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Abstract: The predominant method for smart phone accessing is confined to
methods directing the authentication by means of Point-of-Entry that heavily
depend on physiological biometrics like, fingerprint or face. Implicit continuous
authentication initiating to be loftier to conventional authentication mechanisms
by continuously confirming users’ identities on continuing basis and mark the
instant at which an illegitimate hacker grasps dominance of the session. However,
divergent issues remain unaddressed. This research aims to investigate the power
of Deep Reinforcement Learning technique to implicit continuous authentication
for mobile devices using a method called, Gaussian Weighted Cauchy Kriging-
based Continuous Czekanowski’s (GWCK-CC). First, a Gaussian Weighted
Non-local Mean Filter Preprocessing model is applied for reducing the noise pre-
sent in the raw input face images. Cauchy Kriging Regression function is
employed to reduce the dimensionality. Finally, Continuous Czekanowski’s Clas-
sification is utilized for proficient classification between the genuine user and
attacker. By this way, the proposed GWCK-CC method achieves accurate authen-
tication with minimum error rate and time. Experimental assessment of the pro-
posed GWCK-CC method and existing methods are carried out with different
factors by using UMDAA-02 Face Dataset. The results confirm that the proposed
GWCK-CC method enhances authentication accuracy, by 9%, reduces the authen-
tication time, and error rate by 44%, and 43% as compared to the existing
methods.

Keywords: Deep reinforcement learning; gaussian weighted; non-local; mean
filter; cauchy kriging regression; continuous czekanowski’s; implicit continuous
authentication; mobile devices

1 Introduction

The use of passwords and keys permits users in accessing the personal information by means of
safeguarding against unauthorized attempts. However, research studies conducted on this domain have
shown that users frequently select passwords that are easy to remember or combination of weak
passwords to safeguard their data, despite passwords being easy to predict. Moreover, with the swift
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evolutions in mobile devices stimulate the users to utilize these devices in regular monitoring and storing the
delicate health data. So, to bridge the gap between authentication and usability, there has been a
transformation towards biometric authentication models employing certain biological features, like,
fingerprints and face, behavioral features like keystroke, swipe patterns and so on. In addition, implicit
continuous authentication, specifically on mobile devices, is gaining more awareness in recent years. As
against user authentication performed only at the entry point when the device is locked, authentication
methods regulate whether biometric traits correspond to a user in a continuous manner. In this manner,
users can monitor in a continuous manner and hence do not require to persistently perturb concerning
security and privacy despite devices are lost.

A novel gait-based continuous authentication method applying multimodal learning called, GaitCode
[1] on cooperatively recorded accelerometer and ground contact force data from smart wearable devices
was proposed in [1]. Despite improvement observed in error rate and false acceptance rate, the
authentication accuracy, time and error rate involved in the overall implicit continuous authentication
process was not focused. To address this issue in this work, by applying filter function for temporal data
as preprocessing results in continuous denoised images, therefore improving the authentication time and
accuracy. Also, Cauchy distribution function is used to reduce the error rate by scaling the different face
images for validation.

An Extremal Openset Rejection (EOR), comprising of a two-fold mechanism involving identification
and a verification step distinctly based on sparse representation was proposed in [2]. Despite
improvement found in verification accuracy, the sensitivity and specificity involved in continuous
monitoring was not focused. To address this issue in this work, Continuous Czekanowski’s Classification
performed with the aid of continuous function ensures improved sensitivity and specificity.

1.1 Objective

e To develop a novel GWCK-CC method to guarantee implicit continuous authentication for mobile
devices.

e Eradication of noise to achieve denoising of images using Gaussian Weighted Non-local Mean Filter
Preprocessing model.

e Extraction of the important features with minimization in dimensionality, utilizing Cauchy Kriging
Regression Feature Extraction model.

e To enhance the classification accuracy among normal users and hackers with lesser time, employing
Continuous Czekanowski’s Classification.

1.2 Organization of Paper

The structure of the paper is organized as follows. Related work is provided in Section 2. In Section 3,
the design of the proposed method, Gaussian Weighted Cauchy Kriging-based Continuous Czekanowski’s
(GWCK-CC) implicit continuous authentication on mobile devices along with the algorithm is presented.
Evaluation of the algorithms with the detailed experimental setup is provided in Section 4. In 5 detailed
discussions is given with the aid of table and graph. Finally, the concluding remarks are provided in
Section 6.

