VMs.

2.2 Kernel Same Page Merging

Kernel Same Page Merging is a memory deduplication implementation that originally appeared in the
Linux Kernel version 2.6.32. Kernel daemon, ksmd, searches the user memory for pages that can be shared
among users. It scans only the prospective candidates and develops signatures for them, rather than scanning
the full region of memory, which is time consuming and CPU intensive. These signatures are kept in the

930 CSSE, 2023, vol.44, no.1



deduplication table. When two or more pages are verified to determine if they are in the same signatures,
KSM scans at a 20 millisecond interval and at a rate of 25% of possible memory pages at a time. KSM
looks at three different sorts of memory pages. 1. Volatile pages, or pages that change frequently and are
therefore unsuitable for memory sharing, 2. Unshared pages, also known as deduplication candidate
pages, are the locations where madvise() instructs ksmd to merge., 3. Pages shared by processes or users
that have been deduplicated (shared pages) [9].

For candidate pages of deduplication, KSM uses two Red-Black trees: a stable tree and an unstable tree.
The RB (Red Black) tree’s efficiency is O(log n) per tree, and its height is never greater than 2log(n+1),
where n is the number of nodes. In a round robin technique, KSM searches each memory location one by
one. If the page is accessed, KSM first looks at the stable RB tree and merges with it if, it is identical.
Otherwise, it checks the unstable tree for a match, and if one is found, it removes the page from the
unstable tree and adds it to the stable tree [10].

Before starting memory sharing, allocated memory must be registered as being potentially shared by
KSM. The stable tree comprises all of KSM’s shared and write-protected pages. Unstable trees are those
that have the potential to be shared and whose contents haven’t changed in a long time. The contents of
memory pages are used to index the nodes of both trees. Nodes in the stable tree point to memory pages
that are shared, whereas nodes in the unstable tree indicate pages that are ideal candidates for sharing but
are not shared. Both trees are initially empty. Scanned pages are examined for matches in the unstable
tree as long as the shared tree is empty. A page is added to the unstable tree if there is no match in the
unstable tree [11].

2.3 Kernel Virtual Machine

KVM (Kernel Virtual Machine) is a complete virtualization framework that enables hardware
virtualization on x86 CPUs (Intel VT or AMD-V). It is made up of two primary parts: A group of kernel
modules (kvm.ko, kvm-intel.ko, and kvm-amd.ko) that offer the underlying fundamental virtualization
framework and processor specific drivers, as well as a userspace programme (qemu-kvm) that provides
virtual device emulation and management mechanisms (virtual machines). The word KVM refers to the
virtualization functionality at the kernel level, but it is more generally used to refer to the userspace
component. Libvirt-based and QEMU-based tools could be used to manage VM Guests (virtual
machines), virtual storage, and networks. libvirt is a library that provides an API (Application
programming interface) for maintaining VM Guests utilising various virtualization solutions, including
KVM and Xen. It has a graphical user interface and a command line program also. The QEMU (Quick
Emulator) tools are specific to KVM/QEMU and are only available through the use of the command line [12].

2.4 QEMU (Quick Emulator)

QEMU is a cross-platform, fast Open - sourced machine emulation approach that can simulate a broad
range of hardware architectures. QEMU allows users to run a fully functional operating system (VM Guest)
on top of the current system (VM Host Server). QEMU is composed of several components: a processor
emulator, emulated devices, generic devices for communicating the emulated devices to the related host
devices, debugger, and a user interface for interacting with the emulator. QEMU can be used in
conjunction with the KVM kernel module to provide a virtualization solution. QEMU can take use of
KVM acceleration if indeed the VM Guest hardware architecture is the same as the VM Host Server’s
architecture. Tools based on libvirt, such as virt-manager and vm-install, provide simple interfaces for
creating and managing virtual machines [13].

