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Abstract: Alzheimer’s disease is a non-reversible, non-curable, and progressive
neurological disorder that induces the shrinkage and death of a specific neuronal
population associated with memory formation and retention. It is a frequently
occurring mental illness that occurs in about 60%–80% of cases of dementia. It
is usually observed between people in the age group of 60 years and above.
Depending upon the severity of symptoms the patients can be categorized in Cog-
nitive Normal (CN), Mild Cognitive Impairment (MCI) and Alzheimer’s Disease
(AD). Alzheimer’s disease is the last phase of the disease where the brain is
severely damaged, and the patients are not able to live on their own. Radiomics
is an approach to extracting a huge number of features from medical images with
the help of data characterization algorithms. Here, 105 number of radiomic fea-
tures are extracted and used to predict the alzhimer’s. This paper uses Support
Vector Machine, K-Nearest Neighbour, Gaussian Naïve Bayes, eXtreme Gradient
Boosting (XGBoost) and Random Forest to predict Alzheimer’s disease. The pro-
posed random forest-based approach with the Radiomic features achieved an
accuracy of 85%. This proposed approach also achieved 88% accuracy, 88%
recall, 88% precision and 87% F1-score for AD vs. CN, it achieved 72% accuracy,
73% recall, 72% precisionand 71% F1-score for AD vs. MCI and it achieved 69%
accuracy, 69% recall, 68% precision and 69% F1-score for MCI vs. CN. The com-
parative analysis shows that the proposed approach performs better than others
approaches.

Keywords: Alzheimer’s disease; radiomic features; cognitive normal; support
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1 Introduction

Currently, there are around 55 million people in the globe suffering from dementia, and annually about
10 million new dementia cases are recorded [1]. There are no predefined therapies that can cure the growth of
Alzheimer’s, but Some cures can help minimize the side effects of Alzheimer’s. Basics diagnostic methods
rely on medical history, clinical observation, and cognitive evaluation. The uses of brain magnetic resonance
imaging have shown promising results in discriminating between different dementia groups. Alzheimer’s
disease is a continuously growing, non-reversible, non-curable neurodegenerative disease identified by
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memory loss cognitive functions of the brain [2]. In initial times memory loss is assumed to be a problem
related to aging. In the early 90s, a German physician named Dr. Alois Alzheimer identified alterations in
the brain matter of a female patient who passed away from an unidentified brain illness. Examination of
brain matter revealed many amyloid clumps and tangled neurofibrillary. Even after more than 100 years
of discovery, the exact reason for Alzheimer’s disease is still not known. A commonly accepted cause is
the loss of links among neurons present inside the brain [3]. Generally, the symptoms are unnoticeable at
the starting stages, but as time passes, they start to intervene with the day-to-day life activities of the
patients. Some common symptoms of Alzheimer’s disease are memory-loss, frequently asking the same
thing, repeating the same stuff again and again, problems in recalling learned things, difficulty in
performing their everyday tasks [4]. Based on the severity of symptoms patient can be divided into three
groups. Cognitive Normal, the person is healthy but not suffering from any dementia. Normal ageing
causes minor cognitive alterations in everybody. In Mild Cognitive Impairment, the person suffering from
dementia but capable of performing his day-to-day activities. MCI is a condition specified as cognitive
decline that is more than normal for a person’s age but does not significantly affect routine [5]. AD is the
last stage of the disease where the brain is severely damaged and the patients do not live on their own.
Positron emission tomography (PET) and magnetic resonance imaging (MRI) are some of the imaging
modalities used for brain imaging. The high cost and less availability of the PET make MRI ideal for
studying Alzheimer’s disease [6]. The brain region impacted by Alzheimer’s is the hippocampus,
entorhinal cortex, frontal lobe, cerebrospinal fluid. In paper [7], the authors have studied the entorhinal
cortex and the hippocampus of a set of patients. Their study revealed atrophy in the hippocampal and
entorhinal volumes among MCI and AD patients. In paper [8], the authors have shown the relationship
between AD progressions, hippocampal atrophy. In paper [9], the authors have shown the changes in
the volumes of the hippocampus of mild MCI. In the paper [10], the authors compared the atrophy in the
hippocampus of Alzheimer’s and hippocampal sclerosis. His work demonstrated a decrease in
the hippocampal volume in AD patients.

