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Abstract: Underwater imagery and transmission possess numerous challenges
like lower signal bandwidth, slower data transmission bit rates, Noise, underwater
blue/green light haze etc. These factors distort the estimation of Region of Interest
and are prime hurdles in deploying efficient compression techniques. Due to the
presence of blue/green light in underwater imagery, shape adaptive or block-wise
compression techniques faces failures as it becomes very difficult to estimate the
compression levels/coefficients for a particular region. This method is proposed to
efficiently deploy an Extreme Learning Machine (ELM) model-based shape adap-
tive Discrete Cosine Transformation (DCT) for underwater images. Underwater
color image restoration techniques based on veiling light estimation and restora-
tion of images followed by Saliency map estimation based on Gray Level Co-
occurrence Matrix (GLCM) features are explained. An ELM network is modeled
which takes two parameters, signal strength and saliency value of the region to be
compressed and level of compression (DCT coefficients and compression steps)
are predicted by ELM. This method ensures lesser errors in the Region of Interest
and a better trade-off between available signal strength and compression level.
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1 Introduction

Performance of underwater imagery system is influenced by channel characteristics like, limited
bandwidth, blue/green lighting haze and noisy distortions due to lengthy cables between imaging device
and storage device. Similarly, the transmission of underwater images under lower bandwidth and signal
strength is a challenge and requires efficient compression techniques with minimum errors for
reconstructed images or requires Spatial Modulation Schemes [1] for spectral and energy-efficient
wireless communication systems. Compression techniques in underwater imaging offer the following
attributes: lossy/lossless, quality scalability resolution scalability, Colour channel scalability, random
access, Region of Interests (ROI)-based compression [2] etc. Several works represent that efficient
compression techniques aids in tackling the limited bandwidth problem. In [3] proposed compression
methods to divide the image database into tiles and approximation to get the reconstructed image.
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Another method of adaptive embedded coding compression on important regions was proposed [4] based on
Image Activity Measurement (IAM) and Bits per pixel similarity (BPP-SSIM) curve method which is then
used to predict the quality of image compression.

Another Adaptive method of Block Compression Sensing (BCS) was proposed [5]. The wavelet codec
method and a preprocessing method are used to remove floating particles in underwater images [6]. Another
work by [7] proposed wavelet-based preprocessing methods to remove visual redundancy by Wavelet
Difference Reduction (WTWDR) and remove spatial redundancy in underwater ground images. In [8]
proposed an intraframe coding technique for compression using spatiotemporal a noticeable distortion
model to remove perceptual redundancy and uses motion interpolation to reduce the bit rate. In [9]
proposed motion-compensated compression of underwater video imagery, where compression was
achieved using the motion and radiometric information extracted from live and reconstructed images.

The above compression methods are block-wise compression techniques with fixed compression ratios
or non-block-wise methods with different compression levels applied on the whole image. In recent years,
there has been a lot of progress in several areas of learning technology, particularly image processing and
computer vision. However, video compression learning is still in its infancy. This article looks at the
collaborative work on learning for image and video codecs that has been ongoing for several years. For
underwater images, a method of deriving saliency maps post veiling light removal and block-wise
compression of regions by finding compression coefficients using an ELM-based network.

DCT is a straightforward transform technique. Some information is lost to compress an image. As a
result, DCT classifies the spectral sub-bands of an image into the most significant frequency coefficients
and the least important frequency coefficients. Environmental variables such as optical Noise, wave
disturbances, light stability and equality, temperature changes, and other factors may all impact
underwater photography quality, making underwater domain recording one of the most difficult
undertakings. Various can use image processing techniques to process data and discover the best items
and crucial features in pictures. Optical scattering is one of the primary difficulties in the underwater
environment that can produce different distortions, including morphological change in the underwater image.

The benefit of getting DCT instead of Discrete Fourier Transform (DFT) is that it requires fewer total
multiplications. When truncating frequency coefficients, DFT loses the form of the signal. Due to its
continuous periodic characteristic, DCT preserves the form of the signal even after frequency coefficients
are shortened. A concept for underwater photography, whether done by divers or with other specialist
equipment However, most of the time, the image looked fuzzy. As a result, the image falls short of the
viewers’ expectations. Certain processes must be carried out to get the image’s maximum perfection.