2 Related Works

In today’s world with the advancement in technology, the modern smart phone has become a vital part of
every person’s life. Security concerns have thus elevated with the increasing utilization of smart phone owing
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to the huge availability and accessibility of personal files, and banking and business information. Also,
continuous authentication is not an easy task and several research works has been conducted in this area.

2.1 Biometric-based Authentication

Biometric solution employing feature fusion approach integrating both handcrafted and non-handcrafted
features was proposed in [3]. But, it failed to improve the performance by using UBIPr, Color FERET and
Ethnic Ocular databases. A behavior-based authentication using swipe was utilized in [4] with the objective
of authenticating the user in a continuous manner. On the other hand, activity patterns were employed in [5]
using random forest, support vector and Bayes for analyzing continuous authentication of smart phone users.

More than 140 papers pertaining to recent behavioral continuous authentication methods were
investigated in [6]. In [7], an in depth analysis of whether continuous authentication is possible or not for
mobile banking application was investigated. However, the reliability and practicability was not focused.
Also, larger dataset was not considered. To address on this aspect, one class SVM was designed in [8] for
ensuring context aware implicit authentication.

2.2 Continuous Authentication on Mobile Devices

A hierarchical implicit authentication mechanism using binary support vector machine with radial basis
function for ensuring accuracy was proposed in [9]. In [10], an intelligent add-on for smart phones to validate
continuous authentication of users was proposed. Data augmentation method called, Kernel Ridge
Regression with Truncated Gaussian Radial Basis Function was designed in [11]. But, the time was
reduced by using small dataset.

In [12] a novel biosignal authentication mechanism ensuring continuous, seamless, and secure user
authentication was provided by means of coupling. Yet another continuous authentication using
blockchain for IoT environment called, CAB-IoT was proposed in [13]. However, the accuracy aspect
was not focused with AT&T Database of faces. To address this issue, a periodical authentication
mechanism employing Deep Auto Encoder and Softmax Regression (DAE-SR) for ensuring accuracy
was proposed in [14].

2.3 Continuous User Authentication Progress and Challenges

A review of non-intrusive active user authentication using biometrics to investigate the merits and
demerits of authentication system was investigated in [15]. An overview of numerous continuous
authentication systems on mobile devices was analyzed in [16]. Sensitive information was retained in
mobile devices and to ensure privacy and security deep-learning based authentication system via user
pattern was proposed in [17]. With this the false acceptance rate were said to be minimized drastically.

Yet another patch-based CNN model via user-disjoint and cross-factor protocols was designed in [18]
for detecting face’s representation in a continuous fashion to consider RECOD-MPAD and OULU-NPU
dataset. A survey of numerous types and methods of authentication to specifically secure the smart phone
access was proposed in [19]. Machine Learning techniques were introduced in [20] to preserve
cyberspace attacks. Dissimilar machine learning (ML) techniques were developed in [21] to minimize the
time complexity. Continuous authentication systems were developed in [22] for enhancing the security
and privacy. A novel technique termed implicit imitation was introduced in [23] to accelerate
reinforcement learning. Machine learning techniques were designed in [24] for identifying the several
cyber threats. Reinforcement learning was investigated in [25] by using continuous control applications.

Based on the aforementioned materials and methods, in this work, Gaussian Weighted Cauchy Kriging-
based Continuous Czekanowski’s (GWCK-CC) for implicit continuous authentication on mobile devices is
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proposed. The detailed description of the proposed GWCK-CC method is presented in the following
sections.

3 Methodology

Conventional authentication method authenticates the validity of an entity or system analytically at the
inception of the communication session and determines either it is authenticated or not. Hence, they are said
to be susceptible to security menaces that take dominance of the active sessions involved. Hence, there
necessitates an intense requirement to handle this issue continuously authenticating the identity of users
in the course of the whole session. Fig. 1 given below shows the block diagram of Gaussian Weighted
Cauchy Kriging-based Continuous Czekanowski’s (GWCK-CC) method towards implicit continuous
authentication for mobile devices.