Magnetic Resonance Imaging does not introduce any instrument inside the body. It produces three-
dimensional structural images. When frequent scanning is vital magnetic resonance imaging becomes
ideal for the brain. MRI uses strong magnets that generate a heavy magnetic field. When the
radiofrequency pulse is applied, protons get excited and start spinning and breaking the equilibrium,
moving against the magnetic field [11,12].

Table 1: Summary of recent related works

Approach/model Dataset Accuracy Reference

SVM Taken from Smt.
Kashi Bai Navale
Medical Hospital
Pune

95% [13]

KNN OASIS 74.73 [14]

SVM with PCA T1 weighted
ICBM template

64% for 3D feature
and 72% for 2D
features

[15]

SVM OASIS 84.62% [16]

SVM with RBF
kernel

ADNI 78% [17]
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Table 1 (continued)

Approach/model Dataset Accuracy Reference

Random forest OASIS 81.19% [18]

SVM ADNI 80% [19]

Random forest OASIS AUC values varied
from 56.63% to
84.09% based on
the subcortical
brain region

[20]

SVM OASIS 75.51 [21]

SVM with
polynomial kernel
and KNN

OASIS GLRLM features
with the KNN
classifier gave an
accuracy of
65.15%, GLCM
features with KNN
gave an accuracy
of 74.79%.
GLRLM features
with SVM
polynomial kernel
gave an accuracy
of 87.4% while
GLCM with SVM
gave 87.55%
accuracy.

[22]

SVM with RBF
kernel

Taken from
Chinese PLA
General Hospital

86.75% for
classifying AD vs.
CN

[23]

logistic regression T1-weighted
MPRAGE mages
from the Zhejiang
Provincial People
Hospital

68.4% [24]

k-nearest neighbors OASIS 86.6% [25]

1-NN with RDA,
PCA, and LDA

T1-weighted MRI
scans from
Xuanwu Hospital,
Beijing

Varied 63.2% to
89.7%, depending
on the region of
interest

[26]

SVM with Gaussian
kernel

ADNI, and AIBL AUC value of 74%
for ADNI and 83%
for AIBL

[27]

SVM ADNI 73.95% for T4 and
86.56% for T3

[28]

(Continued)
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In paper [38], the authors extracted the GLCM and GLRM features of AD patients, young controls and
elderly controls. The features include sum average, difference variance, grey level non-uniformity and
volumes of hippocampal regions. In the paper [39], the authors used MRI data from ADNI. The images
were T1-weighted 3T MPRAGE. Features were categorized based on gender for all categories and
compared. In the female group, there is nine relatively important feature, while the male group has five.
In the paper [40], the author created a technological framework for a multiple modal data framework to
unify the administration and exchange of ADNI data. The summery of work related to prediction of
Alzheimer’s shown in Tab. 1 see Tab. 1.

2 Material and Methods

2.1 Data Description

The dataset used in this paper comprises 160 structural MR scans accessed from the ADNI. All the
images were T1-Weighted MPRAGE images belonging to the ADNI phase 1. Each image was
downloaded in NIFTI format and contains images of AD, MCI, and CN. The data is shared via Loni
Image and Data Archive (http://adni.loni.usc.edu/).

Table 1 (continued)

Approach/model Dataset Accuracy Reference

SVM with linear
data analysis

ADNI, AIBL, and
CADD

63% [29]

SVM with PCA ADNI 89% [30]

diagonal quadratic
discriminant with
PCA

ADNI AUC for CN vs.
MCI, MCI vs. AD,
and CN vs. AD is
86%, 70%, 89%,
respectively

[31]

Logistic regression ADNI 79% [32]

Support Vector
Machine-based
method with
T1weighted MRI
images

OASIS 80.76% [33]

Backpropagation
network

OASIS 78% [34]

SVM with
polynomial kernel
and PCA

ADNI 81.48% [35]

SVM with RBF
kernel

ADNI 87% [36]

SVM ADNI 74.67% for 2D and
78.67% for 3D

[37]
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2.2 Data Pre-processing

All the MRI scans were processed using Brain Suite Software. The motive of the pre-processing is to
spatially normalize the brain into template space and remove unwanted brain parts. The steps involved in
the pre-processing are as follows-

Skull Stripping: It is a technique of separating brain tissues from non-brain tissues [41]. The skull
stripping method uses anisotropic diffusion for removing image noise without removing essential parts of
the image like lines and edges.

