
Oppositional Red Fox Optimization Based Task Scheduling Scheme for Cloud
Environment

B. Chellapraba1,*, D. Manohari2, K. Periyakaruppan3 and M. S. Kavitha4

1Department of Information Technology, Karpagam Institute of Technology, Coimbatore, 641032, Tamilnadu, India
2Department of Computer Science and Engineering, St. Joseph’s Institute of Technology, Chennai, 600119, India

3Department of Computer Science & Engineering, SNS College of Engineering, Coimbatore, 641107, India
4Department of Computer Science & Engineering, SNS College of Technology, Coimbatore, 641035, India

*Corresponding Author: B. Chellapraba. Email: chellapraba@gmail.com
Received: 13 March 2022; Accepted: 26 April 2022

Abstract: Owing to massive technological developments in Internet of Things
(IoT) and cloud environment, cloud computing (CC) offers a highly flexible het-
erogeneous resource pool over the network, and clients could exploit various
resources on demand. Since IoT-enabled models are restricted to resources and
require crisp response, minimum latency, and maximum bandwidth, which are
outside the capabilities. CC was handled as a resource-rich solution to aforemen-
tioned challenge. As high delay reduces the performance of the IoT enabled cloud
platform, efficient utilization of task scheduling (TS) reduces the energy usage of
the cloud infrastructure and increases the income of service provider via minimiz-
ing processing time of user job. Therefore, this article concentration on the design
of an oppositional red fox optimization based task scheduling scheme (ORFO-
TSS) for IoT enabled cloud environment. The presented ORFO-TSS model
resolves the problem of allocating resources from the IoT based cloud platform.
It achieves the makespan by performing optimum TS procedures with various
aspects of incoming task. The designing of ORFO-TSS method includes the idea
of oppositional based learning (OBL) as to traditional RFO approach in enhancing
their efficiency. A wide-ranging experimental analysis was applied on the
CloudSim platform. The experimental outcome highlighted the efficacy of the
ORFO-TSS technique over existing approaches.

Keywords: Metaheuristics; task scheduling; cloud computing; internet of things;
makespan; red fox optimizer

1 Introduction

Internet of Things (IoT) is the vital technique to form smart city because it enables objects or entities to
deliver data and service to users by communicating and collaborating with others [1]. There has been a rapid
progression that the multiple devices get interconnected to the system with the tremendous growth of the IoT.
Once the device requests resource service from the cloud datacentre simultaneously, it would take a massive
network bandwidth, as well as information access and data transmission would be slow [2]. Furthermore,

This work is licensed under a Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

Computer Systems Science & Engineering
DOI: 10.32604/csse.2023.029854

Article

echT PressScience

mailto:chellapraba@gmail.com
http://dx.doi.org/10.32604/csse.2023.029854
http://dx.doi.org/10.32604/csse.2023.029854


when some -sensitive requests namely emergency and medical are uploaded to the remote cloud to process,
the delay created by bandwidth constraint and resource bottleneck of the cloud datacentre affects the quality
of service (QoS). In the meantime, cloud computing (CC), a novel computing structure, was extensively
employed in the last few decades. CC is a technique which focuses on providing a flexible heterogeneous
source pool via the system, and users rent distinct resources on demand [3,4]. User procures and releases
computing resource that is generally virtual machine (VM) with distinct provisions, based on the
particular requirements within a limited period. Since these techniques are highly dependent on the
Internet, the CC and IoT are strongly associated with the role. The IoT digitalizes various information and
wisely manages equipment, and CC is utilized by a carrier for higher-speed information utilization,
processing, and storage. CC provides the advantage of security, speed, and convenience that the lacks
IoT, and the technique that makes intelligent analysis and the realtime dynamic management of the IoT
consistent [5,6].

