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Abstract: The prime purpose for the image reconstruction of a multi-frame super-
resolution is to reconstruct a higher-resolution image through incorporating the
knowledge obtained from a series of relevant low-resolution images, which is use-
ful in numerous fields. Nevertheless, super-resolution image reconstruction meth-
ods are usually damaged by undesirable restorative artifacts, which include
blurring distortion, noises, and stair-casing effects. Consequently, it is always
challenging to achieve balancing between image smoothness and preservation
of the edges inside the image. In this research work, we seek to increase the effec-
tiveness of multi-frame super-resolution image reconstruction by increasing the
visual information and improving the automated machine perception, which
improves human analysis and interpretation processes. Accordingly, we propose
a new approach to the image reconstruction of multi-frame super-resolution, so
that it is created through the use of the regularization framework. In the proposed
approach, the bilateral edge preserving and bilateral total variation regularizations
are employed to approximate a high-resolution image generated from a sequence
of corresponding images with low-resolution to protect significant features of an
image, including sharp image edges and texture details while preventing artifacts.
The experimental results of the synthesized image demonstrate that the new pro-
posed approach has improved efficacy both visually and numerically more than
other approaches.

Keywords: Super-resolution; regularized framework; bilateral total variation;
bilateral edge preserving

1 Introduction

Over the last decade, there has been a tremendous advancement in software and hardware technology
everywhere around the world. The resolution of an image has emerged to become one of the most
important metrics for measuring the image quality in recent years. High-resolution (HR) images are often
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necessary and desirable for generating more extensive information within digital images. As a result, pictorial
information and automatic machine perception are improved for human analysis and interpretation [1].
Nevertheless, the most effective use of image sensors and optical technology is typically a costly strategy
that is also limited in its ability to improve the image resolution. As a result, the use of multi-frame
super-resolution (SR) image reconstruction technology is a cheap and powerful way for generating an HR
image from a series of low-resolution (LR) images [1].

HR images provide additional information to have a better visual perspective. HR images are also used
widely in various imaging applications which include but are not limited to surveillance videos [2], medical
imaging domain [3], forensics imaging field [4], and remotely sensed imagery [5]. Therefore, there seems to
be a great demand for an HR image that recurrently exceeds the capabilities of current HR digital cameras
[6,7]. Nevertheless, the contemporary imaging system generates LR images, which should be enhanced to
produce HR images. The image resolution is reduced due to a variety of possible factors, which include
physical limitations on the images, insufficient image detectors, a lower spatial sampled rate, and an
inappropriate approach for acquiring images [8–11]. Recently, SR image reconstruction algorithms have
emerged as a significant and economical strategy for improving the quality of captured LR images, which
satisfies the increasing business market need for using HR images [12–14].

Tsai and Huang are the first to describe the SR problem for reconstructing the HR image, which is based
on the idea of using frequency domain [15]. There have since been a number of different techniques to
resolve the SR problem presented in the literature [8–11,16,17]. The regularization method's primary goal
is to overcome the SR problem, which is difficult to handle because of its ill-conditional structure. Recent
researches have been carried out with the goal of overcoming the SR difficulty by utilizing the
regularization framework [8–11,18–25]. In the regularized multi-frames SR image reconstruction, the
maximum a posteriori (MAP) approach is used to correspond a posteriori-distributed over an HR image
accordingly to a data-fidelity term, whilst a regularization term can be employed as an image prior [10,26].

Without using any prior knowledge, the reconstruction of an SR image is often an inverse issue, which is
extremely challenging to solve [8,9,13,27]. Therefore, in recent researches, several regularization-based SR
algorithms have been presented, each of which incorporates prior knowledge to approximate an unidentified
HR image. The Tikhonov prior-based SR technique suggests the use of the L2 norm, which has the advantage
of being able to quickly reduce noise from images while also blurring the borders of images [28]. The
bilateral total variation prior (BTV) is proposed by Farsiu et al. to penalize gradient magnitudes, and it is
derived in accordance with the L1 norm [10,26,29]. BTV is utilized to maintain the edges effectively,
although artifacts are generated in the smoothed regions when BTV is applied. The bilateral edge-
preserving (BEP) prior is proposed to preserve sharp image edges, but ignore the local image features [16].

In this research, we propose a new SR approach to increase the effectiveness of multi-frame SR image
reconstruction by increasing the visual information and improving the automated machine perception, which
improves human analysis and interpretation processes. The proposed solution has been created by employing
the regularization framework. Therefore, the main contribution is to develop an efficient approach which is
derived from the hybrid of reconstruction models in the image reconstruction stage based on employing the
adaptive norm and Lp norm in the data-fidelity term, beside adopting BEP and BTV prior models in the
regularization term respectively. This new SR approach is used to protect image texture information while
eliminating noise and improving the edges of the estimated image from a series of LR images. Extensive
experiments have indeed been performed to explore the reliability and performance of the proposed SR
approach.

