
A Component Selection Framework of Cohesion and Coupling Metrics

M. Iyyappan1, Arvind Kumar1, Sultan Ahmad2,*, Sudan Jha3, Bader Alouffi4 and Abdullah Alharbi5

1Department of Computer Science and Engineering, SRM University, Delhi-NCR, Sonepat, 131029, India
2Department of Computer Science, College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University,

Alkharj, 11942, Saudi Arabia
3School of Sciences, Christ (Deemed to be University), Delhi-NCR, Ghaziabad, 201003, India

4Department of Computer Science, College of Computers and Information Technology, Taif University, P.O. Box 11099, Taif, 21944,
Saudi Arabia

5Department of Information Technology, College of Computers and Information Technology, Taif University, P.O. Box 11099, Taif,
21944, Saudi Arabia

*Corresponding Author: Sultan Ahmad. Email: s.alisher@psau.edu.sa
Received: 14 November 2021; Accepted: 05 January 2022

Abstract: Component-based software engineering is concerned with the develop-
ment of software that can satisfy the customer prerequisites through reuse or inde-
pendent development. Coupling and cohesion measurements are primarily used to
analyse the better software design quality, increase the reliability and reduced sys-
tem software complexity. The complexity measurement of cohesion and coupling
component to analyze the relationship between the component module. In this
paper, proposed the component selection framework of Hexa-oval optimization
algorithm for selecting the suitable components from the repository. It measures
the interface density modules of coupling and cohesion in a modular software sys-
tem. This cohesion measurement has been taken into two parameters for analyz-
ing the result of complexity, with the help of low cohesion and high cohesion. In
coupling measures between the component of inside parameters and outside para-
meters. The final process of coupling and cohesion, the measured values were
used for the average calculation of components parameter. This paper measures
the complexity of direct and indirect interaction among the component as well
as the proposed algorithm selecting the optimal component for the repository.
The better result is observed for high cohesion and low coupling in compo-
nent-based software engineering.

Keywords: Component-based software system; coupling metric; cohesion metric;
complexity component; interface module density

1 Introduction

In component-based software system (CBSS) is mainly used for the development of major projects and
less complexities of system [1]. The independent development of the traditional system used higher cost,
poor quality, and risk as well as the failure of the system [2]. The CBSS provides better quality, lower
cost for the development, increased reliability and reduced the complexity of the large-scale project [3].

This work is licensed under a Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

Computer Systems Science & Engineering
DOI: 10.32604/csse.2023.025163

Article

echT PressScience

mailto:s.alisher@psau.edu.sa
http://dx.doi.org/10.32604/csse.2023.025163
http://dx.doi.org/10.32604/csse.2023.025163


The modularity approaches are used for the CBSS development where each module is more controllable and
developed by integration components. A selection of suitable components with the help of measuring the
coupling and cohesion density based on an optimization algorithm. Commercial off the shelf (COTS)
component or in house components are available in the market it is used for the higher quality of
software development also adopt for the latest technologies [4]. The C&C play a major role in
determining the system quality in terms of reliability and availability [5]. Cohesion and coupling depends
among all the components [6]. High cohesion is desirable as it accounts for improved strength and
quality of the module, it is based on measurement of an object-oriented system [7]. A building block of
the software component depends on the software object and modules to perform the specific functions
[8]. Metrics play an important role in measurements take into the place of the controlling software
engineering process [9]. The software quality metrics of packages are considering in to the development
[10]. The system maintenance need to follow the metric parameters to gain the better modularity [11].
The selecting appropriate component is major challenge in software design and development [12]. The
component composition metric(CCM) software development focus on the effort calculation of good and
average category of CBSD system and component ratio metric(CRM) determine the mean of the
component [13]. In the software component, the budget is main concern for reliable software. The
complexity of two sets of metrics: component packing density (CPD) metric and component interaction
density (CID) [14]. This metric analyse provide the larger support for the commercial software and
delivery to customer need to follow certain protocols. Itinclude the characteristic of metric calculation
among the software component, which provide a best commercial application for the business products.