Even though implementation of IoT applications in CC has different benefits, many problems continue a
challenge. Firstly, scheduling of tasks is considered an NP-hard problem [7]. Especially, scheduling of tasks
represents the task assignment to virtual resources based on sequential implementation. Next, once a
computing resource (VM) is released or leased, an appropriate handoff takes time [8]. Indeed, there are
distinct kinds for the skilled data traffic in IoT paradigm and it requires distinct QoS limitations which
should be resolved when increasing the offered Cloud resource usage [9]. Consequently, it can be
important to present a proper scheduling approach for offering optimal queue management for multiple
class data traffic to guarantee the likely usage of the IoT resource allocation amongst the heterogeneous
schemes of personal devices and servers. There could be case where scheduling algorithm in CC model
could not fulfil the QoS constraint. Also, this ineffective scheduling might result in low network
throughput and undesirable lengthy delay [10].

This article focuses on the design of an oppositional red fox optimization based task scheduling scheme
(ORFO-TSS) for IoT enabled cloud environment. The presented ORFO-TSS model resolves the challenge of
allocating resources from the IoT based cloud platform. It realizes the makespan by performing task
scheduling (TS) procedures with various aspects of incoming tasks. The designing of ORFO-TSS
approach includes the idea of oppositional based learning (OBL) as to traditional RFO technique in
enhancing its efficiency. A wide-ranging experimental analysis was applied on the CloudSim platform.

The rest of the paper is organized as follows. Section 2 offers a brief related works and Section
3 provides the proposed model. Next, Section 4 gives performance validation and Section 5 draws
conclusions.

2 Related Works

In [11], the authors proposed a Hybrid ant genetic approach for scheduling tasks. The presented
technique adopts features of genetic algorithm (GA) and ant colony optimization (ACO) and splits virtual
machines and tasks into small groups. Afterward task allocation, pheromone is included in VMs. Bezdan
et al. [12] present a method that is capable of finding an estimated (near-optimum) solution for
multiobjective TS issues in cloud platforms and simultaneously reduces the searching time. Then
proposed a hybridized bat algorithm, a swarm intelligence (SI) based approach, for multiobjective TS. In
[13], integrates security effective using TS in CC with a hybrid ML (RATS-HM) method is projected for
overcoming the problem. The presented method is described in the following: Firstly, an enhanced
cuckoo search optimization (CSO) approach-based shorter scheduler for TS (ICS-TS) maximizes
throughput and diminishes the makespan time. Next, a group optimization-based DNN (GO-DNN) for
effectual RA with distinct limitations including resource load and bandwidth.

484 CSSE, 2023, vol.45, no.1



Fu et al. [14] investigated the procedure of cloud TS and projected a particle swarm optimization (PSO)
genetic hybrid approach-based phagocytosis PSO_PGA. Initially, generation of PSO is separated, in
addition, the location of particles in the sub-population has been altered by crossover mutation of genetic
algorithm and phagocytosis for expanding the searching space of the solution. In [15], an effectual
hybridized scheduling method that imitates food gathering habits of the crow bird and the parasitic action
of the cuckoo, called Cuckoo Crow Search approach (CCSA) was introduced to enhance the scheduling
task. They often stares at its neighbour to search for an improved food source. In certain circumstance,
the crow goes a further step and steal the neighbor's food. Amer et al. [16] introduce an adapted Harris
hawk’s optimizer (HHO), named elite learning HHO (ELHHO), for multiobjective scheduling issues. The
modification is performed by utilizing a smart technology named elite OBL for enhancing the superiority
of exploration stage of the typical HHO approach.

3 The Proposed Model

In this article, a novel ORFO-TSS algorithm has been developed to resolve the problem of allocating
resources from the IoT based cloud platform. It accomplishes the makespan by performing optimal TS
procedures with various aspects of incoming task. The designing of ORFO-TSS technique includes the
idea of OBL as to typical RFO algorithm in enhancing its efficiency. Fig. 1 depicts the overall procedure
of ORFO-TSS approach.