Bias Field Correction: Bias field correction is the method of correcting defects in the imaging caused by
non-uniformity of the intensity [42]. It evaluates local gain variation by inspecting local ROIs dispersed over
the magnetic resonance image volume. For every region, a fractional volume measurement is used, to
region’s histogram with the Gain estimators are then evaluated to discard faulty fits. A tri Cubic b spline
is then used on localized estimators to construct an intensity correction field for the whole brain. It is then
pulled out from the MRI image volume to produce a non-uniformity corrected magnetic resonance image.

Tissue Classification: Each voxel is labeled as white matter, grey matter based on the tissue type present
in the brain. Fractional volume measurement is used again with the presumption that gain is consistent and
the brain tissue types are contiguous [43].

Cerebrum Labelling: The cerebrum is withdrawn from the tissue classified volume by computing
automatic Image registration, and then the ICBM452 brain template is aligned to the patient MR images.
The left-right hemispheres, cerebrum, cerebellum, brainstem are labeled. Then cerebrum mask is
generated [44].

Initial Inner Cortex Mask: It combines the structural labels with tissue classified regions generated
during the tissue classification step.

Mask Scrubbing: The noise and other image abnormalities might result in rough boundaries on the inner
cortex model. A filter is used in the mask scrubbing stage to eliminate surface roughness based on a study of
the local neighborhood.

Topology Correction:A graph-based approach is applied to drive the segmented group of voxels to have
a spherical topology. It utilizes connection details to generate a graphical representation of the image and its
background. The minimum spanning tree-based method is applied to identify the brain areas where minor
corrections can be made by adding or deleting some voxels [45].

Wisp Removal:Wisp Removal tends to remove misclassification of voxel near the white or grey matter
tissues that produce sharp features. It uses a graph-based method similar to topology correction. The result is
a smoother cortical mask that gives enhanced pial surfaces and an inner cortical mask.

Surface Generation: The isocontour technique is applied to generate a surface net from an object. The
object’s boundary illustrates the inner cortical extremities.

Pial Surface Generation: Pial surface generation uses the grey/white matter tissue interface marked by
boundary and produces a surface network representing the outer cortical surface.

Hemisphere Labelling: This step takes the labels generated during the tissue classification step. It marks
left and right hemispherical labels to the inner cortical surface. Then these labels are copied to the respective
region on the outer cortical surface model. Then every surface is divided into two half hemispherical regions
like left and right hemispheres.

Surface Volume Registration: Surface volume registration is a tool for co registering the human brain
MR images. It uses the surface and volume anatomical information for precise co-registration and allows
uniform surface and volume mapping to the labeled atlas. The Brain suite atlas has around 90 ROIs.
Brain Suite Atlas1 is a Colin 27 based atlas.
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2.3 Radiomic Feature Extractions

Radiomics is an approach to extracting a huge number of features from medical images with the help of
data characterization algorithms. The Py-Radiomics [46], 3.0.1 with python 3.7 is used to withdraw features
from the earlier pre-processed images. During the feature extraction skull stripped images and corresponding
labeled masks were provided in a CSV file. Then Shape 3D [47], first-order features, GLCM [48], GLRLM
[49–53], GLSZM [54], GLDM [55], NGTDM [56], are calculated. A total of 105 features are derived from
every sample. Mathematical definitions of these features are as follows:

First-Order Features: The first-order features narrate how the voxel intensities are distributed within the
region indicated by the mask image. Let, X , is the set of Np voxels present in the ROI. P ið Þ is the first-order
histogram for Ng’s different levels of intensity. p(i) represents normalized first-order histogram. Then,

p ið Þ ¼ P ið Þ
Np

(1)

Energy ¼
XNp

i¼1
X ið Þ þ cð Þ2 (2)

Entropy ¼ �
XNg

i¼1
p ið Þ log 2 ðp ið Þ þ eÞ (3)

Standard Deviation ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Np

XNp

i¼1
X ið Þ � X
� �2s

(4)

Variance ¼ 1

Np

XNp

i¼1
X ið Þ � X
� �2

(5)

Shape Features (3D): The ROI’s three-dimensional shape and size were described using characteristics.
3D features are independent from GLID in the ROI and calculated on the mask and non-derived images. Let,
Nv, is the voxels present in the ROI. Nf , is the number of faces describing the mesh. V represent volume, A
represent the surface area. Then,

Mesh Volume ¼ 1

6

XNf

i¼1
Oal :ðObl � Ocl Þ (6)

Voxel Volume ¼
XNv

k¼1
Vk (7)

Surface area ¼ 1

2

XNf

k¼1
ak bk � ak ckj j (8)