This research article is organized as follows. In Section 2, reviewed the literature survey of existing
research work. In Sections 3, proposed layout of component selection framework with the help of
optimization technique. Section 4 discuss the proposed algorithm for Hexa-oval optimization selection
algorithm which is applicable of the various parameter. Section 5, measure the interface density module
of coupling and cohesion metric value. Section 6, proposed cohesion measurement for classes of direct
and indirect interaction. Section 7, proposed coupling measurement for classes of direct and indirect
interaction. Section 8, describes the complexity of coupling & cohesion measurement using the average
component. In Section 9, discuss the conclusion and future work of the experimental study.

2 Literature Review

Gui et al. [15] in this paper discuss the evaluation of new coupling and cohesion metrics for a software
component. The line of cohesion and tight class cohesion incorporate an indirect relationship between
methods. Evaluation of software components between direct and indirect relationships is measured with
the help of metrics. The weighted method per class is primarily concerned with the total number of
methods and the method’s priority. In object-oriented design, find the average calculation of metric. This
methodology lacks implementation phases. Optimum selection of the component based on high
reliability, lower cost, improved development phase, and deliver on time of the better quality of software
and reliable system Chi et al. [16]. Analyzed the system response and cost for the development without
any system failure. Umesh et al. [17] component selection based on lower complexity of overall software
system can be reduced with the help of integration process, testing effort, and increased maintainability.
Navneet et al. [18] represented component specification are system understandability and quality of
application. Gill et al. [19] complexity level of the system increases based on the dependencies among
the program module. Two categories: internal dependencies and external dependencies. In external
process two metrics for black-box components: component dependency metric (CDM) and component
interaction dependency metric (CIDM). Chillar et al. [20] in this paper metric shows the interaction with
other components as well as quantify interface aspect of a component. Chidamber et al. [21] in this paper
line of cohesion metric value calculate the number of pairs among methods in the class using without any

352 CSSE, 2023, vol.44, no.1



instance variable. Also discussed the depth of inheritance metrics used for measurement based on hierarchy.
Hierarchy is related to the parent node as well as the child node. Sometimes this type of node process is
complex at the level of measurement. Weyuker’s concept of monotonicity failed to measure the
inheritance process. Patel et al. [22] in this paper configuration of components are mainly used for the
system maintenance as well as software installation. Software configuration will vary from system to
system. So researcher cannot able to conclude the complexity of CBSE. This paper will provide
fundamental information about their constituents and internal structure of methods or attributes. The
sharing of components is used in component coupling. Chen et al. [23] discuss the complexity metric for
software systems and propose a complexity-based cohesion measurement for software systems. However,
the weyuker’s methodology cannot be used in this paper.

3 Component Selection Framework

In this diagram of the proposed algorithm main concern is about the component selections framework
which is ‘α’ denotes directly proportional to the Hexa-oval optimization algorithm. Which contain the
various attribute like quality, reliability, and complexity of the system can be able to store in the
warehouse of optimal components. This selection framework depends on the requirements which are
collected from the user. The initial process contains the commercial off-the-shelf component which is
used for the development CBSD system in Fig. 1. Also, it contains the client analysis and specification
about that user analysis. The first process will get started. Based on the needs of the user, the software
component repository is maintained consisting of in-house components and COTS components on the
system repository.

Figure 1: Proposed optimization of Hexa-oval algorithm model

CSSE, 2023, vol.44, no.1 353



The retrieve the set of the component from the software repository, according to the prerequisite of the
client because it holds the various in-house component and COTS components. This retrieve set of processes
able to measure the cyclomatic complexity as well as an adjacency matrix. The standard value of high
complexity is 10. If the value comes nearby 10 then that kind of component can be considered to be
somewhat complex. But if the calculated value comes out nearby 5 then its complexity value can also be
calculated by using the proposed Hexa-oval optimization algorithm and the complexity of components for
the development purpose selection can be analyzed. After applying it to the HOO algorithm, the various
parameter related to the algorithm is proposed to calculate complexity level of the metric. This step of the
HOO algorithm followed measuring the density of coupling and cohesion metric. After measuring density
value moved to the classes of direct and indirect, low complexity and high complexity metric value
measurement. Also, these metric values focused on the average calculation input parameter, output
parameter, and both component parameters. The result of the calculated metric values then moved into
the next of comparing the metric value of complexity of low component, complexity of high component
and average of in & out both component parameter. The final comparison of the high cohesion value is
better than the low cohesion value it is moved into the warehouse of optimal component selection
framework. It is directly proportional to the component adaptability, performance of the system &
reliability of the software, and improved software quality for the CBSD system.