GWCK — CC method

Gaussian Weighted Non-local Testing data
Mean Filter Preprocessing

Training data

Transformed |
training data | Transformed
i testing data
v g
Cauchy Kriging

Regression Feature

Dice index for each category |:

v
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Figure 1: Block diagram of Gaussian Weighted Cauchy Kriging-based Continuous Czekanowski’s
(GWCK-CC)

In this work, GWCK-CC method is proposed to enhance the performance of implicit continuous user
authentication. The proposed GWCK-CC method is split into three layers. They are input layer, three
hidden layers and finally the output layer. First, face images acquired from UMDAA-02 Face Dataset
[26] are provided as input to the input layer. Followed by which the input face images are transferred to
the first hidden layer ‘HL1’. Preprocessing of continuous faces images using Gaussian Weighted Non-
local Mean Filter is employed that in turn improves the face quality image. After that, the preprocessed
output or the denoised continuous images is given to the second hidden layer ‘HL2’ to perform feature
extraction using Cauchy Kriging Regression. These continuous extracted feature results are sent to the
third hidden layer ‘HL3’. With the continuous extracted features, input face images are classified using
Continuous Czekanowski’s Dice Index. Finally, the classified output results are generated in the output
layer. Fig. 2 shows the structure of GWCK-CC.
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Figure 2: Structure of GWCK-CC

As shown in the above figure, the data collection module in the input layer acquires all users’ sensor data
from UMDAA-02 Face Dataset [26] via twelve distinct sensors for implicit continuous authentication. In the
proposed GWCK-CC method, the data collection module in the input layer gets the user’s each single minute
gesture during operation on their smart phones, and records the swift and instant readings of the twelve
sensors when the screen is on. In the data collection phase, the data collection module captures users’
behavioral patterns with smart phone usage are constructed into smart phones by twelve sensors. The
collected face data from mobile devices are stored in a secured buffer for data preprocessing.

3.1 Gaussian Weighted Non-local Mean Filter Preprocessing Model

Sensor data collected from smart phones necessitates preprocessing phase for feasible handling of noise
and temporal calibration for series inception. The targeted sensory data consist readings of twelve distinct
sensors, which are front facing camera ‘FFC’, touch screen ‘TS’, gyroscope ‘G’, accelerometer ‘A’,
magnetometer ‘M’, light sensor ‘LS’, GPS ‘GPS’, Bluetooth ‘B’, WiFi ‘WiFi’, proximity sensor ‘ProS’,
temperature sensor ‘TempS’ and pressure sensor ‘PreS’ respectively. Let us denote the collected data
reading as ‘Pi(t) € RY, refers to collected pixel data ‘P’ for user ‘i’ at time ‘t’ for a total dimension ‘d=
12’ (i.e., from 23 distinct sensors). The pixel data reading over a period of time is then represented by a
vector as given below.

PV = {Prrc, Prs, PG, Pa, Pum, Pis, Paps, P, Pwiri, Ppros; Premps; Ppres} ()

Next, with the acquired input images, preprocessing is performed in the first hidden layer by employing
Gaussian Weighted Non-local Mean Filter model to improve the face quality images. The preprocessing
model converts the collected time domain data for implicit continuous authentication into temporal stream
of data that are used as inputs. Fig. 3 shows the structure of—Gaussian Weighted Non-local Mean Filter
model.

As shown in the above figure, the basic principle of the Gaussian Weighted Non-local Mean Filter is to
restore the noisy pixel gray-value data ‘PD(i)’ of pixel data ‘i’ with a weighted mean of the mean of pixel
gray-values of all the pixels on the image. This is mathematically expressed as given below.

PD(i) = )~ WyPD(j) 2

JESWS

From the above Eq. (2), j € SWS’ refers to the search window size (i.e., ‘(2n+ 1)*(2n+ 1)’), with
weight of two pixels ‘1’ and ‘j” denoted as ‘Wj;’. The weight is mathematically expressed as given below.
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Figure 3: Structure of gaussian weighted non-local mean filter preprocessing
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S

From the above Eq. (3), the weight function is represented as vector ‘V’ of pixel gray-value data from
the neighborhood ‘N;’ centered at ‘i’ with probability pixel gray-value data from the neighborhood ‘P(N;)’
along with two filtering parameters ‘a’, ‘B’ with respect to normalizing term ‘Z;’. The first filtering parameter
‘o’ determines the non-local means averaging weight, the value of which is chosen within ‘(0.75 to 1)’ for
high visual quality. The second filtering parameter ‘B’ determines the level of and is assigned to be between
‘(50 to 100)’ that provides a fine-grained balance between background leveling and pixel enhancement in

denoised images.