The remainder of this research work is structured as follows: the image observation or degradation
model explains the formulation of SR problem and Bayesian framework. Next, we illustrate the image
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SR reconstruction prior models in detail. Then, we present and discuss the proposed multi-frame SR
approach, while the experimental results are illustrated. At last, the conclusion is provided.

2 Multi-Frame SR Problem Formulation

In this section, we formulate the multi-frame SR image reconstruction problem that needs to be resolved.
Accordingly, this formulation is classified into an image observation model and also the Bayesian
framework, which are described in the following subsections.

2.1 Image Observation Model

In SR image reconstruction, a suitable image model has to be established that can accurately represent
the physical mechanism of image degradation. In the practical sampling process, there are certain degrading
effects such as atmospherically imbalance, object movements, blurring effects, and down sampled devices.
As a result, the image degrading model must first be developed from a mathematical perspective to study the
issue of SR reconstruction through the model that links the LR images to the HR image [12]. As a result, the
selection of an appropriate degradation model is the first step in reconstructing the SR image, as illustrated in
Fig. 1, where it serves as the essential kernel of the whole image reconstruction processes [1].

In this paper, the warping process is the movement from the image acquisition mechanism, where X
presents the HR image, while Fk is the motion matrix that is utilized to create the motion degradation
process of the kth LR image [8]. Initially, let's assume that Yk is a collection of LR images, where M is
the number of images in this collection. For instance, Yk,1 is the first LR image to be processed and Yk,m

is the mth LR image processed. Therefore, the sequence of LR images can be rewritten as:

Yk ¼ ½Yk;1; Yk;2; Yk;3; . . . ; Yk;M�T (1)

Thereafter, let's assume that Hk is the blurred matrix that describes the point spread function (PSF) of the
imaging system, and Dk defines the matrix of down-sampling which goes in both the movement and blurring
matrices of the kth image. Finally, nk denotes the additive system noise. In this paper, we presume the use of
global motion which is used in the warping process and also the use of White-Gaussian noise. As a result, the
image degradation model that is used to emulate the entire processes may be expressed in Eq. (2) as follow
[8,9,11,13]:

Yk ¼ DkHkFkXþ nk; 1 � k � M (2)

Keep in mind that, regardless of the fact that complicated movements in real sequences are widespread
and cannot be described by a simple parametric form, global translational displacements throughout many
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Figure 1: Sketch of degradation model
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frames, which serve as a basic issue, remain the goal of this study. In general, we suppose that the produced
LR images are obtained in comparable conditions; hence, the following formula can be modeled as follow:

Yk ¼ DHFkXþ nk; 1 � k � M (3)

D and H are the identical motion and blurring matrices respectively, where Fig. 1 shows the image
degradation model [1].

2.2 Bayesian Framework of Super-Resolution

Essentially, the Bayesian framework's primary task is to estimate the probability of an unpredictability
issue depending on the available information or knowledge. This is accomplished by incorporating multiple
priors into a mathematical form that is more effective than statistical inference in this situation. As a result,
the uncertainty inference issue lies at the heart of SR technology used to predict an unknown HR image from
a set of LR recorded images. In the other aspect, the measured LR images constitute proof of HR image
inference, and the regularization which defines the image prior is constrained by the recovered result of
SR [30].

For the Bayesian framework, one of the most widely used methods is the maximum a posteriori
technique, which takes into account prior limitations on the image and accomplishes outcomes by
maximizing the posterior probability objective functions. Furthermore, it is well-known for its
adaptability in terms of edge preservation and the estimate of joint parameters. Generally, Bayesian
estimation can be used when it is necessary to determine the posteriori probability distribution for
uncertain parameters instead of utilizing the specified parameters [30]. The MAP estimator is widely used
as follow:

X̂MAP ¼ arg max
YM
k¼1

PðYkjXÞ:PðXÞ (4)

where P(Yk|X) describes the conditional probability of the LR image (Yk) through searching for the HR
image (X), and P (X) denotes the prior probability of the HR image.

The image degradation model in Eq. (3) outlines the process of creating LR images while also inversely
estimating the unknown HR image. There are two terms in the core structure of multi-frame SR: a term for
data-fidelity and another for regularization. In order to reduce the residual between both the expected HR
image and the recorded LR images, M estimator is used for the data-fidelity term. In order to limit the
minimization function to a steady state of the produced HR image [18], the regularization term is used.
The following is a description of the classical multi-frame SR model:

X̂MAP ¼ arg minX
XN
k¼1

rðDHFkX� YkÞ þ kRðXÞ (5)

where ρ(.), R(.), and λ describe the data-fidelity term, the regularization term, and the regularization
parameter respectively.