4 Proposed Algorithm for Hexa-Oval Optimization Selection Algorithm

Step1:- Begin step refer the Fig. 2.

Step2:- Select [CPSC, CAS, CCR, RSCE]

CPSC - Client Prerequisite for Software Component

CAS – Component Analysis & Specification

CCR – COTS Component Repository

RSCE – Retrieve the Set of Component with Example

Step3:- CPSC = {1 to n}

// n is the number of the component in the repository

Step4:- Sol = null

// Solution is null at this time because no optimal component is selected according to Client requirements

Step5:- Retrieve the set of the component on the prerequisite of the client with general examples.

Step6:- Apply on Hexa-Oval Optimization Selection Algorithm based on step 2.

Step7:- Density measurement of components

MCCD ¼ CCIin

CCIout

Step8:- Calculate the various parameter like classes of Direct or Indirect Interaction

CDI ¼ R R� 1ð Þ
2

Step9:- Complexity of Low Cohesion measurement using Direct cohesion metric value

CLC ¼ R Dð Þ
CDI

354 CSSE, 2023, vol.44, no.1



Step10:- Complexity of High Cohesion using both Direct and Indirect cohesion metric value

CHC ¼ R DUIð Þ
CDI

Figure 2: Flowchart of proposed Hexa-oval algorithm

CSSE, 2023, vol.44, no.1 355



Step11:- Average measurement of Component In- Parameter for coupling & cohesion metric value

ACIP ¼
XM

i¼0

CIPi=m

Step12:- Average measurement of Component Out- Parameter for coupling & cohesion complexity

metric value

ACOP ¼
XM

i¼0

COPi=m

Step13:- Average of In-Parameter and Out-Parameter of both component

AIOBC ¼ ACIP þ ACOP

Step14:- Compare the value of CLC and CHCwith the support ofAIOBC. IfCLCmust be lessCHC. If
YES Component will be selected. NO, then the component will not be selected.

Step15:- Solution = RSCE (Retrieve a set of Component engineering)

// Assign the YES value within a Component set to the solution

Step16:- If Solution meets the Client Prerequisite, go to step 18

Step17:- Repeat the Step 4 to 16.

Step18:- End

5 Measure the Interface Density module

The software architecture of the modular approach is developed using the component-based software
system. The independently developed components are connected logically to another component module
also a limited module for the software system. COTS or in-house components are supposed to any one of
the modules for measuring the threshold value. Because this threshold value was used to measure the
reliability of the system, reducing the cost and time to deliver the software. CBSS approach of software
development using Inheritance concept of top-down strategy for analyzing the functional requirements.
The components should be chosen in such a way that there is maximum interaction between components
within software modules and minimal interaction between software modules in Fig. 3. This method
focuses primarily on the metric measurement of interface density between each module.

IDM – Interface Density Module

S – Software Architecture

N – Each subsystem can have a highest of N elements.

Density Measurement of Components

In this paradigm, a quantitative measure is proposed. The following is the evaluate the interaction and
adhesion is being used to examine the relationship between the Interface density modules (IDM1, IDM2,
IDM3, IDM4, and IDM5) of a modular software system:

MCCD ¼ CCIin

CCIout
(1)

Where CCIin is the number of coupling and cohesion interaction input within modules, and CCIout is
the number of coupling and cohesion interaction output between the distinct modules.

356 CSSE, 2023, vol.44, no.1



MCCD ¼ 18

18
¼ 1.

The above result is validated with the help of Inter-modular density and Intra-modular density between
the cohesion and coupling measurement. This module measurement used the four different developed
components of IDM1, IDM2, IDM3, IDM4, and IDM5 for the density analysis of the Inside module and
the Distinct module of a software system.

6 Cohesion Measurement for Direct and Indirect Interaction Classes

The package of direct interaction methods uses the class and indirect interaction uses the methods by
importing the particular packages. CDI represents direct interaction or indirect interaction for the
measurement of metric package level of cohesion.

CDI ¼ R R� 1ð Þ
2

(2)

R = represents the client request to access either one interaction or both interaction for the complexity
metrics. In the case study, classes of a total number of used direct or indirect connections and can be
calculated as Pa (Ea+1, ra+1) / R(R-1) to analyse the elements, relation and threshold ranking of the
software product. Then, in the case study, R represents a client request for a total number of packages. In
the package measurement of hierarchical level represent the Ea+1 = 1 and ra+1 = 1, so this can be used
to measure the client direct request of direct or indirect connections 2 / R(R-1) has been taken from the
concept of TCB (Tough Category Bonding) and SCB (Soft Category Bonding) metric.