2
The first term ‘W’ hence refers to the Euclidean distance of pixel gray-value data between two

neighborhoods ‘N;” and ‘N;’ within the searching window ‘SW’. In a similar manner, the second term refers
to the Euclidean distance of pixel gray-value data probabilities between two same neighborhoods ‘N;” and
‘N;” acquired from the probability image. With this the preprocessed data is acquired that in turn improve
the quality of face image for further processing.

3.2 Cauchy Kriging Regression Feature Extraction Model

In our work, feature extraction is performed with the purpose of dimensionality reduction. The
preprocessed set of data is reduced to more manageable groups for further processing. With this, the new
set of extracted features possesses distinct values upon comparison with the original preprocessed feature
values. In our work, Cauchy Kriging Regression Feature Extraction is employed to extract the pertinent
features for performing continuous authentication with lesser the error rate. Fig. 4 given below shows the
structure of Cauchy Kriging Regression Feature Extraction model.

As shown in the above figure, let us consider the preprocessed sampling images or the denoised continuous
images ‘SI = SI;, Sl,, ..., SI;’ as input for extracting the pertinent features. Then, the denoised continuous
sampling images obtained at different time interval are mathematically formulated as given below.

SI = {ay1, an, a3, ..., aim}; Sh={ax, an, a3, ..., am}...; Sln = {ami, am2, am3, ---, A} (4)
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Figure 4: Structure of cauchy kriging regression feature extraction

The above distinct preprocessed denoised continuous sample images as input for reducing the error rate.
Regression Kriging ‘Z(SI)’ modeled as sum of deterministic sample image ‘Det(SI)” and stochastic sample
image ‘Stoc(SI)’ is formulated as given below.

Z(SI) = Det(SI) + Stoc(SI) )

From the above Eq. (5), both deterministic and stochastic sample images are employed for regression
owing to the reason that while performing continuous authentication, both inherent randomness and
deterministic. Next, by combining the deterministic and stochastic sample images, the features to be
extracted are formulated as given below.

SI(FE) = _vif (SL; SI;, SP) + > _%;.Res(SI) (6)
i=1 j=1
f(SL; SI;, SP) = ! _ ! [ SE° ] (7)
b B SL —SI\2|  m(SP) [(SL — SI;) + SP?
’ITSP 1 + (Tj>

From the above Egs. (6) and (7), the features to be extracted from the sampled preprocessed images ‘SI
(FE)’ are obtained based on the deterministic coefficient ‘y;’, stochastic kriging weights “A;’, residual ‘Res’ at
‘SI;’ and finally, Cauchy distribution function “f(SI;; SI;, SP)’ respectively. The Cauchy distribution function
results are obtained according to the scaling parameters ‘SP’ with which the orientation of the sampled
preprocessed images ‘SI;” and ‘SI;” are made. Finally, the corresponding response is mathematically
formulated as given below.
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P = SI(FE[b.]) = {b}", b, b, .., b} SIFE[bs]) = ®
{657, b, b5 by s SI(FE[b.)) = {6, b, b, L. b}

From the above Eq. (8), finally, the extracted features of face images at different time intervals or implicit
continuous extracted image is obtained. With the corresponding continuous response as in ‘SI(FE[b])’, the
error rate with which the classification can be made is improved. This is owing to the reason that by
employing the Cauchy distribution function the scale parameter ‘SP’ obtains different orientation of the
preprocessed sample images, contributing to minimum error rate.

3.3 Continuous Czekanowski’s Classification Model

With the extracted continuous features, classification between genuine and attackers are made by means
of Continuous Czekanowski’s Classification model. Then, the Continuous Czekanowski’s Classification for
continuous face recognition is mathematically expressed as given below.

2[P NQ[

CCC =
RIP[+ Q|

€))

From the above Eq. (9), the Continuous Czekanowski’s Classification ‘CCC’ results are arrived at based
on the ground truth image ‘Q’ and the computed continuous extracted image ‘P’ respectively. In addition, ‘R’
defines the mean value of ‘P’ over the pixels where both ‘P’ and ‘Q’ are positive and mathematically
formulated as given below.

R — Y
3. piSign(q;)

With the above classified results, face recognition is ensured therefore paving mechanisms for implicit
continuous user authentication with maximum sensitivity and specificity. The pseudo code representation of
Gaussian Weighted Cauchy Kriging Continuous Czekanowski’s-based implicit continuous authentication is
given below.