CSSE, 2023, vol.44, no.1 931



2.5 Libvirt & Virsh

Libvirt is a virtualization platform management toolkit that is accessible from C, Python, Perl, and GO,
among many other languages, and is licenced under many standard open sources. It supports KVM, QEMU
(Quick EMUlator), Virtuozzo, VMware ESX (Elastic Sky X), LXC (Linux Containers), BHyve (BSD
hypervisor), and other virtualization technologies. It is destined for use with Linux, FreeBSD, Windows,
and MacOS. Virsh is a shell wrapper in Libvirt that includes access to libvirt functionality on platforms
that support virtualization. Virsh is a command-line and batch scriptable tool for managing all libvirt-
managed domains, networks, and storage. This is included with the libvirt core distribution. libvirt-host is
a libvirt module that provides several APIs. It has several macros for getting and setting various memory
parameters of the virtual machine, such as virNodeGetInfo, virNodeGetMemoryParameters,
virNodeGetMemoryStats, and virNodeSetMemoryParameters [14].

2.6 Attacks Based on Covert Channels Using Deduplication of Memory

A single physical server can collocate several virtual machines being used by many users in a cloud
computing environment where multi-tenants are used. The public cloud environment uses sharing of
identical memory pages among different users to maximise resource utilisation, which can lead to a
memory disclosure attack. On deduplicated pages that are re-created by Copy-on-write, malicious users
can take advantage of the time difference. Because of the Copy-on-write method, more time is spent
accessing the page than if it were accessed normally. To protect against memory disclosure attacks,
sharing can be enabled within single-user virtual machines but disabled for other users.

2.7 Hierarchical Agglomerative Clustering

For data clustering, hierarchical clustering is a widely used unsupervised machine learning technique.
Agglomerative clustering and divisive clustering were the two broad classifications. The following are the
steps involved: 1. Each data point in the dataset was treated as a separate cluster at first. 2. To create a
cluster, connect the data points that are closest to each other. 3. Connect nearby clusters to form new
clusters. 4. Dendrograms are used to split a large cluster into several smaller ones. The following are
unique features: 1. the number of clusters does not need to be specified. 2. Dendrograms make it easy to
understand how data has been grouped.

3 Literature Review

Gu et al. [15] discussed virtual machine guest OS finger printing. The upgraded OS-Sommelier+, a
multiaspect, memory-exclusive methodology, reduced the virtual machine’s physical memory utilisation
while maintaining precision and usability. This study encourages us to conduct a thorough review of code
hashing and data signature. Guest OS administration, kernel dump analysis, memory forensics,
penetration testing, and virtual memory introspection are all aided by this approach.

Jia et al. [16], developed Loc-K, a new memory deduplication algorithm that uses logical addresses of
separate pages to provide greater continuity, resulting in improved spatial locality. This approach enhances
the prediction ratio by predicting k probable duplication places for page scanning. The prediction opportunity
increased to 97.8%, with a 96.5 percent prediction hit ratio.

Wang et al. [17], implemented and evaluated Covert Inpector, a virtual machine monitor based approach
to identify and eliminate covert timing channels to build on memory being shared. The test finds and throttles
a covert timing channel based on shared memory. This test finds and eliminates covert channels that have a
significant impact on the performance of the guest virtual machine.

Elghamrawy et al. [18], investigated the wide discrepancy between existing prediction mechanisms and
actual behaviour was investigated by. They investigated memory page behaviour using page flags provided

932 CSSE, 2023, vol.44, no.1



through the Linux kernel’s proc file system and used the framework to anticipate memory pages that are
expected to be generally stable, as well as memory deduplication and virtual machine live migration.

Garoa et al. [19], studied the impact of ASLR (Address Space Layout Randomization) over memory
deduplication. They looked at how memory deduplication affects kernel randomization. When kernel
ASLR is enabled, the memory cost of running approximately 24 kernels rise by 534 percent (from
613 MiB to 3.9 GiB).

Patel et al. [20], used a machine learning approach to classify virtual machines into labelled clusters for
server consolidation. To group similar virtual machines, they adopted neural networks, which come under the
category of supervised learning. In terms of the number of virtual samples properly identified, their work
outperforms. This study motivates us to classify virtual machines according to their guest Operating
Systems installed inside it.

Zhu et al. [21], proposed a new memory deduplication method called Page Correlation Aggregation
(PCA). It almost effectively reduces the number of covert channel operations. Since pages with
comparable features have a higher possibility of sharing, this strategy entails separating the virtual
machine’s pages into several sets. Pages are then classified into several classes based on their access
permissions within each category. As a result, for sharing purposes, page comparisons are limited to the
same classifications. PCA seems to be a strategy to minimise copy-on-write latency while using a covert
channel.