CDI ¼ 6 6� 1ð Þ
2

¼ 15

Here the average count of packages = 6. So the value as per the client request R = 6.

Figure 3: Coupling and cohesion density module

CSSE, 2023, vol.44, no.1 357



6.1 To Measure the Complexity of Cohesion

The higher the value of CLC and CHC wills, the lower the complexity of software because it adheres to
terminology. The following are the definitions of the parameters used in the metrics calculation:

6.2 Complexity of Low Cohesion

In the term, CLC mentions complexity measurement with the help of low cohesion metric value. The
CLC packages using the client request along with direct interaction to find the average using the classes
of direct or indirect interactions.

CLC ¼ R Dð Þ
CDI

(3)

R [D]:- It is the client direct request for low cohesion measurement between the packages.

CLC ¼ 6 3ð Þ
15

¼ 1:2

The value of the Client request = 6, Direct interaction value D = 3 and CDI = 15.

6.3 Complexity of High Cohesion

To check the complexity level of high cohesion packages using the client request along with direct and
indirect interaction to find the average using the classes of direct or indirect interactions.

CHC ¼ R DUIð Þ
CDI

(4)

R [DUI]: - It is the client’s request of direct and indirect for high cohesion measurement based on
complexity.

CHC ¼ 6 3þ 1ð Þ
15

¼ 1:6

The value of the client request = 6, Direct interaction value = 3, Indirect interaction value = 1 and
CDI = 15. Finally, there will be a comparison between the values of CLC and CHC. Value of CLC (1.2)
≤ Value of CHC (1.6). Therefore, from here, it can be concluded that the value of CLC comes out to be
lower than the value of CHC and the high value of CHC will lead us to the low complexity of software.
Similarly, these values for the rest of the five classes have been summarized in the Tab. 1 given below as:

Table 1: Comparison of cohesion metric value

Classes Methods(m) CDI R(D) CLC CHC IS
CLC<CHC

C1 6 15 3 1 1.6 1.6 YES

C2 5 10 2 1 1.5 1.5 YES

C3 6 15 3 1 1.6 1.6 YES

C4 5 10 2 1 1.5 1.5 YES

C5 5 10 2 1 1.5 1.5 YES

358 CSSE, 2023, vol.44, no.1



7 Coupling Measurement Developed for Direct and Indirect Interaction Classes

Cohesion and coupling are primarily employed in the creation of component-based software systems.
Two components are connected in this manner if and only if at least one of them operates on the other.
Metrics employed a Graph (G) to construct coupling since it has nodes and edges. The node of a graph is
mentioned about the component of vertices and the edges of the graph are the interface between the
components. This directed graph has five nodes: A, B, C, D, and E, each of which is related to another
node by edge interface contact. A graph’s node and edge connectivity is primarily determined by five
characteristics: starting point, end point, regular parameter, neutral parameter, crucial parameter for
coupling metrics measurement in Fig. 4.

From the derived graph of node and edges are used the coupling intermix metrics. In this type of
coupling metrics of intermix value represent =1 means there is an interface between the component and it
represents = 0 means there is no interface between the component. The direct graph is used between the
starting point and end point parameter if A to A = 0, A to B = 1 analysed the interface between the
component in Tab. 2. In this graph matrix row and column equal to the total number of components or
nodes. It can represent the edges of graph G by parallel arrays.

In the set of components used In (input) parameter and Out (Output) parameter to measure the coupling
interface between the vertices and edges of the directed graph. The component used C = {C1, C2, C3…Cn}.
These parameters are further classified into (Regular, Neutral, Crucial) parameters in Tab. 3. In this method,
each return value is considered as an input parameter and the passing of every argument is called an output
parameter.