3 Image Reconstruction Models

In this section, we explain the multi-frame SR image reconstruction models, which they are required to
generate the HR image. A short discussion of the Lp norm and adaptive norm is provided as the data-fidelity
term, and also the BTV and BEP models are described as the regularization term in the next subsections.
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3.1 Lp Norm and Bilateral Total Variation (BTV)

The L1 error norm is proposed by Farsiu et al. [29] to be utilized as a data-fidelity term, and the predicted
HR image is resolved when p = 1 by:

FðXÞ ¼ arg minX
XN
k¼1

kðDHFkX� YkÞkPP (6)

Farsiu et al. [29] propose an appropriate model named BTV, which incorporates a bilateral filtering and
total variation (TV) regularization to achieve the desired results. A huge number of neighbors is used to
estimate the gradient at a particular pixel, and BTV regularization takes this into consideration.
Furthermore, BTV has the advantage of preserving sharp edges in images with few distortions while still
being computationally economical and simple to implement. The following is the definition of the
primary formula of BTV prior:

RBTVðXÞ ¼
Xp
l¼�P

Xp
m¼0

ajmjþjljkðX� SlxS
m
y XÞk1 (7)

where Slx and Smy shift X in horizontal and vertical planes by l and m pixels respectively, and also l + m≥0.
Moreover, α denotes a scaling weight in the range of 0 < α < 1, and also the control parameter is denoted by P.

A large variety of solutions are available and can be achieved in an unknown situation that's because SR
is an ill-posed issue. Furthermore, a few levels of noise in observations result in huge variations in the final
outcome, which is an unsteady solution. As a result, the techniques of utilizing regularization-based
approaches for SR image reconstruction are a really beneficial approach to get a stable solution, remove
distortions from the final outcome, and increase the rate of convergence. An extensive range of
regularization approaches are available; one of them is employed to generate HR images with sharp-
edged and simplicity of implementation. The primary advantage of employing the regularization term
during the image reconstruction phase is that it allows for the compensation of lost data with many prior
information, which can then be employed as a penalty function for the minimizing objective function
[26]. Consequently, the objective function of the BTV regularization term [29] is denoted in Eq. (7) as
follows:

X̂ ¼ arg min
X

XN
k¼1

kDHFkX� Ykk1 þ
XP
l¼�P

XP
m¼0

ajmjþjljkX� SlxS
m
y Xk1

" #
(8)

In this study, we use the steepest descent method to obtain a close result in Eq. (8). The iteration of
measurement that uses the steepest descent method is given below:

X̂nþ1 ¼ X̂n � b
XN
k¼1

FTkH
TDTsignðDHFkX̂n � YkÞ þ

XP
l¼�P

XP
m¼0

ajmjþjlj½I� S�m
y S�l

x �signðX̂n � SlxS
m
y X̂nÞ

" #
(9)

where β is a scalar which controls the step size in the gradient plane, the regularization parameter is denoted
by λ, S�l

x and S�m
y define the transferring of matrices Slx and Smy respectively.

3.2 Adaptive Norm and Bilateral Edge Preserving (BEP)

Charbonnier et al. [31] propose the BEP regularization model, then it is later modified by Zeng et al.
[26]. The BEP regularization follows the same BTV concept, but with using an adaptive norm rather than
the L1 norm as follows:
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rðe; aÞ ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ e2

p
� a2 (10)

where a represents a positive number while e is the difference to be minimized. Initially, this norm proposes
to protect edges and boundaries in the process of image regularization. Parameter a calculates the value of
error in which the regularization changes the linear formula to constant. Also, the same definition of the
adaptive norm is used in the case of SR problems [26]. ρ (e, a) function seems to be M-estimator as it
matches the maximum likelihood (ML) estimator and its effect function is provided by:

cðe; aÞ ¼ aeffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ e2

p (11)

Using the adaptive norm in Eq. (10), the data-fidelity term is

FðXÞ ¼
Xp
k¼1

XM
m¼1

rðek;m; akÞ ¼
Xp
k¼1

XM
m¼1

ak
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2k þ e2k;m

q
� a2k (12)

where ak represents the kth frame of the threshold parameter. A constant subtraction has really no effect on the
minimization function and can be solved by the following:

FðXÞ ¼ argmin
x

Xp
k¼1

XM
m¼1

ak
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2k þ e2k;m

q
(13)

An SR regularization framework for edge preservation is developed to restrict image gradients.
Furthermore, it can protect large gradients that fit the edges appropriately, whereas smooth small
gradients often have a noise effect. Therefore, the function ρ(e, a) in Eq. (10) follows the requirements
for the preservation of the edges to propose a BEP regularization that looks like:

RBEPðXÞ ¼
Xq
l¼�q

Xq
m¼0

XN
i¼1

ajmjþjljrððX� SlxS
m
y XÞ½i�; cÞ (14)

with α, q, Slx, S
m
y the same in Eq. (8). Here ðX� SlxS

m
y XÞ½i� represents the ith element of the vector

ðX� SlxS
m
y XÞ. c represents the threshold parameter where the gradient penalty varies from severe to

slight [13].