Lindermann et al. [22], suggested a timing side channel attack to detect software versions operating in
co-located virtual machines, and executed an intrusion to assess whether pages are unique to a certain
software version in co-located virtual machines. The tests are carried out in a fair amount of time, and
viable countermeasures against the described side channel attack are also examined.

Lindermann et al. [23], devised a memory deduplication side-channel intrusion to reveal applications of
other virtual machines that were co-located. This entails verifying memory page availability in co-located
virtual machines that are unique across all versions of the software.

You et al. [24], investigated lightweight memory deduplication. This work involves individual memory
pages being divided into various segments, and the joined strings of the hash values of these segments are
used as indexed keys in trie data structures, reducing the time required to search for identical twin pages and
the number of memory page comparisons. As a result, CPU consumption will be reduced by 44.9 percent,
and memory bandwidth usage will be reduced by 31.6 percent.

Shiba [25], discussed how the cost of finding mergeable pages is considerably high, and how pages are
distributed in address spaces. MashitoShiba, classifies pages by the state of consecutive memory pages,
measures the ratio of pages in each state, and shows the measuring distribution that can be used to
evaluate the likelihood of merging.

The Cgroups mechanism was used by Goa et al. [26], to enable operating system containerization.
Cgroups mechanisms separate processes into hierarchical groups and controllers in order to keep system
resources like the CPU, memory, and I/O (Input/Outout) in check. For the establishment of resource
control, newly generated child processes immediately copy Cgroups attributes from their parent
processes. But the inherited Cgroups incarceration via process formation does not assure a steady and
good accounting of resources. By separating processes from their original process groups, they establish a
set of exploitation techniques for producing out-of-band workloads. They examined five case studies
using Docker containers to see how they may overcome Cgroup’s resource dominance in real-world
circumstances. An adversarial container can substantially increase the amount of consumed resources in a
multitenant environment by exploiting Cgroups, which appears to slow down other containers on the
same host and gives it unfair benefits in the system. This study motivated us to allocate resources to
various processes.

CSSE, 2023, vol.44, no.1 933



Garcia et al. [27], developed a novel kernel randomization technique adaptive with memory
deduplication that detects and mitigates threats at the kernel level, as well as the memory pages shared by
each area. They introduced KASLR-M+ (Kernel Address Space Layout Randomization), the first efficient
and practical Kernel ASLR memory security that maximises memory deduplication savings without
losing security, based on their findings.

Garcia et al. [28], investigated the impact of function granular Kernel Randomization on memory
deduplication and why it is incapable of providing the utmost memory protection and sharability in their
research. They proposed a method that forces guest kernels belonging to the same tenant to use the same
random memory layout of memory regions, which has a significant influence on deduplication.

4 Approach and Implementation

This approach provides a mechanism that supports multiple deduplication threads, each of which is
dedicated to a batch that has a set of similar operating systems. The grouping of each batch is based on
similar OS. When the Kernel Virtual Machine (KVM) instantiates a new virtual machine, it registers the
memory region of each virtual machine to the memory regions of KSM. Once KSM gets started, a global
ksmd daemon process automatically starts and performs memory deduplication. In this approach, the
global ksmd daemon is split into similar threads, each performing memory deduplication of each
homogeneous batch. Cgroups, of Linux, is utilised to allocate CPU/memory resources of each user
process. Overview architecture of homogeneous batch memory deduplication using clustering of virtual
machines is shown in Fig. 1.

Figure 1: Overview architecture of homogeneous batch memory deduplication using clustering of virtual
machines

934 CSSE, 2023, vol.44, no.1



Implementation: The aforementioned work was divided into two components for implementation.

Module1: Using Hierarchical Agglomerative Clustering, virtual machines are clustered depending on
the guest operating system.

Module 2: Memory Deduplication is applied separately to each homogeneous batch.