Figure 1: Overall process of proposed technology

CSSE, 2023, vol.45, no.1 485



3.1 Process Involved in ORFO Algorithm

According to hunting procedure of red foxes, a novel meta-heuristic technique is determined that is
named as RFO technique. During the RFO approach, the red foxes search for food from territory. During
the next stage, then moving on the territories for obtaining nearer sufficient to prey before attack. This
technique begins with constant amount of arbitrary candidates as foxes whereas, all of them determined a
point such that �x ¼ ðx0; x1; . . . ; xn�1Þ and n defines co-ordinates. For discriminating all foxes �xi in

iteration t, whereas i refers the fox number from the population, it can be present notation �xij

� �t
, whereas

i demonstrates the co-ordinate as specified by the solution space dimensional. With assuming f 2 Rn as
the condition function of n variables dependent upon the dimensional of searching space, and with

assuming the notation ð�xÞ ið Þ ¼ ½ð�x0Þ ið Þ; ð�x1Þ ið Þ; ð�xn�1Þ ið Þ� refers the point from the space ½a; b�n whereas

a; b 2 R. At that moment, ð�xÞ ið Þ is an optimum solution when the value of function f ðð�xÞ ið ÞÞ is global
optimal on a; b½ �. The outcomes of the estimated function by candidates were initially sorted dependent
upon the fitness criteria, and for ð�xbestÞt, the square of Euclidean distance was measured for the candidates
as [17]:

D ð�xÞðiÞ
� �t

; ð�xÞbest
� �t� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð�xÞðiÞ
� �t

� ð�xÞbest
� �t��� ���

r
(1)

and the candidate moves nearby an optimum population as follows:

ðð�xÞ ið ÞÞt ¼ ðð�xÞ ið ÞÞt þ a� sgnðððð�xÞbestÞt � �xÞ ið ÞÞt
� �

(2)

whereas, a defines the arbitrary integer whereas a 2 ð0;Dðð�xÞbestÞc; ðð�xÞbestÞtÞ.
During the RFO technique, the observation and movement for delude prey but hunting as to local

searching phase. For simulating a fox possibility modeling nearby prey, an arbitrary value c 2 ½0; 1� set
from the iteration to every candidate.

move doser if c. 3=4
stay and hile i c � 3=4

�
(3)

whereas, c 2 ½0; 1�:
One other terms under the simulation is radius. The radius contains: a as an arbitrary value amongst

0 and 0.2 and ’0 refers the arbitrary value amongst 0 and 2p. It is demonstrated in the subsequent
formula [18]:

r ¼ a� sinð’0Þ=’0 if ’0 6¼ 0
b if ’0 ¼ 0

�
(4)

In which, b refers the arbitrary value from the range zero and one. It is formulated in the following:

vNew0 ¼ a� r � cosð’1Þ þ X actual
0

xNew1 ¼ a� r � sinð’1Þ þ a� r � cosð’2Þ þ xactual1
xNew1 ¼ a� r � sin ’1ð Þ þ a� r � sin ’2ð Þ þ a� r � cos ’3ð Þ þ xactual2

..

.

xNewn�1 ¼ a� r �Pn�2
k¼1 sinð’1Þ þ a� Y � cosð’n�1Þ þ Xactual

n�2
xNexn�1 ¼ a� r � sin ’1ð Þ þ a� r � sin ’2ð Þ þ . . .þ a� r � sinð’n�1Þ þ a� r � sinð’n�1Þ þ X actual

n�a

8>>>>>>><
>>>>>>>:

(5)

486 CSSE, 2023, vol.45, no.1



In 5 percent of worse-case candidates are extracted and some upgraded candidates are then exchanged.
Similarly, two of optimum individuals are attained as ðX ð1ÞÞt and ðX ð2ÞÞt as an alpha couple from iteration t.
It can be mathematical as under:

Ht
c ¼

1

2
ðX ð1ÞÞt � ðX 2ð ÞÞt (6)

And the diameter of habitat utilizing Euclidean distance is attained as:

Ht
d ¼ ðX ð1ÞÞt � ðX ð2ÞÞt�� ��� �1

2 (7)