The cost function can be defined as:

CðXÞ ¼
Xp
k¼1

XM
m¼1

ak
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2k þ e2k;m

q
þ k

Xq
l¼�q

Xq
m¼0

XN
i¼1

ajmjþjljrððX� SlxS
m
y XÞ½i�; cÞ (15)

where ek is the observation error which equals to (DHFkX −Yk). ak represents the threshold parameter of the
kth LR image, which is determined using the average error of observation. In the estimation of the HR image
process, the total number of pixels is represented by parameter N.

The objective function can be optimized with the steepest decent approach. Nevertheless, it normally
performs faster with the optimization of the conjugate gradient (CG). CG algorithm's iterative function is
defined as:

X̂nþ1 ¼ X̂n þ anPn; n ¼ 1; 2; 3; . . . (16)

where the conjugate-gradient vector is represented by Pn at the nth iteration. Additionally, the gradient of
C(X̂) at X̂n is given by:
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rCðX̂nÞ ¼
Xp
k¼1

ðDHFkÞTWk;nðDHFkX̂n � YkÞ þ k
Xq
l¼�q

Xq
m¼0

ajmjþjlj½I� S�l
x S�m

y �WnðX̂n � SlxS
m
y X̂nÞ (17)

where S�l
x and S�m

y describe the transposing of matrices Slx and Smy respectively. Wk,n and Wn are two
diagonal matrices weighting the simulation error DHFkX̂n � Yk and the gradients X̂n � SlxS

m
y X̂n

respectively. In addition, the ith diagonal component of the matrix Wk,n is measured by
fððDHFkX̂n � YkÞ½i�; akÞ where ϕ (e, ak) = ak/(ak

2 + e2)1/2.ðDHFkX̂n � YkÞ½i� is the ith component of the
vector DHFkX̂n � Yk. The diagonal elements of Wn are similarly achieved using ϕ(x, c) = c/(c2 + x2)1/2

and X̂n � SlxS
m
y X̂n [13].

4 Proposed Multi-Frame SR Approach

As stated previously, the generated HR image (X̂) is estimated from a sequence of captured LR images.
However, the issue of inverse SR is extremely an ill-posed problem in the presence of noise and blurred
affects. According to the Bayesian approach, we introduce the prior knowledge to overcome the inverse
SR issue into the HR image (X). It is well-known that the HR image (X) contains an adaptive White-
Gaussian noise, and accordingly it is assumed that the predicted vector Yk is Gaussian in nature. As a
result of applying the Bayes rule in order to generate the HR image (X̂), it has been determined that the
minimization issue in Eq. (5) is resolved through the MAP framework.

A large number of multi-frame SR image reconstruction techniques have indeed been proposed in order
to increase the quality of the predicted HR image, with different levels of success. Edges and noises cannot be
distinguished using conventional regularization terms such as Tikhonov and TV. As a result, although noise
is eliminated well, the texture data is distorted which decreases the efficiency of these strategies. BTV and
BEP are extensively utilized prior functions in many situations. The BTV regularization method is
efficient in recovering sharp-edged images because it incorporates the greater neighbors into the
computation of the gradient at a given pixel. However, it fails when trying to retrieve images of flat
surfaces that are sensitive to the staircase effects. The BEP method is useful for preserving edge features
and reducing artifacts in areas of flat images. Nevertheless, it discards the image's primary properties. As
a result, BTV and BEP are still affected by noise and blur.

In this paper, based on the strengths and weaknesses of the regularizations that are addressed above, a
new approach is proposed for the image reconstruction of multi-frame SR, so that it is created on the
regularization framework. This new SR approach is derived from employing the adaptive norm and Lp

norm in the data-fidelity term, beside adopting BEP and BTV prior models in the regularization term
respectively to measure the HR image through the use of the corresponding LR image series, where
image noise suppression and edge preservation can be accomplished concurrently. One of the primary
goals of the proposed method is to protect essential image features as much as possible including borders
and boundaries, while also protecting the sharp image edges and avoiding artifacts. Additionally, the
high-frequency portions of the proposed method are increased, degradations inside the image capture
systems are eliminated, and a good balance between edge preservation and noise elimination is achieved.

The overall procedure flow of the proposed approach can be implemented via the following steps:

Step (1): Generate a series of LR images from the original HR image by using the above observation
model in Eq. (3), so that it is used as an input to the proposed approach.

Step (2): Assign one of its LR images as the LR reference image to be used for initializing the HR image.
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Step (3): Estimate the motion parameters by calculating both of the rotate dangle and the vertical and
horizontal shift among the LR reference image and the next LR image to enhance the warp matrix Fk.