And the only multiplications involved in DCT are actual multiplications. Another benefit is that the
lower frequency components store the majority of the signal energy compression. This characteristic of
DCT arose from the image compression standards JPEG and MPEG. The undersea surface is a complex
concept of image processes analysis. The surface has numerous aspects that make it more appealing than
a terrestrial surface.

The Discrete Cosine Transform (DCT) breaks down a signal into its basic frequency components. It’s a
popular image compression method. We create some basic methods to compute the DCT and compress
pictures in this section. In all fields of digital signal processing, the Discrete Fourier Transform (DFT) is
critical. It’s used in compression, filtering, and feature extraction to get a signal’s frequency-domain
(spectral) representation. An image may be decomposed into its constituent parts using DCT.

Underwater imagery is a vital tool for documenting and reconstructing ecologically or historically
significant locations that are inaccessible to the general public and scientific community. A range of
technological and advanced equipment is utilized to get underwater imagery, including sonar, thermal
imaging, an optical camera, and a laser. The discrete cosines transformation is widely used in image
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compression and video frame compression. This type of transformation will transfer a signal from the spatial
domain to the time domain. DCT is suited for real-time applications because of its increased throughput. All
Joint Photographic Experts Group (JPEG) image compression and Moving Picture Experts Group (MPEG)
video compression formats. High-quality optical cameras are the preferred method for various computer
vision tasks in contemporary underwater photography, covering from scene reconstruction and navigation
to intervention tasks. However, processing underwater pictures and maintaining high levels of image
quality might have some significant downsides.

2 Proposed Work

Underwater images suffer from veiling light which makes it very difficult to determine the ROI. Adding
to veiling light, other factors that affect underwater image quality are color distortion, low contrast,
blurriness, scattering effects and white color disbalancing, propagated light attenuation, and light
scattering due to depth requires multiple repeated shots of the same object. The resulting underwater
images have poor object boundaries making it difficult to recognize ROIs. This deeply affects the shape
adaptive compression algorithms. As most shape adaptive compression techniques work on the saliency
maps to detect the ROI, underwater image distortions give wrong saliency maps. This leads to the wrong
estimation of the compression levels of objects of interest.

The first objective of this work is to restore the underwater color image of the veiling light to estimate the
correct saliency values of the ROI. Another challenge in underwater sea picture imagery is the limited
bandwidth of satellite/data uplinks which varies from place to place in the sea and weather. Hence
compression levels to be applied on the ROI and rest of the region is dependent on the available
bandwidth requires the computation of compression coefficient vis a vis input signal strength/bandwidth
of channel transmitting the image and saliency value of the region. Several learning methods are available
for the computation of compression coefficients. Still, most of them suffer from a typical problem like
unsuitability when the target values overlap for given inputs, slow speed of learning network
development, inability to expand the network when larger datasets arrive for training/testing, and the
utmost prime issues like initializing the weights. To overcome this an ELM network is proposed to
estimate the DCT coefficients. This reduces the training time and also, the hidden layers can be randomly
assigned and is free from problems like finding local minima.

Fig. 1 shows the block diagram of the proposed work where the input image is restored from the blue/
green light (veiling light affects). The fully compressed image is obtained by running the ELM-based DCT
coefficient calculation for each image region. A saliency map was calculated for the underwater restored
image and saliency value for the selected region R1. The available bandwidth or the signal strength was
given to the ELM network to give the DCT coefficient values for the DCT based compression.

2.1 Underwater Color Image Restoration

Assuming an underwater camera, capturing the images in the deep sea with artificial lights. The use of
artificial lights added to the veiling light components causes’ background scattering and also underwater
floating particles generate unwanted noises and cause dimming of the captured images [10].

Any pixel coordinate (m, n) captured by the camera can thus be represented by a superposition model of
direct energy transmission, forward scattering, and background scattering components represented by the
equation below.