4.1 Module 1

Module 1 entails clustering virtual machines based on the guest operating system deployed, which
entails the actions below. Tab. 1 shows the information log of virtual machines created. Information about
the virtual machine, such as its domain name, Universal Unique Identifier (UUID), (Operating System)
OS type, OS variant, and user of the virtual machine, is entered into the information repository as soon as
it is formed. When a new virtual machine is generated, the information log is updated, and the related
record is deleted when a virtual machine is removed from the host. A Python code is executed to identify
the list of active and inactive domains on the host, tabulated in Tab. 2. Information of all active and
inactive domains with their domain id, domain name, UUID of that domain and the current status of
domains either running or shutoff, listed in Tab. 2. Based on the output, another Python program is run,
which uses Hierarchical Agglomerative Clustering to group only the active domains into different clusters
based on their guest operating systems. The virtual machines with Domain ID 2 (Identifier) and
5 clustered on Windows, whereas virtual machines with Domain ID 3 and 4 clustered on Linux, and all
four virtual machines are running domains, as shown in Fig. 2.

Table 1: Information log of virtual machines created

User Domain name UUID OS type OS variant

User 1 centos7.0 e9a601b8-f56a-44ee-943f-6ddf640ce28f Linux Cent OS

User 1 win7 9986cc97-5cae-4767-a003-9b1337558b06 Windows Windows 7

User 1 Ubu1 aacd3461-4e67-7890-bc02-7b1337558b10 Linux Ubuntu14

User 2 generic1 ea7bcc59-e22d-4a7c-a5b1-028e17cf45b4 Linux Red Hat

User 2 generic2 d43fc653-7b2d-4edf-98f3-96ebb78544b3 Linux Fedora

User 3 Winx 38972079-3bc4-4dff-a4b0-ed33da19b9ee Windows Windows XP

User 3 Win7a 5678098ea-4bcc-5bbf-a134-de54ad20acff Windows Windows 7

Table 2: List of active and inactive domains

Domain Id Domain name UUID Status

1 centos7.0 e9a601b8-f56a-44ee-943f-6ddf640ce28f Running

2 win7 9986cc97-5cae-4767-a003-9b1337558b06 Shut Off

3 generic1 ea7bcc59-e22d-4a7c-a5b1-028e17cf45b4 Running

4 generic2 d43fc653-7b2d-4edf-98f3-96ebb78544b3 Running

5 Ubu1 aacd3461-4e67-7890-bc02-7b1337558b10 Running

6 Winx 38972079-3bc4-4dff-a4b0-ed33da19b9ee Running

7 Win7a 5678098ea-4bcc-5bbf-a134-de54ad20acff Running

CSSE, 2023, vol.44, no.1 935



Once the active domains are classified a dendrogram, shown as snapshot, representing the clusters of
various active domains. In Fig. 2, domains with id’s 1 and 5 are clustered into a batch of User1, domains
with id’s 3 and 4 are clustered into a batch of User2 and domains with id’s of 6 and 7 are clustered in
another batch of User3 and all are currently active at the moment.

4.2 Module 2

After clustering of the active domains, it’s time to move on to the next phase. Deduplication threads are
applied to each batch, and memory deduplication activities are performed inside the memory given to the
batch. Various scan rates are assigned to each batch. The scan rate of a batch with CPU-intensive
activities, such as games, can be set as low. Each batch has a KSM daemon thread, seperate “Stable tree”
and “unstable tree” are two data structures used by KSM. In a batch, scan a new page, KSM checks the
new page against the stable tree and merges it with the page if a match is found. If no match was
detected, a search of the unstable tree was conducted. If a match was found in the unstable tree, the page
was moved from the unstable tree to the Stable tree. If no match was found, a new page entry was
generated in the unstable tree, and a new page was searched for. Flow chart of homogeneous batch
memory deduplication was shown in Fig. 3. The details of information log created and information of
active and inactive domains are also shown by the side of the first two steps of flowchart. Next to that,
step by step implementation of homogeneous batch memory deduplication was given.

5 Experiments and Evaluation

The experimental results are shown below:

5.1 Experimental Setup

The following Tab. 3 shows experimental setup:

5.2 Trial Versions

Three trial versions for three users are performed and the following Tab. 4 shows virtual machine set up
assigned for each user. In each trial, minimum of 5 virtual machines executed for each user and virtual
machines of Linux guest operating system are grouped in Batch I and Windows virtual machines are
grouped in Batch II.