Step (4): Apply the bi-cubic interpolation on the LR reference image by using the magnification factor to
measure the initial HR image (X0) which is used as an input to the image reconstruction stage.

Step (5): Input both of the initial estimation image (X0) and the LR images into an SR image
reconstruction model that depend on the adaptive norm and BEP prior model according to Eq. (17)
beside using shift and rotation angle parameters to reconstruct the intermediate HR image (Xi).

Step (6): Assign the intermediate HR image (Xi) that was extracted from Step (5) into the initial HR
image (X0) in form X0=Xi to be used as an input to the next step.

Step (7): Reconstruct the final HR image (Xf) through inputting both of the intermediate HR image (Xi)
which is assigned to the initial HR image (X0) and the LR images into an SR image reconstruction model
that depend on L2 norm and BTV prior model according to Eq. (9) beside using the motion parameters.

The schematic diagram of the whole procedure flow for SR image reconstruction approach based on
BTV and BEP prior models is shown in the Fig. 2.
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Figure 2: The flow illustration of the proposed multi-frame SR method
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5 Experimental Results and Discussion

This section outlines the real performance assessment of the technique provided above, particularly
when compared to numerous state-of-the-art methods described in literature. Numerous experiments
are conducted in order to evaluate the performance of the proposed methodology. Section 5.1 discusses
the experimental environment, and then describes the parameter settings. Section 5.2 illustrates the
performance evaluation. A comparison of the four most popular SR techniques to our proposed SR
method is offered in Section 5.3.

5.1 Experimental Setup

This sub-section presents a variety of simulated results to measure the effectiveness of the proposed SR
methods. The proposed SR techniques are examined using a huge benchmark datasets available on the Web
[32], which contains images of various scenes. According to Fig. 3, we chose six images from a benchmark
collection that represented a variety of styles in order to produce our synthetic LR sequences. The original
120 × 120 pixel images for acen, cartap, foreman, text, and brain, as well as the 250 × 100 pixel license plate
image are shown in Fig. 3. Furthermore, the primary factors for selecting these datasets are their contents,
their accessibility for comparability, their realism, and the fact that they are regularly utilized by the most
current works relevant to [3,33–35]. Also, these datasets differ in their complexity, irregularity, textural
characteristics, gray level histogram, contrasts, and smoothness.

In practice, it is extremely difficult to measure the performance of SR techniques mathematically
because the ground truth of the HR images is still not available. The proposed technique is tested using
simulated data in all experiments since the ground truth HR images for simulated LR images are already
available. The proposed SR techniques are tested against the four state-of-the-art SR approaches in all
experiments using the same information and parameter settings:

1. Patanavijit and Jitapunkul present an SR approach that incorporates the Lorentzian error norm for
both data fidelity and regularization [36] (referred to as “LOR”).

2. Farsiu et al. present L1 and L2 norms using BTV prior [29] (referred to as “L1-BTV” and “L2-BTV”).

3. Zeng and Yang introduce an adaptive norm using BEP prior [26] (referred to as “BEP”).

Figure 3: A set of original benchmark datasets (a) Acen (b) Cartap (c) Foreman (d) Text (e) Brain
(f) License plate
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The system configuration requirements for implementing the extensive experiment are described in
Tab. 1. Tab. 2 highlights the parameter settings which are used to provide a fair assessment of all experiments.

5.2 Performance Analysis

To be able for evaluating and comparing the performance of the approximated HR image with respect to
the original HR image, the structural similarity (SSIM) and the peak-signal-to-noise ratio (PSNR) indicators

Table 1: The system configuration requirements

System requirements

Hardware Processor
Clock speed
RAM capacity
Graphics card capacity
Hard disk drive

Intel(R) Core (TM) i7-3612QM CPU
2.10 GHz
8 GB
512 MB
1 TB

Software Operating system
IDE
Version

Windows 7 Home Premium 64-bit
MATLAB
R2020a

Table 2: The parameter settings of the synthetic datasets

Parameter Setting value

Number of LR images generated 20 LR images

Lower and upper bound for translations Randomly between −2 and 2 pixels

Lower and upper bound for rotation angles Randomly from −0.5° to 0.5°

Width of isotropic Gaussian PSF σ = 0.4

Magnification factor r = 2

Standard deviation of an additive white Gaussian
noise

0.025

Maximum number of iterations 50

Setup image prior for Lorentzian prior:
Regularization weight
Window size
Scale factor

λ = 0.0025
h = 1.8
α = 1

Setup image prior for BTV prior:
Regularization weight
Window size
Scale factor

λ = 0.0025
P = 2
α = 0.6

Setup image prior for BEP prior:
Regularization weight
Window size
Scale factor
Threshold parameter