Figure 4: Coupling metric related to the node & edges graph

Table 2: Coupling graph matrix

Graph matrix A B C D E

A 0 1 1 0 0

B 0 0 0 1 1

C 0 1 0 0 0

D 1 0 1 0 0

E 0 0 0 1 0

CSSE, 2023, vol.44, no.1 359



The passing of output parameter is mainly used for the array concepts for storing a large number of
values on a single variable. The output parameter used five different representations starting point vertex,
end point vertex, regular output parameter passed by the starting point interaction, neutral output
parameter passed by the starting interaction, crucial output parameter passed by the starting interaction.
The first row of the array represents that there is an interface between component A and component B
which has eight parameters of regular, neutral, and crucial so an. So, will find the average of in & out
components.

8 Measurement of Coupling and Cohesion Complexity Using the Average Component

8.1 Average Component In-Parameter (ACIP)

The concept of this parameters, has been primarily used in the complexity measurement of interaction
and group cohesiveness.

ACIP ¼
XM

i¼0

CIPi=m (5)

ACIP = Average component in-parameter of coupling and cohesion.

CIPi = Component of Input Parameter along with ‘i’ term of minimum value with reference of
maximum methods of ‘m’.

Component In-Parameter (CIPi)

The eight simultaneous input data have been used to calculate the complex nature of components. In the
element concatenation, the peak amount reflects the ‘n’ term, whereas the lowest signifies i = 0.

CIPi ¼
Xn

i ¼0

0:10 � Xi � 30
input Parameterð Þ

Value
0 No Parameter

(6)

The component value of complexity calculation has taken into the two different parameters: Input value
and Null value. The input parameter of Xi has set the limit of minimal functionality value 0.10 to maximum
functionality value 0.30. If no input parameter has occurred, then it’s moved into the value of 0 as a no
parameter functionality.

Table 3: Inside and outside parameter of the component between the coupling metrics

Index Start End Regular Neutral Crucial

1 A B 0 8 0

2 A C 8 0 0

3 B D 0 0 8

4 B E 4 4 0

5 C B 3 3 2

6 D A 4 2 2

7 D C 3 3 2

8 E D 0 4 4

360 CSSE, 2023, vol.44, no.1



For our experimental study has taken into the 8 different components observed the result from the graph
matrix also calculated the total number of component value present on the input parameter in Tab. 4. This
CIPi complexity value is used for the average calculation of the inside component from the vertex and edges.

8.2 Average Component Out-Parameter (ACOP)

The idea of the ordinary element of endogenous variable, that is used to quantify the interconnection of
the outside established sources.

ACOP ¼
XM

i¼0

COPi=m (7)

ACOP = Average component out-parameter component.

COPi = Component of Output Parameter along with ‘i’ term of minimum value with reference of
maximum methods of ‘m’.

Component Out-Parameter

COPi has taken into account the complexity of the component in eight parallel interaction output
measures. In the device summing up, the peak amount symbolises the ‘n’ term, although the margin
requirement symbolises i=0.

COPi ¼
Xn

i¼0

ORi �Wrð Þ þ ONi �Wnð Þ þ ðOCi �Wc (8)

OR = Output parameter of Regular vertex

ON = Output parameter of Neutral vertex

OC = Output parameter of Crucial vertex

Wr = Weight factor for regular type

Wn = Weight factor for neutral type

Wc = Weight factor for crucial type

The component value of complexity calculation has taken into the two different parameters: output
parameter and weight factor. On the output, the parameter used the parallel array concept of regular
vertex, neutral vertex, and crucial vertex. Then other parameters focus on the weighting factor used for
interaction between regular type, neutral type, and crucial type in Tab. 5.

For our experimental study has taken into the 8 different components observed the result from the graph
matrix also calculated the total number of component value interaction between the outside parameter. This
COPi complexity value is used for the average calculation of outside components from the vertex and edges.
In this concept, outside parameter vertex and weighting factor parameter value are used for measuring the
interaction among coupling and cohesion complexity.

Table 4: Calculate the component inside parameter value

CIP 1 = 0.20 CIP 2 = 0.10 CIP 3 = 0.30

CIP 4 = 0.20 CIP 5 = 0.20 CIP 6 = 0.10

CIP 7 = 0.10 CIP 8 = 0.30 CIPi = 1.5

CSSE, 2023, vol.44, no.1 361



8.3 Comparison of In & Out Parameter

The outcome of the experimental analyses can be seen in this comparison Tab. 6, which includes the
actual data set value which assess the complexity of output parameters.

I = Interface value used for the component

COPi = Component out-parameter value using the three-parameter and weighting factor is observed for
COPi and along with the average calculation of outside component interaction.