ETðm; nÞ ¼ Edðm; nÞ þ Ef ðm; nÞ þ Ebðm; nÞ (1)
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Here ET ðm; nÞ is total energy component captured by the camera, Edðm; nÞ is the direct energy
transmission component, Ef ðm; nÞ is the forward scattering component and Ebðm; nÞ is the
backscattering component.

Image restoration techniques must recover the original image iðm;nÞ Schettini et al. 2010 [11] with
minimum losses from an observed image oðm;nÞ while exploiting the degradation function dðm;nÞ and the
noisy characteristics nðm;nÞ. The observed image thus is given by

oðm;nÞ ¼ iðm;nÞ � dðm;nÞ þ nðm;nÞ (2)

Here * is the convolutional operator.

This can be represented in frequency domain by

Oðu;vÞ ¼ Iðu;vÞDðu;vÞ þ Nðu;vÞ (3)

where u, v are the spatial frequencies, O, I, D and N are the Fourier transform of o, i, d and n respectively. In
image restoration techniques, where knowledge of degradation function or point spread function is required,
it is very difficult to implement. In most conditions, a priori is not available and the point spread functions or
the degradation models are tough to formulate for different depths of water. Occasional use of artificial light
makes it difficult to formulate the same since uniform illumination cannot be assumed. Hence for image
restoration it is important to incorporate underwater characteristics dependent on the depth of imagery
into image restoration models.

An underwater color image is represented by three channels c ∈ {R, G, B}, and the intensity of each
pixel is given by two components namely attenuated signal and veiling light Mao et al. 2014 [10].

IcðxÞ ¼ tcðxÞJcðxÞ þ ð1� tcðxÞÞ: Ac (4)

Here Ic is the captured image value in color channel c, the transmission of the particular color channel is
given by tc . The scene value represents the global veiling light component where no objects are present and
Jc is object radiance targeted to be restored.

Figure 1: Block diagram of the proposed method
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The transmission depends on the objects distance d(x) and the water attenuation coefficient for each
channel bc

tcðxÞ ¼ expð�bc dðxÞÞ (5)

Underwater imagery performed with the camera has three attenuation coefficients namely bR; bG; bB
respectively, for the red, green and blue channels used for image restoration. To restore the color image and
remove the underwater artifacts Dana et al. [12] methods of Veiling light Estimation and Transmission
Estimation can be used as reference.

For transmission estimation of a particular channel, scene values can be used. The generalized scene
values are given by

IChanel � I�channel ¼ ebchannel ðIchannel � JChannelÞ (6)

Using Eq. (6) to calculate the ratio of attenuation coefficients between blue and red channels gives

ðAR � IRÞ
bB
bR ¼ e�bRd:

bB
bRðAR � JRÞ

bB
bR ¼ tB ðAR � JRÞ

bB
bR (7)

A lower bound on the transmission of the blue channel is given by

tLB :¼ max 1� IB
Ab

; 1� IG
AG

� �bBG

; 1� IR
AR

� �bBR
( )

(8)

A soft matting method was used for calculating the transmission.

tBðxÞ ¼
tLBðxÞ DM ðIðxÞ � DM þ rM
tB DM ðIðxÞ � DM þ rM
aðxÞtLBðxÞ þ 1� aðxÞ:tðxÞ otherwise

8<
: (9)

where DM is the mahalanobis distance of the veiling light pixels given by

DM ¼ 1

jVLj
X
x2VL

DMIðxÞ (10)

aðxÞ is the matting coefficient and rM is the standard deviation. After transmission estimation, scene
recovery can be given by

Jc ¼ Ac þ Ic � Ac

e�bcd
¼ Ac þ Ic � Ac

t
bc
bB
B

(11)

Overall the method involves the following steps:

1. Detection of veiling light pixels using structured edges and calculation of veiling light A.

2. The ratio of attenuation coefficients of Blue/Red and Blue/Green water type calculates the image
intensity at a particular pixel for each value.