λ = 0.0025
q = 1
α = 1
c = 0.2
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are computed [1,8,25,37,38]. As a result, the PSNR indicator is determined using the mean-square error
(MSE). Accordingly, the MSE is the average error between the recovered SR and ground truth HR
images. MSE and PSNR are explained by providing a recovered SR m x n image X̂ði; jÞ and the ground
truth HR image X (i, j) as follows:

MSE ¼ 1

mn

Xm�1

i¼0

Xn�1

j¼0

½Xði; jÞ � X̂ði; jÞ�2 (18)

PSNR ¼ 20 log10
Lffiffiffiffiffiffiffiffiffiffi
MSE

p
� �

(19)

Using SSIM measurement, we can determine the degree of similarities between the generated SR and
original HR images. Additionally, the SSIM measurement takes into account the luminance, contrast, and
structural differences among two images. The SSIM measurement can be expressed as follows:

SSIMðX; X̂Þ ¼ ð2mXmX̂ þ C1Þð2sXX̂ þ C2Þ
ðm2

X þ m2
X̂
þ C1Þðs2

X þ s2
X̂
þ C2Þ (20)

where the means are denoted by μX and mX̂. Then, sX and sX̂ are regarded to be the standard deviations of
the ground truth HR and the restored SR images respectively. Also, the covariance between X and X̂ is
represented by sXX̂. C1 and C2 show the constant values that must be used in order to ensure a reliable
SSIM calculation. There are two constants, one for C1 = (k1L)

2, and the other for C2 = (k2L)
2, whereas

tiny-fixed values are represented by k1 and k2, while the pixel dynamic set is denoted by L (255 for 8-bit
grayscale images). In instance, a higher value of PSNR indicates that the restored image has a high level
of image quality. Moreover, the SSIM value varies from zero to one so that the higher the SSIM value,
the higher the similarity. Thus, reconstructed images are more effective [39,40].

5.3 Experimental Results

There are two different kinds of evaluation criteria used in this research work. The first type is subjective
or qualitative evaluation and the second type is objective or quantitative evaluation. One of the clearest and
straightforward approaches is subjective evaluation. In order to begin analyzing the generated HR images, it
is necessary for people to be familiar with a few key features of the rebuilt images. Therefore, it's important to
use the human eye to determine which HR images have been most accurately reconstructed. On the other
side, objective evaluation is a strategy aimed to estimate the outcomes by computing the correlation
coefficient among the images. SR image reconstruction is often evaluated using PSNR and SSIM metrics.
Generally, a better reconstruction effect can be achieved if PSNR and SSIM values are large.

In order to determine the efficacy of SR reconstruction technique, the experimental outcomes of the
suggested SR technique on simulated data are shown in this subsection. Typically, it is essential to
perform the image formation model in Eq. (3) for all techniques in order to ensure a fair direct
comparison. In order to assess the performance of the suggested SR technique, comparisons are presented
that are visually and quantitatively in nature. In Figs. 4–9, the recovered SR images for “Acen,” “Cartap,”
“Foreman,” “Text,” “Brain,” and “License Plate” from Fig. 3 are shown in comparison with numerous
existing state-of-the-art techniques. For each experiment, the results of reconstruction are shown in Figs.
4–9. The following are the descriptions of the meanings for these figures: (a) illustrates the original HR
image, (b) represents a single estimated LR images, and (c-f) the reconstructed HR images using LOR,
L1-BTV, BEP, and L2-BTV techniques are demonstrated, respectively. Finally, (g) specifies the generated
SR image for the proposed approach. Moreover, reconstructed images are displayed in the lower right-
hand corner of each image in order to provide a clear visual representation.
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Figs. 4–9 show the reconstruction results for HR images. For all of the simulated data, the additive white
Gaussian noise and blurring are added to the generated sequence of LR images as previously described.
Therefore, Figs. 4–9 show that the HR image reconstructed by LOR and L1-BTV have poor performance
to suppress the additive white Gaussian noise, appear blurry, and lead to a staircase effect in the
recovered HR images as shown in Figs. 4–9 (c)-(d). For example, the image of Acen in Figs. 4c and 4d
shows the presence of a lot of noise and more distortion, which leads to the appearance of the numbers
500 and 600 to look bad and blurry. These distortions appear because both LOR and L1-BTV do not
work well when the additive white Gaussian noise is used.

On the other side, the experiment shows that the results of BEP method are better than LOR and L1-BTV
methods. In addition, the BEP method has satisfactory inhibitory performance on the staircase effect. This
improvement is due to the BEP method uses an adaptive error norm in the fidelity term, which is capable
to suppress the additive white Gaussian noise well. However, the BEP method still suffers from some
noisy pixels exists in the local areas of the reconstructed image due to its simple initial estimation as
shown in Figs. 4–9 (e). For example, the Cartap image in Fig. 5e demonstrates a little noise in the white
blank region, which causes the final image to look fairly well.