(10)

As given in the objective of Gaussian Weighted Cauchy Kriging Continuous Czekanowski’s-based
implicit continuous authentication algorithm is to ensure the accurate face recognition with minimum
time and error rate. With this objective deep reinforcement learning is designed with one input layer,
three hidden layers and one output layer. Raw continuous face input images obtained from the UMDAA-
02 Face Dataset [26] is obtained as input. Next, preprocessing on the raw continuous face input images
are performed by non-local mean function. Followed by, which the essential and pertinent continuous
feature is extracted by employing Cauchy kriging function. Next, the continuous extracted features are
utilized for classification. Continuous Czekanowski’s function is applied for validation. The results of
continuous Czekanowski’s function are given to the output layer for providing final classification results
via activation function. If the activation function provides output ‘1°, then the user is genuine user. On
the other hand, if the activation function provides the output as ‘0’, the user is attacker or intruder and
thus the phone goes to the locked state. In this way, implicit continuous user authentication is achieved
with maximum accuracy.
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Algorithm 1: Gaussian Weighted Cauchy Kriging Continuous Czekanowski’s-based implicit continuous
authentication

Input: Dataset ‘DS’, Images ‘I=1, b, ..., I,/

Output: Accurate and timely implicit continuous authentication
Step 1: Inxitialize pixel data vector ‘PV’, search window size ‘SWS’
Step 2: Initialize filtering parameters ‘a’, 4’

Step 3: Initialize deterministic coefficient ‘)Y, stochastic kriging weights ‘A’
Step 4: Begin

//input layer

Step 5: For each Dataset ‘DS’

Step 6: Formulate pixel data vector ‘P’ as in Eq. (1)

//hidden layer 1 — preprocessing

Step 7: Restore the noisy pixel gray-value data ‘PD(i)’ as in Eq. (2)
Step 8: Estimate non-local mean weight as in Eq. (3)

Step 9: Return preprocessed data or preprocessed continuous sampling images ‘SI=SI,, Sb,,
e ST

Step 10: End for

//hidden layer 2 — feature extraction

Step 11: For each preprocessed continuous sampling images ‘SI=S1,, S, ..., SI,” as in Eq. (4)
Step 12: Formulate Regression Kriging as in Eq. (5)

Step 13: Extract pertinent features as in Eqgs. (6) and (7)

Step 14: Return extracted data or extracted continuous response images ‘P’ as in Eq. (8)
Step 15: End for

//hidden layer 3 — classification

Step 16: For each continuous extracted response images ‘P’

Step 17: Estimate Continuous Czekanowskills Classification as in Eq. (9)

Step 18: End for

//output layer

Step 19: If ‘R=1"

Step 20: Then the user is genuine

Step 21: End if

Step 22: If ‘R=0’

Step 23: Then the user is intruder

Step 24: End if

Step 25: End for

Step 26: End
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4 Experimental Setup

Simulation analysis of proposed Gaussian Weighted Cauchy Kriging-based Continuous Czekanowski’s
(GWCK-CC) is implemented in MATLAB simulator. The results are analyzed using the UMDAA-02 Face
Dataset (UMDAA-02-FD). The UMDAA-02-FD dataset includes number of front-facing camera images.
The dataset is used for face Detection and verification tasks. The results of GWCK-CC method is
compared with the existing Gait-based Continuous authentication (GaitCode) [1], Extremal Openset
Rejection (EOR) [2], and Existing Continuous Dice Coefficient. The performance metrics used for
analyzing the implicit continuous authentication process is user authentication accuracy, user
authentication time, error rate, sensitivity and specificity with respect to different face images.

5 Discussion

Comparative analysis of implicit continuous authentication of mobile devices is performed using
Gaussian Weighted Cauchy Kriging-based Continuous Czekanowski’s (GWCK-CC) and compared with
two different methods Gait-based Continuous authentication (GaitCode) [1], Extremal Openset Rejection
(EOR) [2], and Existing Continuous Dice Coefficient. Performance analysis is made with five distinct
parameters namely user authentication accuracy, user authentication time, error rate, sensitivity and
specificity for different numbers of face images.

5.1 Performance Analysis of User Authentication Accuracy

The first and foremost parameter of significance for implicit continuous authentication is the user
authentication accuracy. Higher the user authentication accuracy, higher the validation performance for
mobile devices and therefore efficient the method is said to be. The user authentication accuracy is
mathematically formulated as given below.

n /S
USA = Z(Z‘f{*) % 100 (11)

i=1 !