3. Cluster the pixels into 500 Haze lines and estimate the initial transmission.

4. Apply soft matting.

5. Regularization using guided image filter with contrast-enhanced input as guidance.

6. Calculate the Restored image.

7. Return the image that best adheres to the Gray world assumptions.
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2.2 Saliency Map

Saliency maps efficiently provide the Regions where most of the activity or objects of importance are
present. Saliency maps effectively find the Region of Interest and are known to be used in several image
segmentation problems to detect the salient visual regions. Several methods were proposed earlier for
detecting saliency maps. Yang et al. [13] proposed color image-based saliency map derivation for foreign
fiber detection by finding a color difference between pixel intensity and mean color value. Squaring this
difference gave the mean value of color. Multitask Densely connected Neural Network (MDNN) was
used to derive both salient maps and salient object subtilizing by Pei et al. [14]. Fast Fuzzy C means
clustering algorithm with self-tuning local spatial information was used by Feng [15]. Self-attention-based
saliency was used by Sun et al. [16] to generate a subtle saliency map. Another method of using
multiscale image features were combined into a single topographical saliency map by Itti et al. [17]. A
dynamical neural network then selects attended locations in order of decreasing saliency.

Saliency maps can be derived from single scale (properties) or multiple scales by adding two or more
feature characteristics in deriving the saliency maps. There are various methods to determine saliency
based on color, contrast, illumination etc. Most of the methods use the local contrast as one of the
parameters for saliency map calculation. Feature vectors of a group of pixels for a particular region can
be compared with feature vectors of the group of pixels for another region.

Split the image into 8� 8 regions and calculate the GLCM features such as Regional contrast, Regional
correlation and Entropy. GLCM features are normalized so that some of its elements are 1.

2.2.1 Entropy Calculation
Let (i, j) be the pixel coordinate of an image region R1. Assume GL to be the number of grey levels and

Pk to be the probability associated with grey level k. The Entropy of a region R1 can be calculated [18] by

ER1 ¼ �
X
k

pklog2ðp2Þ (12)

2.2.2 Contrast Extraction
Contrast [19] returns a measure of the intensity contrast between a pixel and its neighbour over the whole

image

CR1 ¼
X
i;j

ji� jj2 pði; jÞ (13)

2.2.3 Correlation Extraction
Correlation measures how correlated a pixel is to its neigh boring pixel over the whole image and ranges

between -1 to 1.

CrR1 ¼
ði� liÞðj� ljÞpði; jÞ

rirj
(14)

The GLCM feature [20] for the region R1 can be given as

R1 ¼ ½ER1 ; CR1 ; CrR1
� (15)

Weighted Euclidean Distance can be used to determine if any GLCM feature of Region 1 and Region 2
represents ROI or is not part of the ROI. The Euclidean distance between the jth variable of a feature between
Region 1 and Region 2 can be given as
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EDRj1�Rj2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXJ
j¼1

Rj1

sj
� Rj2

sj

� �2
vuut (16)

Here sj is the sample standard deviation of the jth variable. In this case j = 3.

2.3 Application of ELM

ELMmodels can be solved analytically comprising of a closed-form involving matrix multiplication and
inversion. Hence learning process can be started without any iterative methods and is considered faster
compared to other algorithm. A classical neural network regression and prediction algorithm use fixed
activation functions and dynamic changes are very difficult to implement. ELMs structure is simple and
learning can be faster with good generalized performance. The Single hidden Layer Feed forward Neural
Network (SLFN) architecture is shown in Fig. 2.

Assuming N number of training samples ðInpi; tiÞ 2 Rn � Rm ði ¼ 1; 2; : : NÞ . Output of the SLFN
with N number of hidden nodes can be represented by

oj ¼
XN
i¼1

bifiðxjÞ ¼
XN
i¼1

bif ðInpj; ai; biÞ j ¼ 1; : : :N (17)

Here oj is the output vector of SLFN concerning the input sample Inpj. Learning parameters are
represented randomly by ai ¼ ½ai1; ai2; : : :ain�T and bi for the jth hidden node. The link connecting the
jth hidden node and the output node is given by bi ¼ ½bi1; bi2; : : :bim�T. For the original ELM the
activation function can be given by ðInpj; ai; biÞ .