Figure 4: A visually comparison on the “Acen” image of the proposed method and several SR techniques.
(a) Original HR image (b) Single LR image (c) LOR (d) L1-BTV (e) BEP (f) L2-BTV (g) Proposed method
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Figure 5: Avisually comparison on the “Cartap” image of the proposed method and several SR techniques.
(a) Original HR image (b) Single LR image (c) LOR (d) L1-BTV (e) BEP (f) L2-BTV (g) Proposed method

Figure 6: (Continued)
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Figure 6: A visually comparison on the “Foreman” image of the proposed method and several SR
techniques. (a) Original HR image (b) Single LR image (c) LOR (d) L1-BTV (e) BEP (f) L2-BTV (g)
Proposed method

Figure 7: Avisually comparison on the “Text” image of the proposed method and several SR techniques. (a)
Original HR image (b) Single LR image (c) LOR (d) L1-BTV (e) BEP (f) L2-BTV (g) Proposed method
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Figure 8: A visually comparison on the “Brain” image of the proposed method and several SR techniques.
(a) Original HR image (b) Single LR image (c) LOR (d) L1-BTV (e) BEP (f) L2-BTV (g) Proposed method

Figure 9: A visually comparison on the “License Plate” image of the proposed method and several SR
techniques. (a) Original HR image (b) Single LR image (c) LOR (d) L1-BTV (e) BEP (f) L2-BTV (g)
Proposed method
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In the contrary, the L2-BTV method provides better image reconstruction and leads to relatively smooth
image reconstruction results for smooth image regions, because the use of L2 norm achieves the best result
than Lorentzian norm or L1 norm when the additive white Gaussian noise is used. Moreover, the
distributional characteristics of the additive white Gaussian noise and the L2 norm is a quadratic model
which are similar to each other. However, some image edges are over-smoothed, because the image
variations are reduced and the image is uniformly smoothed in all dimensions. It is possible to prevent
the staircase effect by using the proposed BEP-BTV method, which is able to rebuild the image pixels
with identical grayscale values in smooth areas of the image and preserve the image edges. Furthermore,
the proposed approach shows more fine details, presents more information and displays more textures by
suppressing the white Gaussian noise, preserving the image details, and estimating errors as shown in
Figs. 4–9 (f)-(g). This improvement is due to the use of the advantages of both the adaptive error norm
and the L2 error norm in the data fidelity term of the proposed approach which can well estimate errors
and prevent the additive white Gaussian noise. Moreover, BTV prior takes into consideration the
utilization of a high number of neighbors to estimate the gradient at each individual pixel, while BEP
regularization penalizes the gradients of images in order to protect high gradients according to the edges
and smooth tiny gradients which are typically noise effects. For example, the image of Foreman in
Fig. 6g shows the suppression of noise, excellent image clarity, and no aliasing at the edges of the
reconstructed image.

Finally, after presenting the reasons for improving the results in the previous discussion, it becomes clear
that the proposed approach generates the reconstructed HR image with good visual quality compared to other
SR approaches and gives the most visually pleasing results. Furthermore, it avoids the stair-casing effect and
preserves the image details such as sharp edges while suppressing the noise. Moreover, the proposed
approach achieves decent results in terms of the reconstruction of image structures while the other SR
approaches prone to over-smoothing or residual noise. Therefore, the proposed approach is significantly
cleaner and more vivid, which is closest to the ground truth image.

In order to support the visual appearance comparison, a computational analysis is necessary. As a result,
PSNR and SSIM metrics are used to estimate the quantitative quality of produced HR images. PSNR and
SSIM indexes are used to evaluate produced HR images; SSIM is a supplemental measure of image
quality based on the identified characteristics of the human visual system, whilst PSNR is used to
evaluate the quality of produced HR images. The PSNR and SSIM measurements for the six investigated
images from Fig. 3 are shown in Tabs. 3 and 4, where the best PSNR and SSIM values are shown in
bold numerals.

Table 3: PSNR values for different SR methods

Image LOR L1-BTV BEP L2-BTV Proposed approach

Acen 26.6478 26.9792 27.6347 31.4713 31.4816

Cartap 24.0612 24.9439 24.7245 29.4002 29.9477

Foreman 31.2703 30.0404 30.9915 33.8016 33.8574

Text 25.5005 25.6895 25.3727 28.3681 28.3810

Brain 28.6073 28.4517 29.1935 30.5428 30.6470

License plate 29.2249 30.0086 30.4768 32.4811 32.6064

Average 27.5520 27.6856 28.0656 31.0109 31.1535
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Tab. 3 summarizes the quantitative quality assessment results and shows that the proposed approach has
the best PSNR values, indicating that it is successful in reducing blur and noise. Additionally, the SSIM data
in Tab. 4 indicate that the image quality is excellent in terms of image preserving characteristics. In
accordance with subjective evaluations, the proposed approach produces images with sharped and
powerful edges, which enhances PSNR and SSIM values. Therefore, this quantitative quality evaluation
validates the observation that the results are visually pleasing (Figs. 4–9). In particular, the proposed
approach achieves higher PSNR and SSIM values, which has been shown to be correlated well with
human perception of image SR. The following findings can be derived from the information presented in
the previous tables (Tabs. 3 and 4):