An arbitrary value, h, is also regarded as:

Newnomadic candidate if h. 0:45
Reproduction of the alpha couple if h � 045

�
(8)

where, h 2 ½0; 1�:
Afterward, a novel candidate is reached by the alpha couple as follows:

ðX repÞt ¼ h
2
ðX ð1ÞÞt � ðX 2ð ÞÞt (9)

Even though the RFO approach provides better achievement to resolve the optimization problem, in
some cases, it could not get make it to attain the optimal achievement due to the local optimum points
trapping, lower consistency, and premature convergence. One amendment is to apply the oppositional
based learning (OBL) method. This method determines that possible location from the solution space
comprises an opposite position. It could be an appropriate improvement to enhance the exploration
process. Therefore, it produces the opposite position of all the solutions, a comparison with its opposite is
performed for selecting an optimal one as the novel solutions. By considering Xi as a solution among
Xi 2 X i;Xi and its opposite value �Xij, the equation can be modelled by the following. Fig. 2 illustrates the
steps involved in RFO.

�xð Þ ið Þ
� �t

op
¼ �xð Þ ið Þ

� �t

l
þ �xð Þ ið Þ
� �t

u
� �xð Þ ið Þ
� �t

(10)

whereas, �xð Þ ið Þ
� �t

, �xð Þ ið Þ
� �t

op
2 Ri.

Figure 2: Steps involved in RFO

CSSE, 2023, vol.45, no.1 487



3.2 Steps Involved in ORFO-TSS Algorithm

The presented model fulfills the makespan by performing optimal TS procedures with various aspects of
incoming tasks. In this approach, the cloud application was considered as collected of user jobs (UJs) that
implement complex computing tasks employing cloud resources [19]. Let UserJob ¼ U1;U2;U3 . . .UNð Þ
represents the batch of user applications obtained at particular time. Every UJ Uið Þ is represented as
duplet , ai; di . . In which aj stands for the arrival time of UJ Uið Þ and di stands for the purpose of UJs
Uið Þ. During the scheduling approach, the UJ was allocated for the available DCs D1;D2;D3 . . .DMð Þ,
whereas N � M. All DCs Dið Þ has linked to duplet ,Ci; mj . :ci, the price per unit time charged as DC
to implement UJ, mi demonstrates the count of available Processing Elements (PEs) to apply UJs. Each
DC has a set of PEs PE1;PE2 . . .PEmf g to compute allocated UJs. Every PE is linked to duplet
, s; p. . 0s0 and 0p0 represent the executed speed and power consumption of all PEs correspondingly.
The set of nodes V ¼ T1 . . . Tnf g represents the tasks, and the set of arcs demonstrates the control or data
dependency among tasks. Optimal scheduling of UJs to accessible PEs from cloud in different DC is a
vital objective of this work.

Considering the UJs Ui has assigned to DC ðDjÞ. Tk implies the set of tasks of the UJs Uið Þ was given to
PE ðPjÞ. Once the time need that applying Tk employ Pj is signified as Gj. The termination time of Tj is
expressed as:

Finish Tkð Þ ¼ start Tkð Þ þ �j (11)

Therefore, the whole time vital to complete the UJ as Dj is demoted as Makespanj and defined as:

Makespanj ¼ max Finish Tkð Þf g (12)

whereas T k¼1...nð Þ the tasks are assigned toDj. The energy consumption for calculating the UJs Uið Þ by DCDj

has measured as:

Ei ¼
Xn

k¼1
�k � pkð Þ (13)

In which pk denotes the power consumption per unit time through PEs Pj

� �
for procedure offered task

ðTkÞ. The cost of processing the UJ as DC Dj is calculated as:

Cj ¼ cj �Makespanj (14)

whereas cj denotes the price per unit time charged by DC Dj to applied the UJs.