The inner product of ai; Inpj is given as ai;:Inpj. Output vectors can be presented as

Hb ¼ O (18)

H is the output matrix of the hidden layer. And illustratively represented as [21]

H ¼
f ða1:Inp1 þ b1Þ . . . f ðaN :Inp1 þ bN Þ

. . . . . . . . .
f ða1:InpN þ b1Þ . . . f ðaN :InpN þ bNÞ

2
4

3
5 (19)

Figure 2: SLFN network architecture
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b ¼
bT1
. . .
bTN

2
4

3
5
N�m

(20)

O ¼
oT1
. . .
oTN

2
4

3
5
N�m

(21)

The network cost function given as ||O-T|| can be minimized by assigning hidden node learning
parameters without considering the input data, resulting in Hβ = O becoming a linear system and the
output weights b is analytically determined by the least square method.

b̂ ¼ H⊺T (22)

H⊺ is called Moore Penrose generalized inverse of H [22]. Hence, the calculation of the output weights
is done by a mathematical transformation to avoid long training phases that involve adjusting the network
iteratively with suitable learning parameters. ELM can be used to solve the regression problem where
multiple inputs and a target set are used as in this case. The signal strength and saliency value of a block
pixel are used as input training samples and the DCT coefficient output. Numerous functions are used for
testing the regression problem.

f1ðxÞ ¼
XDim
i¼1

xi (23)

f2ðxÞ ¼
XDim�1

i¼1

100ðxi � xiþ1Þ2 þ ðxi � 1Þ2 (24)

f3ðxÞ ¼ �20e�0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
i¼1

x2i
Dim

s
� e

Pn
i¼1

cos
2pxi
Dim þ 20 (25)

Here Dim is the set of the positive integer representing the dimension of the function used. Function
f2ðxÞ and f3ðxÞ are multimodal functions. The activation function is selected as a hyperbolic tangent
function given by [23]

gðxÞ ¼ ð1� e�xÞ
ð1þ e�xÞ (26)

For unbalanced learning, considering an N�N diagonal matrix Wassociated with every training sample
Lp xi, the weight will be relatively higher than the others. To maximize the marginal distance and to minimize
the cumulative error concerning the samples [24], ELMs can be optimized and written as

Minimise : kHb� Tk2; kbk ; (27)

Here T ¼ ½t1; ; ; tN �

Minimise: LPELM ¼ 1

2
kbk2 þ 1

2
CW

XN
i¼1

knik2 (28)

Subject to hðxiÞb ¼ tTi � nTi ; i ¼ 1; : : N
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Feature vector mapping in the hidden layer is represented by ðLpÞ xi concerning xi and the output vector
connecting the hidden layer and output layer is represented by b. C represents a regularization parameter to
represent the trade-off between the minimization of training errors and the maximization of the marginal
distance ni. The training error of sample xi is caused by the difference between the desired output ti and
the actual output hðxiÞb

ELMs come with their risks such as empirical and structural ones. A generalized ELM model must be
able to balance and keep the empirical and structural risks at a minimum. But in cases where the input data
results in overlapping of the target causes overfitting. Assuming input and output sample dataset for
regression analysis as

T ¼ fðx1; y1Þ; : : : ðxi; yiÞg
Here xi 2 Rn and y 2 R. Adjusting the proportion of the empirical and structural risk, the optimization

model for the optimal regression can then by given by

min
1

2
kbk2 þ 1

2
f
XN
i¼1

kdk2 (29)

Or Eq. (28) can be rewritten as

min
1

2
kbk2 þ 1

2
fW

XN
i¼1

kdk2 (30)

Subject to

yi � bihðxiÞ ¼ di
di � 0; i ¼ 1; 2 : :N

�
(31)

As per the maximum margin theory t d2i is the sum of the square errors representing the empirical risk
and jb2j representing the structural risk.