From the above Eq. (11), the user authentication accuracy ‘USA’ is measured based on the sample face
images correctly authenticated ‘Slca’ to the sample images involved in the simulation process ‘SI;” of
implicit continuous authentication for mobile devices. Tab. 1 given below provides the tabulation results
for user authentication accuracy using four different methods, GWCK-CC, existing GaitCode [1], EOR
[2], and Existing Continuous Dice Coefficient.

Table 1: Tabulation for user authentication accuracy

Face images User authentication accuracy (%)

GWCK-CC GaitCode EOR  Existing continuous dice coefficient

500 97 95 92 90
1000 96.35 94.15 92.15 89.55
1500 96 94 90 88
2000 95.25 93.55 88.15 86
2500 94.25 91.25 86.35 84.15
3000 94 90 85 &3
3500 93.15 89.15 84.15 82.45
4000 93 88.35 84 80
4500 92.55 88 81.55 79.15

5000 92 81 78 77
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Tab. 1 shows the user authentication accuracy results of 5000 different face images acquired from
different users at different time for simulation. From the above table it is inferred that the user
authentication accuracy is inversely proportional to the different face images provided as input. In other
words, increasing the face images results in the increase in the number of faces acquired from single
users at a session and also increases in the stack value, therefore reducing a significant amount of correct
authentication of face images. However, with simulations conducted for 500 face images, 485, 475,
460 and 450 faces were correctly authenticated using GWCK-CC, [1,2] and Existing Continuous Dice
Coefficient. With this the user authentication accuracy using the four methods were observed to be 97%,
95%, 92%, and 90% respectively, therefore increasing the user authentication accuracy using GWCK-CC.
The reason for that improvement is to apply GWCK-CC. The preprocessing is employed to separate the
face area from the background segment. The process of preprocessing here starts by extracting pertinent
features that differentiate between same faces acquired at different time intervals of continuous face
images from the aligned face which is generated from the preprocessing stage. As a result, the user
authentication accuracy is improved using GWCK-CC method by 4%, 10%, and 13% as compared to
[1,2], and Existing Continuous Dice Coefficient respectively.

5.2 Performance Analysis of User Authentication Time

The second parameter of significance is the time consumed in authentication the user or the respective
sample face images-based implicit continuous authentication for mobile devices. Lower the user
authentication time is sooner the user or the particular sample face images are said to be validated and
accordingly authenticated is performed. With minimum time consumed in the overall process, the
genuineness of the user is measured at the initial stage itself. The user authentication time is
mathematically formulated as given below.

n
UAT = > SI;Time [AUTHENTICATION] (12)
i=1

From the above Eq. (12), the user authentication time ‘UAT’ is measured based on the sample face
images provided as input ‘SI;” and the time consumed in performing the actual authentication process
‘Time [AUTHENTICATION]’. It is measured in terms of milliseconds (ms). Fig. 5 given below provides
the tabulation results for user authentication time using four different methods, GWCK-CC, existing
GaitCode [1], EOR [2], and Existing Continuous Dice Coefficient.
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Figure 5: Graphical representation of user authentication time
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Fig. 5 given above illustrates the user authentication time for performing implicit continuous
authentication process. Here, x axis refers to the number of face images provided as input in the input
layer and y axis refers to the user authentication time. From the above figure it is inferred that an increase
in the number of face images results in the increase in the user authentication time. In other words
increasing the face images causes increase in the number of continuous face images for a specific user for
the corresponding session therefore causes significant increase in the user authentication time also.
However, simulations conducted with 500 face images consumed 0.072 ms for predicting single face
image data using GWCK-CC, 0.09 ms using [1], 0.104 ms using [2], and 0.120 ms using Existing
Continuous Dice Coefficient. With this, the overall user authentication time using the four methods was
observed to be 36, 45 ms [1], 52 ms [2] and 60 ms Existing Continuous Dice Coefficient respectively.
From the simulation results, the user authentication time using GWCK-CC was comparatively lesser than
[1,2], and Existing Continuous Dice Coefficient. The reason behind the improvement was due to the
application of Gaussian Weighted Non-local Mean Filter Preprocessing model to achieve the noise
reduction. It concentrates on identifying projection that maximizes the total non-local mean of the
projected continuous image or data. So, the small variations in the background are eliminated in an
automatic manner. Therefore, the procedure was faster. Owing to this fact, the overall user authentication
time using GWCK-CC was said to be comparatively lesser than 26% [1], 51% [2], and 54% Existing
Continuous Dice Coefficient respectively.