The consumption Uj

� �
of DCs Dj

� �
is estimated as:

Uj ¼ Makespanj
max Makespankf g; k ¼ 1 . . .M

(15)

An objective function of this projected approach are expressed as:

Minimize Makespanj j ¼ 1::M (16)

Minimize Ejj ¼ 1::M (17)

Minimize
XM

j¼1
Cj

n o
(18)

MaximizeUjj ¼ 1::M (19)

Subjected to:

� The UJ requirement end before deadline dið Þ

488 CSSE, 2023, vol.45, no.1



� Every UJ is allocated to only one DC.

The count of UJs is reduced to the count of present DC at a particular time.

4 Performance Validation

The performance validation of the ORFO-TSS approach is carried out using distinct types of tasks based
on the number of sizes namely extra-large (EL), large (LAR), medium (MED), and small (SMA). Tab. 1
provides a brief average response time (ART) and average turnaround time (ATAT) of the ORFO-TSS
model with recent methods.

Fig. 3 inspects a detailed ATAT examination of the ORFO-TSS model with existing models. The figure
indicated that the round robin (RR) model has gained poor outcomes with higher ATATof 0.196 s. Followed
by, the first come first serve (FCFS) and shortest job first (SJF) models have resulted in slightly enhanced
performance with ATAT of 0.172 s and 0.169 s respectively. Along with that, the Firefly and FIMPSO-TS
models have reached reasonable ATAT of 0.158 s and 0.142 s respectively. However, the ORFO-TSS
model has outperformed the other methods with maximum ATAT of 0.085.

Table 1: ATAT and ART analysis of ORFO-TSS technique with other scheduling methods

Methods Average turnaround time (s) Average response time (s)

RR algorithm 0.196 0.144

FCFS algorithm 0.172 0.120

SJF algorithm 0.169 0.119

Firefly algorithm 0.158 0.115

FIMPSO-TS 0.142 0.108

CAIOA-TS 0.118 0.095

ORFO-TSS 0.085 0.074

Figure 3: ATAT analysis of ORFO-TSS technique with recent algorithms

CSSE, 2023, vol.45, no.1 489



Fig. 4 examines a detailed ART examination of the ORFO-TSS model with existing models. The figure
indicated that the RR approach has gained poor outcomes with maximum ART of 0.144 s. Afterward, the
FCFS and SJF models have resulted in somewhat enhanced performance with ART of 0.120 s and
0.119 s respectively. Likewise, the Firefly and FIMPSO-TS models have reached reasonable ART of
0.115 s and 0.108 s correspondingly. Eventually, the ORFO-TSS technique has outperformed the other
methods with maximal ART of 0.074.

Tab. 2 and Fig. 5 illustrate a brief CPU utilization (CPUU) investigation of the ORFO-TSS model with
other models on distinct types of tasks [20,21]. The results indicated that the ORFO-TSS model has reached
effectual outcomes with higher CPUU. For instance, with small tasks, the ORFO-TSS model has obtained
higher CPUU of 77.78% whereas the ACO-TS, GWO-TS, IPSO-TS, FIMPSO-TS, and CAIOA-TS
models have reached lower CPUU of 58.01%, 65.91%, 67.64%, 71.17%, and 75.68% respectively.
Moreover, with large tasks, the ORFO-TSS methodology has obtained superior CPUU of 98.33%
whereas the ACO-TS, GWO-TS, IPSO-TS, FIMPSO-TS, and CAIOA-TS algorithms have reached to
lower CPUU of 78.50%, 86.67%, 86.66%, 91.59%, and 96.18% correspondingly.