Thus the overall steps involved in the ELM can be summarised as

■ Providing input training set, activation function f (.) and the number of hidden nodes.
■ Randomly assigning input weight w, input weight w and biases b.
■ Calculation of hidden layer output matrix H.
■ Calculation of output weight w.

Fig. 3 shows the flowchart of the ELM-based network in the proposed work. The first step involved
defining the network parameters like activation function, the number of iterations, and the number of
hidden neurons. ELM has the distinct advantage that weights and biases can be randomly assigned to the
network. The next step is to train the ELM network with input as a training region saliency map for a
region R1 and signal strength. Target DCT coefficients are set for the input and the training is done.

To test the ELM network input Test Region Saliency values are given with the Test signal strength
values. ELM network then estimates the correct output DCT coefficients/Compression Ratios. The
coefficient is then selected for the region and the image is compressed for the region R1. The test process
is done on the whole image while inputting image blocks to compress the whole image.
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Although ELM is fast and gives good generalized performance since the output weights w and hidden
biases are assigned randomly, some corner cases where ELM suffers from overfitting due to non-optimal
input weights and hidden biases are present. To test the performance of the ELM RMSE is calculated.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

Cof Est Err2i
n

s
i ¼ 1; 2; 3 : : n (32)

ME ¼
XCof Est Erri

n
i ¼ 1; 2; 3 : : n (33)

Here Cof Est Err is the coefficient estimation error.

3 Results and Discussion

To test the algorithm, underwater marine images were taken. Fig. 4a represents an underwater image
with a prominent blue light effect. Input image 4a is taken and a Saliency map is extracted as shown in
4c. A significant part of the ROI of the original underwater image is not given significant weights leading
to a higher compression is adaptive shape methods in those areas where low compression levels should
have been applied. Fig. 4e shows that higher compression levels were applied at even prominent ROIs,
leading to a higher compression ratio and loss of ROI data during compression. To avoid this accurate
saliency map extraction is important and the blue light effect must be removed. Underwater color image
restoration was used to remove the blue/green light of the underwater marine images as shown in Figs.
4b–4d shows the saliency map of a restored color image from blue/green light effects and Fig. 4f shows
the ELM-based shape adaptive DCT based compression. Same type of testing is applied for some more
images and the results are shown in Figs. 5–9. The underwater color restored images have better PSNR
and a lesser compression ratio to keep the quality of ROI significant.

Test Signal Strength 

Test Region Saliency 
Value 

Training Signal Strength 

Training Region Saliency 
Value Target DCT Coefficients/ 

Compression 

Defining Network Parameters (Activation 
Function, Number of Iteration and Hidden 

neurons) 

Assign Weights and Biases randomly 

Train ELM Network 

Test ELM Network 

DCT Compressed Region 

Region reconstruction into Image 

Figure 3: Flowchart for ELM-based training, and testing for compression of underwater images
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(a) (b) (c)

(e) (f)(d)

Figure 4: (a) Input image (b) Colour restored image (c) Saliency map for input image (d) Saliency map for
Colour restored image (e) ELM shape adaptive DCT for input image: PSNR: 19.5, Compression Ratio:
20.22% (f) ELM shape adaptive DCT for color restored image: PSNR 28.2, Compression Ratio: 14.85

(c)(b)(a)

(f)(e)(d)

Figure 5: (a) Input image (b) Colour restored image (c) Saliency map for input image (d) Saliency map for
Colour restored image (e) ELM shape adaptive DCT for input image PSNR:12.4 ,Compression Ratio: 17.58
(f) ELM shape adaptive DCT for colour restored image PSNR: 16.92, Compression Ratio: 16.25
Image Reference: http://labelme.csail.mit.edu/Release3.0/tool.html?actions = v&folder = users/antonio/static_sun_database/u/
underwater/ocean_shallow&image = sun_bvoeqscrvbzdsaej.jpg
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(b) (a) (c) 

(d) (e)  (f)  