Figure 2: Snapshot generated after clustering of active domains

936 CSSE, 2023, vol.44, no.1



Figure 3: Flow chart of homogeneous batch memory deduplication

Table 3: Experimental setup

Variables Characteristics

CPU Processor Intel Core i5 Processor, 8th generation

RAM (Random-access
memory)

4 GB

Hypervisor KVM with QEMU

OS for VMs Fedora, Ubuntu, Cent OS, Win 7, Win XP, Red Hat

API Libvirt (virsh)

CSSE, 2023, vol.44, no.1 937



In Fig. 4, the first part of the figure show the memory deduplication applied to the entire host. The next
lane shows memory pages shared for each trial of each users for each number of scans. In Fig. 5, the merge
rate is comparatively high, when merging performed in various trials of users than deduplication applied to
the entire host. Fig. 6 shows the memory saving rate, which is calculated from total number of pages shared
per user, for each scan of three different users. is found that it is increasing rapidly at the initial stage and
gradually afterwards. Fig. 7, shows the percentage of Memory Pages shared for each scan. The utilization
of CPU is high when compared with memory deduplication applied to the whole host, shown in Fig. 8.
Fig. 9 shows the Statistics of Memory Deduplication in which the following information are noted: No.
of Pages sharing- indicates how many pages that virtual machines create, No. of Pages shared- indicates
how many pages actually in use and being shared, No. of Pages unshared - indicates number of pages
that are unshared, No. of Pages volatile - indicates pages that change often and too fast be inserted in RB
tree, No. of scans - how many times all merge able areas have been scanned. From the information, it is
found that the ratio of pages sharing to pages shared is high, which infers good sharing opportunities and
the number of memory pages shared for each user in each trial is tabled in Tab. 5.

Table 4: User trial details

User 1 User 2 User 3

Trial 1:

Batch 1 VM1: RedHat
VM2: RedHat
VM3: Red Hat

VM1: RedHat
VM2: RedHat
VM3: Cent OS

VM1: CentOS
VM2: CentOS
VM3: Ubuntu 14

Batch 2 VM1: Win7
VM2: Win 7

VM1: WinXP
VM2: Win 7

VM1: Win7
VM2: Win 10

Trial 2:

Batch 1 VM1: Fedora
VM2: RedHat
VM3: Cent OS

VM1: CentOS
VM2: Ubuntu14
VM3: Red Hat

VM1: RedHat
VM2: Red Hat

Batch 2 VM1: Win10
VM2: Win 7

VM1: WinXP
VM2: Win 7

VM1: WinXP
VM2: Win7
VM3: Win 10

Trial 3:

Batch 1 VM1: RedHat,
VM2: RedHat,
VM3: Fedora

VM1: RedHat
VM2: RedHat
VM3: Ubuntu 14

VM1: CentOS
VM2: CentOS
VM3: Fedora

Batch 2 VM1: Win7
VM2: Win 10

VM1: WinXp
VM2: Win 7

VM1: Win7
VM2: Win XP

938 CSSE, 2023, vol.44, no.1



Figure 5: Number of pages shared in each trial of user

Figure 4: Statistics of homogeneous memory deduplication and KSM

CSSE, 2023, vol.44, no.1 939



Figure 7: Percentage of memory pages shared for each scan

Figure 8: CPU utilization

Figure 6: Memory saving rate

940 CSSE, 2023, vol.44, no.1



Figure 9: Amount of pages shared in each user’s trial, memory deduplication statistics for user’s trial