Figure 4: ART analysis of ORFO-TSS technique with recent algorithms

Table 2: CPU utilization analysis ORFO-TSS technique in terms of various measures

CPU utilization (%)

Methods Small Medium Large Extra-Large

ACO-TS 58.01 69.73 78.50 88.69

GWO-TS 65.91 75.13 86.67 94.19

IPSO-TS 67.64 75.97 86.66 96.20

FIMPSO-TS 71.17 77.20 91.59 97.52

CAIOA-TS 75.68 83.92 96.18 98.11

ORFO-TSS 77.78 85.96 98.33 99.13

490 CSSE, 2023, vol.45, no.1



Tab. 3 and Fig. 6 depict a brief memory utilization (MU) investigation of the ORFO-TSS model with
other models on distinct types of tasks. The results designated that the ORFO-TSS model has achieved
effectual outcomes with higher MU. For sample, with small tasks, the ORFO-TSS model has obtained
higher MU of 75.95% whereas the ACO-TS, GWO-TS, IPSO-TS, FIMPSO-TS, and CAIOA-TS methods
have reached to lower MU of 53.83%, 57.54%, 57.65%, 60.98%, and 68.73% respectively. Additionally,
with large tasks, the ORFO-TSS model has obtained higher MU of 95.64% whereas the ACO-TS, GWO-
TS, IPSO-TS, FIMPSO-TS, and CAIOA-TS approaches have reached minimal MU of 70.89%, 79.49%,
84.23%, 83.64%, and 90.77% correspondingly.

A detailed makespan examination of the ORFO-TSS approach with other existing models is compared
in Tab. 4 and Fig. 7. The experimental results indicated that the ORFO-TSS model has accomplished
effectual outcomes with minimal makespan. For instance, with small tasks, the ORFO-TSS model has
provided minimal makespan of 38.69 s whereas the ACO-TS, GWO-TS, IPSO-TS, FIMPSO-TS, and
CAIOA-TS models have obtained maximum makespan of 51.12 s, 48.47 s, 47.15 s, 45.52 s, and 43.93 s
respectively. In line with, with large tasks, the ORFO-TSS approach has provided minimal makespan of
135.26 s whereas the ACO-TS, GWO-TS, IPSO-TS, FIMPSO-TS, and CAIOA-TS models have obtained
maximal makespan of 181.34 s, 154.31 s, 151.13 s, 150.22 s, and 144.44 s correspondingly.

Figure 5: CPUU analysis ORFO-TSS technique interms of various measures

Table 3: Memory utilization analysis ORFO-TSS technique with respect to distinct measures

Memory utilization (%)

Methods Small Medium Large Extra-Large

ACO-TS 53.83 63.16 70.89 83.57

GWO-TS 57.54 67.84 79.49 89.39

IPSO-TS 57.65 69.44 84.23 90.75

FIMPSO-TS 60.98 71.39 83.64 92.01

CAIOA-TS 68.73 75.71 90.77 94.45

ORFO-TSS 75.95 77.66 95.64 96.61

CSSE, 2023, vol.45, no.1 491



Figure 6: MU analysis ORFO-TSS technique interms of various measures

Table 4: Makespan analysis of ORFO-TSS technique with existing algorithms

Makespan (s)

Methods Small Medium Large Extra-Large

ACO-TS 51.12 99.3 181.34 261.72

GWO-TS 48.47 91.65 154.31 176.44

IPSO-TS 47.15 88.93 151.13 175.69

FIMPSO-TS 45.52 84.79 150.22 160.82

CAIOA-TS 43.93 80.91 144.44 167.88

ORFO-TSS 38.69 77.86 135.26 148.65

Figure 7: Makespan analysis of ORFO-TSS technique with existing algorithms

492 CSSE, 2023, vol.45, no.1



Tab. 5 and Fig. 8 demonstrate a brief average throughput (ATHPT) analysis of the ORFO-TSS technique
with other techniques. The results indicated that the ORFO-TSS model has reached effectual outcomes with
higher ATHPT. For instance, with small tasks, the ORFO-TSS approach has attained higher ATHPT of
99.78% whereas the ACO-TS, GWO-TS, IPSO-TS, FIMPSO-TS, and CAIOA-TS models have reached
lower ATHPT of 89.42%, 95.27%, 99.23%, 99.70%, and 98.73% correspondingly. Furthermore, with
large tasks, the ORFO-TSS technique has obtained higher ATHPT of 92.10% whereas the ACO-TS,
GWO-TS, IPSO-TS, FIMPSO-TS, and CAIOA-TS techniques have reached to minimal ATHPT of
63.01%, 73.13%, 71.91%, 75.16%, and 86.91% correspondingly.