CIPi = Component in-parameter value using regular, neutral, crucial type observation along with the
average calculation of inside component.

8.4 Average of In-Parameter and Out-Parameter of both component (AIOBC)

The performance measures are using the nomenclature to estimate the inside and outside variables. It is
used to assess the interface complexity of a component-based system.

AIOBC ¼ ACIP þ ACOP (9)

AIOBC ¼ 12:4 þ 1:5 ¼ 13:9

Table 5: Calculate the component outside parameter value

COP1 = 0*0.10 + 8*0.20 + 0*0.30 = 1.6

COP2 = 8*0.10 + 0*0.20 + 0*0.30 = 0.8

COP3 = 0*0.10 + 0*0.20 + 8*0.30 = 2.4

COP4 = 4*0.10 + 4*0.20 + 0*0.30 = 1.2

COP5 = 3*0.10 + 3*0.20 + 2*0.30 = 1.5

COP6 = 4*0.10 + 2*0.20 + 2*0.30 = 1.4

COP7 = 3*0.10 + 3*0.20 + 2*0.30 = 1.5

COP8 = 0*0.10 + 4*0.20 + 4*0.30 = 2.0

Table 6: Calculate the component value and complexity level

INTERFACE COPi ACOP CiPi ACIP AIOBC

I1 1.6 12.4 0.20 1.5 13.9

I2 0.8 0.10

I3 2.4 0.30

I4 1.2 0.20

I5 1.5 0.20

I6 1.4 0.10

I7 1.5 0.10

I8 2.0 0.30

362 CSSE, 2023, vol.44, no.1



According to the above observed result which satisfies high level intradependence and low level
interdependence among the software component with the proposed algorithm of optimal selection
framework.

Graph 1: Calculated complexity of low cohesion and high cohesion with number of components

Graph 2: Calculated Complexity between component in-parameter & out-parameter comparison

CSSE, 2023, vol.44, no.1 363



9 Conclusion

This paper analyzed the low cohesion and high cohesion of complexity metric and coupling metric
considered into the parameter of inside & outside interaction among the component. Interface modular
density is also measured between the coupling and cohesion interaction among the vertex and edges.
The proposed algorithm of HOO is also suitable for selecting the optimal selection of complexity among
the component. The results are also compared with the previous graph, module, and matrix concepts. The
MCCD, CLC, CHC, CDI, ACIP, ACOP, and AIOBC is also validated using the recently used properties.
The proposed measures are based on the direct and indirect relations between classes and methods. This
measurement will assist both these developers and middleware users in determining complex nature of
cohesion. In the future rather than reusability, this metric can be used to establish the relations with some
other factors in a component-based development environment like maintainability, adaptability.

Acknowledgement: We deeply acknowledge Taif University for Supporting this research through Taif
University Researchers Supporting Project number (TURSP-2020/231), Taif University, Taif, Saudi Arabia.

Funding Statement: The authors received no specific funding for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] J. M. Bieman and B. K. Kang, “Measuring design-level cohesion,” IEEE Trans Software Engineering, vol. 24, no.

2, pp. 111–124, 1998.

[2] J. M. Bieman and L. M. Ott, “Measuring functional cohesion,” IEEE Trans Software Engineering, vol. 20, no. 8,
pp. 644–658, 1994.

[3] L. Briand, S. Morasca and V. Basili, “Property-based software engineering measurement,” IEEE Trans Software
Engineering, vol. 22, no. 1, pp. 68–86, 1996.

[4] V. Cortellessa, F. Marinelli and P. Potena, “An optimization framework for build-or-buy decisions in software
architecture,” Journal Computers and Operations Research, vol. 35, no. 10, pp. 3090–3106, 2018.

Graph 3: Average calculation of complexity metric between the total numbers of components

364 CSSE, 2023, vol.44, no.1



[5] G. Priyalakshmi and R. Latha, “Evaluation of software reusability based on coupling and cohesion,” International
Journal of Software Engineering and Knowledge Engineering, vol. 28, no. 10, pp. 1455–1475, 2018.

[6] S. Almugrin, W. Albattah and A. Melton, “Using indirect coupling metrics to predict package maintainability and
testability,” Journal of System and Software, vol. 21, no. 1, pp. 298–310, 2016.