Table 5: Number of memory pages shared for each user in each trial

Memory deduplication statistics : Number of pages shared

No of
scans

Memory
deduplication
applied to entire host

User 1 User 2 User 3

Trial 1 Trial 2 Trial 3 Trial 1 Trial 2 Trial 3 Trial 1 Trial 2 Trial 3

1 190 765 15427 8104 7622 8166 824 831 1031 8124

2 1054 919 17805 12686 10059 12396 7258 2783 4891 8224

3 2909 32143 24373 15762 11470 24766 16136 11003 17207 10642

4 3591 52639 26471 32330 19812 28870 34710 27413 21203 25046

5 4244 52835 26589 46116 26895 29388 48896 57219 21295 54452

6 7227 50977 26521 58714 33156 29392 61566 58887 21663 56048

7 8993 53079 26683 58848 33158 31342 63488 60887 21575 56260

8 12932 52399 26521 58798 33257 31412 63670 59687 21611 54828

9 14703 52119 26433 58788 33009 30882 63218 59595 21287 55178

10 15700 52515 25963 58856 33229 30172 63046 59265 20059 55088

11 16748 51589 24897 58898 33204 28088 62070 58327 17655 55168

CSSE, 2023, vol.44, no.1 941



6 Conclusion

Memory deduplication is particularly vulnerable to memory disclosure attacks. Memory deduplication
can be used on virtual machines belonging to a single user group to prevent this attack. When compared to
memory deduplication applied to the entire host, user virtual machines are grouped suitably and memory
deduplication is performed to homogenous batch wise and the proportion of sharing of memory pages is
increased and CPU utilization is high. In future work, the identical applications running in virtual
machines of homogeneous batch are categorized further and memory deduplication to be performed.

Acknowledgement: The author with a deep sense of gratitude would thank the supervisor for his guidance
and constant support rendered during this research.

Funding Statement: The authors received no specific funding for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] K. Hwang, J. Dongarra and G. C. Fox, Distributed and Cloud Computing: From Parallel Processing to the

Internet of Things, Waltham, MA, USA, China Machine Press, 2013. [online]. Available: https://books.google.
com/books.

[2] E. Bugnion, S. Devine, K. Govil and M. Rosenblum, “DISCO: Running commodity operating systems onscalable
multiprocessors,” ACM Transactions on Computer Systems (TOCS), vol. 15, no. 4, pp. 412–447, 1997.

[3] C. A. Waldspurger, “Memory resource management in VMware ESX server,” in Proc. Sym. on Operating Systems
Design and Implementation, New York, NY, USA, pp. 181–194, 2002.

[4] D. Gupta, S. Lee, M. Vrable, S. Savage, A. C. Snoeren et al., “Difference engine: Harnessing memory redundancy
in virtual machines,” Communications of the ACM, vol. 53, no. 10, pp. 85–93, 2008.

[5] K. Suzaki, K. Iijima, T. Yagi and C. Artho, “Memory deduplication as a threat to the guest OS,” in Proc. European
Workshop on System Security, Salzburg, Austria, pp. 1–3, 2011.

[6] K. Okamura and Y. Oyama, “Load-based covert channels between Xen virtual machines,” in Proc. ACM Sym. on
Applied Computing, Sierre, Switzerland, pp. 173–180, 2010.

[7] Y. Deng, C. Hu, T. Wo, B. Li and L. Cui, “Amemory deduplication approach based on in virtualized environments
state key laboratory of software development environment,” in Proc. IEEE Seventh Int. Sym. on Service-Oriented
System Engineering, San Francisco, CA, USA, pp. 367–372, 2012.

[8] S. Barker, T. Wood, P. Shenoy and R. Sitaraman, “An empirical study of memory sharing in virtual machines,” in
Proc. Annual Technical Conf., Boston, MA, pp. 273–284, 2012.

[9] W. C. Lin, C. H. Tu, C. W. Yeh and S. H. Hung, “GPU acceleration for kernel samepage merging,” in Proc. Int.
Conf. on Embedded and Real-Time Computing Systems and Applications (RTCSA), IEEE, Busan, Korea, pp. 1–6,
2017.

[10] A. Arcangeli, I. Eidus and C. Wright, “Increasing memory density by using KSM,” in Proc. Linux Sym., USA, pp.
19–28, 2009.

[11] K. V. M. Contributors, Kernel Samepage Merging KSM, Canada, KVM, Red Hat Open Shift, 2015. [online].
Available: https://www.linux-kvm.org/page/KSM.

[12] K. Ivanov, KVM Virtualization Cookbook - Learn how to effectively use KVM in production, Mumbai, India, Packt
Publishing, 2017. [online]. Available: https://books.google.com/books.

[13] H. D. Chirammal, P. Mukhedkar and A. Vettathu, “Mastering KVM Virtualization” in Packt Publishing, 1st ed.,
vol. 1. New York, Kindle Edition, pp. 468, 2004.

942 CSSE, 2023, vol.44, no.1

https://books.google.com/books
https://books.google.com/books
https://www.linux-kvm.org/page/KSM
https://books.google.com/books


[14] K. Suzaki, K. Iijima, T. Yagi and C. Artho, “Implementation of a memory disclosure attack on memory
deduplication of virtual machines,” IEICE Transactions on Fundamentals of Electronics, Communications and
Computer Sciences, vol. 96, no. 1, pp. 215–224, 2013.