After examining the above mentioned tables and discussion, it is evident that the ORFO-TSS model has
accomplished maximum scheduling efficiency over the other models.

5 Conclusion

In this article, a novel ORFO-TSS algorithm has been developed to resolve the problem of allocating
resources from the IoT based cloud platform. It fulfils the makespan by performing optimum TS
procedures with various aspects of incoming tasks. The designing of ORFO-TSS method includes the
idea of OBL as to typical RFO algorithm in enhancing its efficiency. A wide-ranging experimental

Table 5: Average throughput analysis of ORFO-TSS technique with existing algorithms

Average throughput (%)

Methods Small Medium Large Extra-Large

ACO-TS 89.42 74.94 63.01 52.74

GWO-TS 95.27 82.57 73.13 64.26

IPSO-TS 99.23 82.74 71.91 68.88

FIMPSO-TS 99.70 87.62 75.16 73.31

CAIOA-TS 98.73 90.71 86.91 77.65

ORFO-TSS 99.78 95.96 92.10 89.80

Figure 8: Average throughput analysis of ORFO-TSS technique with existing algorithms

CSSE, 2023, vol.45, no.1 493



analysis was applied on the CloudSim platform. The experimental outcome highlighted the efficacy of the
ORFO-TSS technique over existing approaches. Thus, the ORFO-TSS technique can be exploited for
optimizing the efficacy of the IoT enabled cloud environment. In future, hybrid deep learning models can
be employed to schedule the sources that exist in the IoT enabled cloud environment.

Funding Statement: The authors received no specific funding for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] E. H. Houssein, A. G. Gad, Y. M. Wazery and P. N. Suganthan, “Task scheduling in cloud computing based on

meta-heuristics: Review, taxonomy, open challenges, and future trends,” Swarm and Evolutionary Computation,
vol. 62, no. 3, pp. 100841, 2021.

[2] S. E. Shukri, R. A. Sayyed, A. Hudaib and S. Mirjalili, “Enhanced multi-verse optimizer for task scheduling in
cloud computing environments,” Expert Systems with Applications, vol. 168, no. 4, pp. 114230, 2021.

[3] S. Velliangiri, P. Karthikeyan, V. M. A. Xavier and D. Baswaraj, “Hybrid electro search with genetic algorithm for
task scheduling in cloud computing,” Ain Shams Engineering Journal, vol. 12, no. 1, pp. 631–639, 2021.

[4] M. A. Elaziz and I. Attiya, “An improved Henry gas solubility optimization algorithm for task scheduling in cloud
computing,” Artificial Intelligence Review, vol. 54, no. 5, pp. 3599–3637, 2021.

[5] K. Karthikeyan, R. Sunder, K. Shankar, S. K. Lakshmanaprabu, V. Vijayakumar et al., “Energy consumption
analysis of virtual machine migration in cloud using hybrid swarm optimization (ABC-BA),” Journal of
Supercomputing, vol. 76, no. 5, pp. 3374–3390, 2020.

[6] P. Bal, S. Mohapatra, T. Das, K. Srinivasan and Y. Hu, “A joint resource allocation, security with efficient task
scheduling in cloud computing using hybrid machine learning techniques,” Sensors, vol. 22, no. 3, pp. 1242,
2022.

[7] W. Jing, C. Zhao, Q. Miao, H. Song and G. Chen, “QoS-DPSO: QoS-aware task scheduling for cloud computing
system,” Journal of Network and Systems Management, vol. 29, no. 1, pp. 5, 2021.

[8] M. S. Sanaj and P. M. J. Prathap, “An efficient approach to the map-reduce framework and genetic algorithm
based whale optimization algorithm for task scheduling in cloud computing environment,” Materials Today:
Proceedings, vol. 37, pp. 3199–3208, 2021.