[7] F. B. Abreu and M. Goulao, “Coupling and cohesion as modularization drivers: Are we being over-persuaded?,” in
Proc. of the 5th European Conf. on Software Maintenance and Reengineering, Lisbon, Portugal, pp. 47–57, 2001.

[8] J. Chen, K. W. K. Yeap and S. D. Bruda, “A review of component coupling metrics for component based
development,” in WCSE ’09: Proc. of the 2009 WRI World Congress on Software Engineering, Xiamen,
China, pp. 65–69, 2001.

[9] D. Chaudhary and R. S. Chillar, “Component based software engineering systems: Process and metrics,”
International Journal of Advanced Research in Computer Science and Software Engineering, vol. 1, no. 7, pp.
91–95, 2013.

[10] A. Aloysius and K. A. Maheswaran, “Review on component based software metrics,” International Journal of
Fuzzy Mathematical Archive, vol. 7, pp. 185–194, 2015.

[11] R. Sekar, A. J. V. D. Merwe, P. Kotze, M. M. Tanik and R. Paul, “Assessment of coupling and cohesion for
component-based software by using shannon languages,” Journal of Integrated Design and Process Science,
vol. 8, no. 4, pp. 33–43, 2004.

[12] S. Mittal and P. K. Bhatia, “Predicting quantitative functional dependency metric based upon the interface
complexity metric in component based software,” International Journal of Computer Application, vol. 73, no.
2, pp. 21–28, 2013.

[13] R. S. Chhillar and P. Kajla, “New component composition metrics for component based software development,”
International Journal of Computer Application, vol. 60, no. 15, pp. 17–20, 2012.

[14] V. L. Narasimhan, P. T. Parthasarathy and M. Das, “Evaluation of suite of metrics for component based software
engineering,” in Proc. of the Conference: InSITE 2009: Information Science and IT Education Conference,
Macon, United States, pp. 731–740, 2000.

[15] G. Gui and D. Scott, “Measuring software component reusability by coupling and cohesion metrics,” Journal of
Computers, vol. 4, no. 9, pp. 797–804, 2009.

[16] D. H. Chi, H. H. Lin and W. Kuo, “Software reliability and redundancy optimization,” in Proc. of the Annual
Reliability and Maintainability Sym., Atlanta, GA, USA, pp. 41–45, 1989.

[17] U. Tiwari and S. Kumar, “Cyclomatic complexity metric for component based software,” ACM SIGSOFT
Software Engineering, vol. 39, no. 1, pp. 1–6, 2014.

[18] N. Kaur and A. Singh, “A complexity metrics for black box components,” International Journal of Soft
Computing and Engineering, vol. 3, no. 2, pp. 06–12, 2013.

[19] N. S. Gill and Balkishan, “Dependency and interaction oriented complexity metric of component based system,”
ACM SIGSOFT Software Engineering, vol. 33, no. 2, pp. 1–5, 2008.

[20] U. Chhillar and S. Bhasin, “A journey of software metrics: Traditional to aspect-oriented paradigm,” in 5th
National Conf. on Computing for National Development, New Delhi, pp. 289–293, 2000.

[21] S. R. Chidamber and C. K. Kemerer, “Towards a metrics suite for object oriented design,” in Proc. of 6th ACM
Conf. on Object Oriented Programming Systems Languages and Applications, (Phoenix Arizona 1991), pp. 197–
211, 1991.

[22] S. Patel and J. Kaur, “A study of component based software system metrics,” International Conference on
Computing, Communication and Automation, vol. 2, no. 1, pp. 824–828, 2016.

[23] J. Chen, H. Wang, Y. Zhou and S. Bruda, “Complexity metric for component based software systems,”
“International Journal of Digital Content Technology and its Applications, vol. 5, no. 3, pp. 235–244, 2011.

CSSE, 2023, vol.44, no.1 365


	A Component Selection Framework of Cohesion and Coupling Metrics
	Introduction
	Literature Review
	Component Selection Framework
	Proposed Algorithm for Hexa-Oval Optimization Selection Algorithm
	Measure the Interface Density module
	Cohesion Measurement for Direct and Indirect Interaction Classes
	Coupling Measurement Developed for Direct and Indirect Interaction Classes
	Measurement of Coupling and Cohesion Complexity Using the Average Component
	Conclusion
	flink10
	References