5.3 Performance Analysis of Error Rate

The error rate measures the difference between the actual user data and the predicted user data. While
performing active authentication on mobile devices implicit continuous user authentication should be
ensured in such a manner that the falsification of user authentication should be avoided. In other words,
the error rate is mathematically formulated as given below.

1 n
ER = HZ(SI(DO) — SI(MO))*100 (13)

i=1

From the above Eq. (13), the error rate ‘ER’ is measured based on the desired output of the sample
images ‘SI(DO)’ and the model output of the sample images ‘SI(MO)’. It is measured in terms of
percentage. Tab. 2 given below provides the tabulation results for error rate using four different methods,
GWCK-CC, existing GaitCode [1], EOR [2], and Existing Continuous Dice Coefficient.

Table 2: Tabulation for error rate

Face images Error rate (%)

GWCK-CC GaitCode EOR  Existing continuous dice coefficient

500 2 4 7 9
1000 3.55 4.85 8.15 9.55
1500 4 5.35 11.35 1245
2000 7 12.05 16 17
2500 8.25 14 15.35 17.55
3000 9.15 14.35 16 18
3500 11.35 15.15 16.15 18.25
4000 12 16.25 17 19
4500 12.45 17 18.25 20.55

5000 13 17.35 19 21
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Tab. 2 shows the error rate for 5000 different face images. From the table it is inferred that increasing the
face images causes a swift increase in the error rate also. However, simulation results shows that with
500 face images used for simulation with 480 images correctly authenticated, the model output using the
four methods were observed to be 470, 460, 445, and 435. With this, the overall error rate was found to
be 2%, 4%, 7% and 9% respectively. With this the error rate using the proposed GWCK-CC method was
found to be comparatively lesser than [1,2] and Existing Continuous Dice Coefficient. The reason was
due to the application of Gaussian Weighted Cauchy Kriging Continuous Czekanowski’s-based implicit
continuous authentication algorithm. Preprocessing is performed using Gaussian weight. Cauchy Kriging
function is applied to reduce the dimensionality and validation is performed for implication continuous
authentication on mobile devices. The error rate using GWCK-CC method is reduced by 32% compared
to [1], 46% compared to [2], and 52% compared to Existing Continuous Dice Coefficient.

5.4 Performance Analysis of Sensitivity

Sensitivity rate compares the total number of face images that has been performed with implicit
continuous authenticated with the total number of face images actually present. The main objective
behind the measure of sensitivity is to predict the positive instances (TP) in the face video image dataset.
In other words, the resultant value of sensitivity refers to that the subjects or face images predicted to
have performed implicit continuous authentication. It is mathematically expressed as given below.

Sen 100 (14)

T
“TP+FN
From the above Eq. (14), sensitivity ‘Sen’ is measured based on the true positive rate ‘TP’ and the false
negative rate ‘FN’ respectively. It is measured in terms of percentage (%). Fig. 6 given below provides the
tabulation results for sensitivity rate using four different methods, GWCK-CC, existing GaitCode [1], EOR
[2], and Existing Continuous Dice Coefficient.
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Figure 6: Graphical representation of sensitivity

Fig. 6 given above shows the sensitivity results for 5000 different face images collected from UMDAA-
02 Face Dataset collected at different time instances. As shown in the above figure, increasing the number of
face images causes a decrease in the sensitivity rate. In other words while increasing the face images for
active authentication on mobile devices also decreases in a small amount. However, simulations with
500 faces show a true positive rate of 475, 460, 450 and 440 using the four methods, GWCK-CC
method, GaitCode [1], EOR [2], and Existing Continuous Dice Coefficient. In a similar manner, the false
negative rates were observed to be 25, 40, 50 and 60 using the GWCK-CC method, GaitCode [1], EOR
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[2], and Existing Continuous Dice Coefficient. With this the overall sensitivity were observed to be 95%
using GWCK-CC method, 92% using [1], 90% using [2], and 88% using Existing Continuous Dice
Coefficient. The sensitivity was higher due to the application of Cauchy Kriging Regression for Feature
Extraction using GWCK-CC method. Also, by applying Cauchy Kriging Regression results, the time
complexity and as memory capacity are reduced. Only the projected continuous images are stored.
Moreover, with the Cauchy Kriging Regression the residuals are found to be orthogonal to each other.
Hence it circumvents redundant information, which in due course imparts comprehensive data
compression and allows implicit continuous authentication for mobile devices. As a result, the sensitivity
rate using GWCK-CC method is improved by 8%, 10%, 15% compared to [1,2], and Existing
Continuous Dice Coefficient respectively.