[9] H. B. Alla, S. B. Alla, A. Ezzati and A. Touhafi, “A novel multiclass priority algorithm for task scheduling in
cloud computing,” Journal of Supercomputing, vol. 77, no. 10, pp. 11514–11555, 2021.

[10] R. Masadeh, N. Alsharman, A. Sharieh, B. A. Mahafzah and A. Abdulrahman, “Task scheduling on cloud
computing based on sea lion optimization algorithm,” International Journal of Web Information Systems, vol.
17, no. 2, pp. 99–116, 2021.

[11] M. S. Ajmal, Z. Iqbal, F. Z. Khan, M. Ahmad, I. Ahmad et al., “Hybrid ant genetic algorithm for efficient task
scheduling in cloud data centers,” Computers & Electrical Engineering, vol. 95, no. 3, pp. 107419, 2021.

[12] T. Bezdan, M. Zivkovic, N. Bacanin, I. Strumberger, E. Tuba et al., “Multi-objective task scheduling in cloud
computing environment by hybridized bat algorithm,” Journal of Intelligent & Fuzzy Systems, vol. 42, no. 1,
pp. 411–423, 2021.

[13] P. Bal, S. Mohapatra, T. Das, K. Srinivasan and Y. Hu, “A joint resource allocation, security with efficient task
scheduling in cloud computing using hybrid machine learning techniques,” Sensors, vol. 22, no. 3, pp. 1242,
2022.

[14] X. Fu, Y. Sun, H. Wang and H. Li, “Task scheduling of cloud computing based on hybrid particle swarm algorithm
and genetic algorithm,” Cluster Computing, vol. 51, no. 7, pp. 9, 2021.

[15] P. Krishnadoss, “CCSA: Hybrid cuckoo crow search algorithm for task scheduling in cloud computing,”
International Journal of Intelligent Engineering and Systems, vol. 14, no. 4, pp. 241–250, 2021.

494 CSSE, 2023, vol.45, no.1



[16] D. A. Amer, G. Attiya, I. Zeidan and A. A. Nasr, “Elite learning Harris hawks optimizer for multi-objective task
scheduling in cloud computing,” Journal of Supercomputing, vol. 78, no. 2, pp. 2793–2818, 2022.

[17] E. Khorami, F. M. Babaei and A. Azadeh, “Optimal diagnosis of COVID-19 based on convolutional neural
network and red fox optimization algorithm,” Computational Intelligence and Neuroscience, vol. 2021, no. 3,
pp. 1–11, 2021.

[18] M. Zhang, Z. Xu, X. Lu, Y. Liu, Q. Xiao et al., “An optimal model identification for solid oxide fuel cell based on
extreme learning machines optimized by improved red fox optimization algorithm,” International Journal of
Hydrogen Energy, vol. 46, no. 55, pp. 28270–28281, 2021.

[19] R. Raj, M. Varalatchoumy, V. L. Josephine, A. Jegatheesan, S. Kadry et al., “Evolutionary algorithm based task
scheduling in IOT enabled cloud environment,” Computers, Materials & Continua, vol. 71, no. 1, pp. 1095–1109,
2022.

[20] A. Devaraj, M. Elhoseny, S. Dhanasekaran, E. Lydia and K. Shankar, “Hybridization of firefly and improved
multi-objective particle swarm optimization algorithm for energy efficient load balancing in Cloud computing
environments,” Journal of Parallel and Distributed Computing, vol. 142, no. 4, pp. 36–45, 2020.

[21] M. Golchi, S. Saraeian and M. Heydari, “A hybrid of firefly and improved particle swarm optimization algorithms
for load balancing in cloud environments: Performance evaluation,” Computer Networks, vol. 162, no. 6, pp.
106860, 2019.

CSSE, 2023, vol.45, no.1 495


	Oppositional Red Fox Optimization Based Task Scheduling Scheme for Cloud Environment
	Introduction
	Related Works
	The Proposed Model
	Performance Validation
	Conclusion
	References