[15] Y. Gu, Y. Fu, A. Prakash, Z. Lin and H. Yin, “OS-sommelier: Memory-only operating system fingerprinting in the
cloud,” in Proc. Third ACM Sym. on Cloud Computing, New York, USA, pp. 1–13, 2012.

[16] S. Jia, C. Wu and J. Li, “Loc-K: A spatial locality-based memory deduplication scheme with prediction on k-step
locations,” in Proc. IEEE 23rd Int. Conf. on Parallel and Distributed Systems (ICPADS), Shenzhen, China, pp.
310–317, 2017.

[17] S. Wang, W. Qiang, H. Jin and J. Yuan, “Covert Inspector: Identification of shared memory covert timingchannel
in multi-tenanted cloud,” International Journal of Parallel Programming, vol. 45, no. 1, pp. 142–156, 2017.

[18] K. Elghamrawy, D. Franklin and F. T. Chong, “Predicting memory page stability and its application to memory
deduplication and live migration,” in Proc. 2017 IEEE Int. Sym. on Performance Analysis of Systems and
Software (ISPASS), Santa Rosa, CA, USA, pp. 125–126, 2017.

[19] F. V. Garcia and H. M. Gisbert, “How kernel randomization is canceling memory deduplication in cloud
computing systems,” in Proc. 2018 IEEE 17th Int. Sym. on Network Computing and Applications (NCA),
Cambridge, MA, USA, pp. 1–4, 2018.

[20] E. Patel, A. Mohan and D. S. Kushwaha, “Neural network based classification of virtual machines in IaaS,” in
Proc. 5th IEEE Uttar Pradesh Section Int. Conf. on Electrical, Electronics and Computer Engineering
(UPCON), Gorakhpur, India, pp. 1–8, 2018.

[21] M. Zhu, K. Zhang and B. Tu, “PCA: Page correlation aggregation for memory deduplication in virtualized
environments,” in Proc. Int. Conf. on Information and Communications Security, Lille, France, pp. 566–583, 2018.

[22] J. Lindeman and M. Fischer, “Efficient identification of applications in co-resident vms via a memory side-
channel,” in Proc. IFIP Int. Conf. on ICT Systems Security and Privacy Protection, Poznan, Poland, pp. 245–
259, 2018.

[23] J. Lindemann and M. Fischer, “On the detection of applications in co-resident virtual machines via a
memorydeduplication side-channel,” ACM SIGAPPApplied Computing Review, vol. 18, no. 4, pp. 31–46, 2019.

[24] L. You, Y. Li, F. Guo, Y. Xu, J. Chen et al., “Leveraging array mapped tries in ksm for lightweight memory
deduplication,” in Proc. IEEE Int. Conf. on Networking, Architecture and Storage (NAS), EnShi, China, pp. 1–8, 2019.

[25] M. Shiba, “An examination method of mergeable memory page distribution for memory deduplication,” in Proc.
2019 IEEE 8th Global Conf. on Consumer Electronics (GCCE), Osaka, Japan, pp. 1027–1031, 2019.

[26] X. Gao, Z. Gu, Z. Li, H. Jamjoom and C. Wang, “Houdini’s escape: Breaking the resource rein of linux control
groups,” in Proc. ACM SIGSAC Conf. on Computer and Communications Security, London, United Kingdom, pp.
1073–1086, 2019.

[27] F. V. Garcia and H. M. Gisbert, “KASLR-MT: Kernel address space layout randomization for multi-tenant cloud
systems,” Journal of Parallel and Distributed Computing, vol. 137, pp. 77–90, 2020.

[28] F. V. Garcia and H. M. Gisbert, “An info-leak resistant kernel randomization for virtualized systems,” IEEE
Access, vol. 8, pp. 161612–161629, 2020.

CSSE, 2023, vol.44, no.1 943


	Homogeneous Batch Memory Deduplication Using Clustering of Virtual Machines
	Introduction
	Background and Motivation
	Literature Review
	Approach and Implementation
	Experiments and Evaluation
	Conclusion
	flink7
	References