Grey Level Co-occurrence Matrix: A GLCM of size Ng � Ng narrates the second-order joint
probability function of a region indicated by the mask and is denoted by P i; jjd; hð Þ. Let, Ng is the
number of different intensity levels. P i; jð Þ denotes co-occurrence matrix for random d and h. P i; jð Þ
represents the normalized co-occurrence matrix. lx represents the mean gray level intensity for px and ly
represents mean gray level intensity for py Then,

pði; jÞ ¼ Pði; jÞP
Pði; jÞ (9)

lx¼
XNg

i¼1
px ið Þi (10)
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ly¼
XNg

j¼1
pyðjÞj (11)

Autocorrelation ¼
XNg

i¼1

XNg

j¼1
p i; jð Þij (12)

IDM ¼
XNg�1

k¼0

px �
t kð Þ

1þ k2
(13)

IDMN ¼
XNg�1

k¼0

px �
t kð Þ

1þ k2
Ng2

� � (14)

ID ¼
XNg�1

k¼0

px �
t kð Þ

1þ k
(15)

IDN ¼
XNg�1

k¼0

px �
t kð Þ

1þ k
Ng

� � (16)

Inverse Variance ¼
XNg�1

k¼0

px �
t kð Þ
k2

(17)

Maximum Probability ¼ max p i; jð Þð Þ (18)

Sum Entropy ¼
X2Ng
k¼2

px
þ
t kð Þlog2 px

þ
t kð Þ þ E

� �
(19)

Sum of Squares ¼
XNg

i¼1

XNg

j¼1
1� lxð Þ2p i; jð Þ (20)

Grey Level Size Zone Matrix: The GLSZM identifies grey-leveled zones in the image. Let N be the
number of different intensity levels. N describes the number of different sizes zones. Pði; jÞ describes the
size of the zone matrix. Np describes the number of voxels present in the provided image. NZ describes
the number of zones present within the region of interest. Then,

Nz ¼
XNg

i¼1

XNs

j¼1
Pði; jÞ (21)

pði; jÞ represents the normalized size zone matrix and is provided by

pði; jÞ ¼ Pði; jÞ
Nz

(22)

LGLZE ¼
PNg

i¼1

PNs
j¼1

P i;jð Þ
i2

Nz
(23)

HGLZE ¼
PNg

i¼1

PNs
j¼1 P i; jð Þi2
Nz

(24)

SALGLE ¼
PNg

i¼1

PNs
j¼1

P i;jð Þ
i2j2

Nz
(25)
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SAHGLE ¼
PNg

i¼1

PNs
j¼1

P i;jð Þi2
j2

Nz
(26)

LALGLE ¼
PNg

i¼1

PNs
j¼1

P i;jð Þj2
i2

Nz
(27)

LAHGLE ¼
PNg

i¼1

PNs
j¼1 P i; jð Þi2j2
Nz

(28)

Grey Level Dependence Matrix: The GLDM measures the number of gray level dependencies present
in the provided image. Let Ng be the number of different intensity levels. Nd represents the number of
different-sized dependencies. Pði; jÞ represents the dependency matrix. NZ represents the number of
dependency zones present within the region of interest.

Then,

Nz ¼
XNg

i¼1

XNd

j¼1
Pði; jÞ (29)

pði; jÞ represents the normalized dependency matrix and is provided by

pði; jÞ ¼ Pði; jÞ
Nz

(30)

SDLGLE ¼
PNg

i¼1

PNd
j¼1

P i;jð Þ
i2j2

Nz
(31)

SDHGLE ¼
PNg

i¼1

PNd
j¼1

P i;jð Þi2
j2

Nz
(32)

LDLGLE ¼
PNg

i¼1

PNd
j¼1

P i;jð Þj2
i2

Nz
(33)

LDHGLE ¼
PNg

i¼1

PNd
j¼1 P i; jð Þi2j2
Nz

(34)

Neighboring Grey Tone Differnce Matrix (NGTDM): It calculates the differences between a gray value
and the mean of neighboring grayed values present within a distance limit of d. Let ni denotes no. of voxels
within the Xgl with grayed level denoted by i. A represents the mean gray level.