5.5 Performance Analysis of Specificity

The specificity on the other end refers to the percentage ratio of negatives that are correctly identified
(i.e., the proportion of those face images that has not been performed with implicit continuous
authentication and also the face images that are correctly identified as not performed with implicit
continuous authentication).

TN
Spe = ——=*100 15
PE TN FP” (1)
From the above Eq. (15), specificity ‘Spe’ is measured based on the true negative rate ‘TN’ and the false
positive rate ‘FP’ respectively. It is measured in terms of percentage (%). Tab. 3 given below provides the
tabulation results for specificity rate using four different methods, GWCK-CC, existing GaitCode [1],

EOR [2], and Existing Continuous Dice Coefficient.

Table 3: Tabulation for specificity

Face images Specificity (%)
GWCK-CC GaitCode EOR  Existing continuous dice coefficient

500 94 90 88 85

1000 92.15 88.15 86.15 83.25
1500 91 86.35 84.25 82.15
2000 90.55 86 83 81

2500 90.25 84.25 82.15 80.55
3000 90 84 82 79

3500 88.35 83.15 81.85 78.15
4000 88 83 81 77

4500 87.25 82.55 80.25 76.15
5000 87 82 77 74

Tab. 3 given above shows the specificity for four different methods namely GWCK-CC, existing
GaitCode [1], EOR [2], and Existing Continuous Dice Coefficient. Specificity is a measure of how well
the implicit continuous authentication is measured in identifying the true negatives, the percentage ratio
of true negatives out of all the face samples images involved in the simulation that do not have the
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condition (true negatives and false positives). From the figure a decreasing trend is set to be seen using all the
four methods. However, simulation performed with 500 face sample images shows a true negative of 470,
450, 440, and 425 using the four methods, GWCK-CC, existing GaitCode [1], EOR [2], and Existing
Continuous Dice Coefficient, false positive of 30, 50, 60 and 75 respectively. With this, the overall
specificity rate was observed to be 94%, 90%, 88% and 85% using GWCK-CC, existing GaitCode [1],
EOR [2] and Existing Continuous Dice Coefficient, therefore contributing towards the required objective.
The reason behind the specificity improvement was due to the application of Continuous Czekanowski’s
Classification. Then, it performs not only continuous authentication but also correct authentication. Due
to this, the specificity rate using GWCK-CC [1] method was found to be better by 6%, 9%, and 13%
compared to [1,2] and Existing Continuous Dice Coefficient respectively.

6 Conclusion

In this paper, we proposed the use of a Gaussian Weighted Cauchy Kriging-based Continuous
Czekanowski’s (GWCK-CC) implicit continuous authentication on mobile devices. The objective for the
authentication method was to ensure smooth process on mobile devices without the fear of the data or
information being hacked. In this study, for each session, the face images of user were acquired
continuously in a temporal basis. Gaussian weight was applied to the input continuous images to obtain
fine-grained denoised images. Next, pertinent continuous features of the sample face images were
extracted by employing Cauchy Kriging Regression. Finally, the classified output using Continuous
Czekanowski’s function was utilized to differentiate between normal and abnormal users. Compared with
the continuous authentication results of the state-of-the-art methods, the user authentication accuracy, user
authentication time, error rate, sensitivity and specificity of the generated GWCK-CC is relatively strong,
which can accomplish very consequential effects and ensure robust authentication. The managerial and
technical implications are based on the proposed method theory. To conduct the experiments, the results
are implemented by using UMDAA-02-FD with higher authentication accuracy by 9%, lesser
authentication time, and error rate by 44%, and 43% than the state of art works. The proposed GWCK-
CC method limitation is that it failed to identify the different types of attack. In the future, instead of
using deep learning, other variant in the deep learning can be utilized to extract features. In addition,
ensemble learning could be employed to categorize the valid and invalid set of activities of user.
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