1. The proposed approach in this paper is superior to other SR methods (LOR, L1-BTV, BEP, L2-BTV)
for image reconstruction in terms of PSNR and SSIM. This demonstrates that the proposed approach
performs well in terms of deblurring and noise removal, while preserving a higher degree of
similarity between the recovered and original images.

2. In comparison to the BEP technique, the PSNR values obtained using the proposed approach are
higher by 1.4535–5.2232 decibel (dB) for the six images. For example, the PSNR value of the
proposed approach (29.9477 dB) is 5.2232 dB greater than that of the BEP technique (24.7245
dB) for the Cartap image, and the PSNR difference becomes 2.1296 dB for the image of the
License Plate (32.6064 dB vs. 30.4768 dB).

3. Compared with the L2-BTV method, the proposed approach increases and improves the capability to
describe image gradient sparsity. The proposed approach has PSNR values that are 0.0103–0.5475
dB higher than those of the L2-BTV method, when recovering the six images. For the Brain image,
PSNR of the proposed approach (30.647 dB) is 0.1042 dB higher than that of the L2-BTV method
(30.5428 dB).

4. Our average PSNR is at least 0.1426 dB higher than the average PSNRs of the four chosen state-of-
art methods (LOR, L1-BTV, BEP, L2-BTV).

The visual examination from Figs. 4–9 shows that LOR, L1-BTVand BEP methods suffer greatly from
the presence of noise because the L1 norm and the adaptive norm in Eqs. (6) and (13) respectively have some
difficulties in dealing with an additive white Gaussian noise. While the solved result by the L2 norm is ideal,
if the model error is a white Gaussian distribution. Therefore, the L2-BTV method clearly demonstrates its
efficiency in the case of eliminating noise and protecting the edges inside the image, even though we notice
that the noise is not completely removed and there is a small staircase artifact appears in some smooth
regions. Certainly, the generated HR images from the proposed SR approach have a better quality

Table 4: SSIM values for different SR methods

Image LOR L1-BTV BEP L2-BTV Proposed approach

Acen 0.81020 0.82641 0.85083 0.96882 0.96961

Cartap 0.88417 0.85784 0.90570 0.97988 0.98330

Foreman 0.88533 0.80184 0.85553 0.93580 0.93715

Text 0.74471 0.77899 0.80922 0.96317 0.96591

Brain 0.89743 0.86688 0.89533 0.93307 0.93423

License plate 0.81435 0.84267 0.86751 0.95510 0.95565

Average 0.83937 0.82911 0.86402 0.95597 0.95764
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visually as compared to the others. Moreover, it improves the ability to recover image information, preserve
edges, eliminate noises in smooth regions and improve the brightness of the entire image. Tab. 3 summarizes
the quantitative quality assessment results and shows that the proposed approach has the best PSNR values,
indicating that it is successful in reducing the blur and noise. Additionally, the SSIM data in Tab. 4 indicate
that the image quality is excellent in terms of image preserving characteristics. As a result, the proposed SR
approach always has better results as compared to other methods which guarantee its efficiency. As a result,
the proposed approach always has better results as compared to other methods (LOR, L1-BTV, BEP, L2-
BTV) which guarantee its efficiency.

6 Conclusion

In this paper, we propose a new approach for multi-frame SR image reconstruction dependent on the
hybrid of reconstruction models in the image reconstruction stage to measure the HR image through the
use of the corresponding LR image series. This new SR approach is based on employing the adaptive
norm and Lp norm in the data-fidelity term, beside adopting BEP and BTV prior models in the
regularization term respectively. One of the primary goals of the proposed method is to protect essential
image features as much as possible including borders and boundaries, while also protecting the sharp
image edges and avoiding artifacts. Additionally, the high-frequency portions of the proposed method are
increased, degradations inside the image capture systems are eliminated, and a good balance between
edge preservation and noise elimination is achieved. The efficiency of the proposed SR approach is
measured for synthetic image, and it can be compared with several related state-of-art approaches through
both visual and quantitative comparison. The experimental results of the synthesized image demonstrate
that the new proposed approach has improved efficacy both visually and numerically more than other
approaches. Additionally, we demonstrate numerically that the suggested technique always provides the
best PSNR and SSIM values.
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