A ¼ 1

W

Xd

kx�d

Xd

ky�d

Xd

kz�d
Xglðjx þ kx; jy þ ky; jz þ kzÞ (35)

Si represents the sum of the gaps between gray level i

si ¼
Xni

i� �Ai

�� �� for ni 6¼ 0; otherwise si is 0
n

: (36)

Busyness ¼
PNg

i¼1 pi:siPNg
i¼1

PNg
j¼1 i:pi� j:pjj j (37)
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Coarseness ¼ 1PNg
i¼1 pi:si

(38)

Contrast ¼ð 1

Ng; p Ng; p� 1ð Þ
XNg

i¼1

XNg

j¼1
pi:pj i� jð Þ2ð 1

Nv; p

XNg

i¼1
SiÞ (39)

Complexity ¼ 1

Nv; p

XNg

i¼1

XNg

j¼1

i� jj j pi:siþ pj:sjð Þ
piþ pj

(40)

Strength ¼
PNg

i¼1

PNg
j¼1 piþ pjð Þ i� jð Þ2PNg

i¼1 Si
(41)

2.4 Methodology

This paper used Gaussian Naïve Bayes, K-Nearest neighbour’s, Support Vector Machine, XGBoost and
Random Forest for the prediction of Alzheimer’s with Radiomic features.

2.4.1 Gaussian Naïve Bayes (GNB)
It is a sub type of Naïve Bayes theorems. The term Naïve Bayes refers to a class of machine learning

techniques that are built on the Bayes theorem. It uses Gaussian normal distribution as the probability
distribution function.

2.4.2 K-Nearest Neighbour’s (K-NN)
It works on the basis of similarity of the features. It assumes that the similar objects are present closer. It

computes the distance between the selected item and its neighbours and classifies them based on the
computed distance [57].

2.4.3 Support Vector Machine
SVM is used for prediction and regression purposes. But in general it has found more use in the

classification purposes. SVM tries to find a hyperplane where it can separate different kinds of data by
creating boundaries between them [58].

2.4.4 XGBoost
eXtreme Gradient Boosting employs a technique known as boosting to generate effective models.

Boosting is an ensemble learning strategy that involves generating multiple weaker and simpler models in
a row, with each new model trying to fix problems in the earlier model [59].

2.4.5 Random Forest (RF)
The random forest technique deploys ensemble learning that uses large decision tree-based classifiers to

fix complex tasks. It is a collection of many decision trees based classifiers. The bagging technique is used for
training the forest generated by the RF classifier [60]. To increase the accuracy of algorithms bagging
technique employs an ensemble learning method. It forecasts the outcome based on the results of
individual decision trees. The findings are calculated by averaging the result of different decision trees
classifiers. An overview of decision trees classifiers will support in comprehending the random forest’s
operation. A decision tree contains three parts the decision node, the leaf node, and the root node [61]. In
this paper, we used n_estimators (number of trees) values 40, entropy as a criterion, and random state
value is 0 for the classifiers see Fig. 1.
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3 Results and Discussion

Here, we proposed a random forest-based method for the early prediction of Alzheimer’s disease in
elderly people. The Performance Measures of random forest are then compared with performance
measures of Gaussian Naïve Bayes, K-NN, SVM, and XGBoost. The proposed random forest-based
approach with the Radiomic features for AD vs. CN achieved accuracy of 66%, 76%, 77%, 88%, 87%,
Precision values of 68%, 77%, 77%, 88%, 87%, Recall values of 66%, 76%, 77%,88%, 87%, F1-score of
63%, 75%, 76%, 87%, 86% and ROC area values of 63%, 74%, 75%, 87%, 85%, for GNB, KNN, SVM,
RF and XGBoost respectively, see Tab. 2 and Fig. 2 below.

Figure 1: Flowchart of the proposed approach

Table 2: Comparative analysis of different machine learning algorithms for AD vs. CN

Performance GNB KNN SVM RF XGBoost

Accuracy 66% 76% 77% 88% 87%

Precision 68% 77% 77% 88% 87%

Recall 66% 76% 77% 88% 87%

F1-score 63% 75% 76% 87% 86%

Figure 2: ROC for the classification of AD and CN
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The proposed random forest based approach with the radiomic features for AD vs. MCI achieved
accuracy of 57%, 65%, 69%, 72%, 64%, Precision values of 58%, 65%, 70%, 73%, 64%, Recall values
of 57%, 65%, 69%, 72%, 64%, F1-score of 49%, 65%, 68%, 71%, 63% and ROC area values of 53%,
64%, 67%, 71%, 62%, for GNB, KNN, SVM, RF and XGBoost respectively, see Tab. 3 and Fig. 3 below.