Figure 6: (a) Input image (b) Colour restored image (c) Saliency map for input image (d) Saliency map for
Colour restored image (e) ELM shape adaptive DCT for input image PSNR:14.7, Compression Ratio: 23.69
(f) ELM shape adaptive DCT for colour restored image PSNR:16.78, Compression Ratio: 21.87
Image Reference: http://labelme.csail.mit.edu/Release3.0/Images/users/antonio/static_sun_database/u/underwater/ocean_shallow/
sun_aqjzjtphfgrtgkyq.jpg

(a) (c)(b)

(d)  (e) (f)

Figure 7: (a) Input image (b) Colour restored image (c) Saliency map for an input image (d) Saliency map
for Colour restored image (e) ELM shape adaptive DCT for input image PSNR:21.24, Compression Ratio:
18.68 (f) ELM shape adaptive DCT for color restored image PSNR: 24.63, Compression Ratio: 14.58
Image Reference: http://labelme.csail.mit.edu/Release3.0/Images/users/antonio/static_sun_database/u/underwater/coral_reef/sun_
bjmjisjcjszffzmo.jpg
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(b) (a) (c)

(e) (d) (f)

Figure 9: (a) Input image (b) Colour restored image (c) Saliency map for input image (d) Saliency map for
Colour restored image (e) ELM shape adaptive DCT for input image PSNR:20.12, Compression Ratio: 21.26
(f) ELM shape adaptive DCT for colour restored image PSNR: 22.45, Compression Ratio: 17.68

(d) (e) (f)

(a) (b) (c)

Figure 8: (a) Input image (b) Colour restored image (c) Saliency map for input image (d) Saliency map for
Colour restored image (e) ELM shape adaptive DCT for input image PSNR: 25.42, Compression Ratio:
21.23 (f) ELM shape adaptive DCT for color restored image PSNR: 28.72, Compression Ratio: 16.48
Image Reference: https://www.livescience.com/15492-underwater-shipwrecks-gallery.html
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After training the ELM for determining the DCT coefficients for the input of Saliency map value and
signal strength for image transmission, the ELM network is tested. Fig. 10 shows that the compression
applied to the input images goes down with the increase in the signal strength.

Fig. 11 showed the PSNR values of one of the input images when the signal strength was varied across a
range. With an increase in the signal strength, the PSNR also improves.

Figure 10: Plot between signal strength and compression ratio

Figure 11: Plot between signal strength and PSNR

1966 CSSE, 2023, vol.45, no.2



The Fig. 12 shows Structural content measures the image quality after degradation due to compression
increases with an increase in the signal strength. Images get less degraded when the compression ratio is less
when good signal strength is given to the system to transmit the images.

With the decrease in the signal strength, the compression ratio has to be high, increasing the
underground image’s processing timemage. Fig. 13 shows that processing time was higher when signal
strength was decreased and as the signal strength improves processing time also improves for an image.

Fig. 14 discuss the Plot between Signal Strength and Normalised Absolute Error. Normalized absolute
error decreased with signal strength Normalized absolute error is higher when the signal strength is very low
as there is a lot of error between the reconstructed and original images.

Fig. 15 discuss the comprehensive analysis of proposed system with some conventional methods. In this
comparisons analysis clearly states the proposed ELM with DCT method gives good results.

Figure 12: Plot between signal strength and structural content of MS-SSIM
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Figure 14: : Plot between signal strength and normalised absolute error

Figure 13: Plot between signal strength and processing time
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4 Conclusion

To handle the underwater image compression problem, this paper proposed a method that restores the
underwater color image from the blue/green light rays and uses the saliency maps and signal strength to
decide region level compression coefficients. Using ELM to find the compression coefficients proves
itself efficient in providing optimal compression levels and PSNR values with minimized errors,
minimized processing time and better structural content. The use of ELM resulted in a smaller processing
time to set up the network as ELM has faster learning. The proposed method gives good results since the
ELM reaches the solutions quickly without problems like local minima and learning rate. The PSNR and
RMSE value of proposed system is 28.52 dB and 0.33 dB.
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