The proposed random forest based approach with the radiomic features for MCI vs. CN achieved
accuracy of 66%, 60%, 64%, 69%, 65%, Precision values of 70%, 60%, 64%, 69%, 65%, Recall values
of 66%, 60%, 64%, 69%, 65%, F1-score of 63%, 60%, 64%, 69%, 65% and ROC area values of 64%,
60%, 63%, 69%, 65%, for GNB, KNN, SVM, RF and XGBoost respectively, see Tab. 4 and Fig. 4 below.

Table 3: Comparative analysis of different machine learning algorithms for AD vs. MCI

Performance GNB KNN SVM RF XGBoost

Accuracy 57% 65% 69% 72% 64%

Precision 58% 65% 70% 73% 64%

Recall 57% 65% 69% 72% 64%

F1-score 49% 65% 68% 71% 63%

Figure 3: ROC for the classification of AD and MCI

Table 4: Comparative analysis of different machine learning algorithms for MCI vs. CN

Performance GNB KNN SVM RF XGBoost

Accuracy 66% 60% 64% 69% 65%

Precision 70% 60% 64% 69% 65%

Recall 66% 60% 64% 69% 65%

F1-score 63% 60% 64% 69% 65%
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In this paper, we calculated accuracy values for various numbers of trees (n_estimators) and it is
observed that the best overall accuracy of 85% is obtained with a n_estimator value of 40, see Fig. 5. The
best overall precision of 85% is obtained with n_estimator values of 40, see Fig. 6 below.

Figure 4: ROC for the classification of MCI and CN

Figure 5: Accuracy for the prediction of Alzheimer’s with different number of trees

Figure 6: Precision for the prediction of Alzheimer’s with different number of trees
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We calculated recall values for different numbers of trees (n_estimators) and it is observed that the best
overall recall of 85% is obtained with a n_estimator value of 40, see Fig. 7. The best overall F1-score of 85%
is obtained with n_estimator values of 40, see Fig. 8 below.

The proposed random forest-based approach with the Radiomic features achieved 85% accuracy recall,
precision, and F1 score see Tab. 5. The proposed approach achieved 88% accuracy, 88% recall, 88%
precision, and 87% F1-score for AD vs. CN, 72% accuracy, 73% recall, 72% precision, and 71% F1-
score for AD vs. MCI and 69% accuracy, 69% recall, 68% precision and 69% F1-score for MCI vs. CN.

Figure 7: Recall for the prediction of Alzheimer’s with different number of trees

Figure 8: F1-score for the prediction of Alzheimer’s with different number of trees

Table 5: Comparative analysis of different machine learning algorithms for the prediction of Alzheimer

Performance GNB KNN SVM RF XGBoost

Accuracy 48% 79% 75% 85% 75%

Precision 77% 81% 77% 85% 73%

Recall 48% 79% 75% 85% 75%

F1-score 54% 77% 76% 85% 74%
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4 Comparative Analysis

In the paper [62], the authors proposed SVMwith PCA based method by using MR images and obtained
an accuracy of 80.9%. In the paper [63], the author proposed RNN based method by using MR images and
obtained an accuracy of 81%. The proposed approach of random forest classifier with the Radiomic features
achieved the accuracy of 85% with taking parameter value as n_estimators = 40, criterion = ‘entropy’,
random_state = 0. So based on the results proposed approach of random forest with Radiomic features
gives better results for the prediction of AD at an early stage, see Tab. 6.

5 Conclusion

Alzheimer’s disease is a frequently occurring mental illness that occurs in about 60–80%, cases of
dementia. Depending upon the severity of symptoms the patients can be categorized in CN, MCI, and
AD. Machine learning algorithms that are used in this paper are SVM taking parameter values as
kernel = ‘linear’, random_state = 42, K- Nearest Neighbour taking parameter values as n_neighbors = 5,
metric = ‘minkowski’, p = 2, Gaussian Naïve Bayes, XGBoost as well as Random Forest Classifier.
Random Forest with parameter n_estimators = 40, criterion = ‘entropy’, random_state = 0, provides best
result in terms of Accuracy. The proposed random forest-based approach with the Radiomic features
achieved 85% accuracy. The proposed approach achieved 88% accuracy, 88% recall, 88% precision, and
87% F1-score for AD vs. CN, 72% accuracy, 73% recall, 72% precision, and 71% F1-score for AD vs.
MCI and 69% accuracy, 69% recall, 68% precision and 69% F1-score for MCI vs. CN. The comparative
analysis shows that the proposed approach performed better than other existing approaches.
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